Formation Mechanism of Chang 6 Tight Sandstone Reservoir in Jiyuan Oilfield, Ordos Basin
-
摘要: 鄂尔多斯盆地姬塬油田长6储层原油储量丰富,储层致密制约着油气的勘探开发潜力和评价精度.通过开展物性、粒度、铸体薄片、X衍射、扫描电镜、压汞等测试研究储层特征,以时间为主轴,综合成岩史、埋藏史、地热史、构造等因素,采用“成岩作用模拟”和“地质效应模拟”构建孔隙度演化模型及计算方法探讨致密储层成因机理.结果表明:储层经过较强的演化改造发育微-纳米孔喉系统,形成低孔特低孔-超低渗的致密砂岩储层.H53井长6段孔隙度演化史揭示了增孔和减孔因素对孔隙度及油气充注的影响;通过对比最大粒间孔面孔率、最大溶蚀面孔率、最大压实率、最大胶结率样品孔隙度演化路径和含油饱和度,查明了致密储层成因的差异及品质.Abstract: In order to further study the occurrence state and origin of geothermal resources in Guide basin, the hydrochemistry, hydrogen and oxygen isotope data from the study area are collected to analyze the geochemical properties and evolution of geothermal water and to calculate the geothermal reservoir temperature of high-temperature field. Hydrochemistry analysis of geothermal fluids show that the high-temperature thermal water is mainly of SO4·Cl-Na type, and the low-temperature thermal water is mainly of SO4-Na、SO4·HCO3-Na. There is a positive correlation between Li, F, Sr, As and Cl in Zhacangsi thermal field, which indicates the possible same origin, and the positive correlation between SiO2 and Cl confirms the deep hot source of geothermal resources. The δD values range from-59‰ to-87‰, the δ18O values range from-8.6‰ to 12.2‰, and they are all distributed near the local meteoric water line, which suggests the thermal water in study area is recharged from the atmospheric precipitation mainly. The temperature and depths of geothermal reservoir of Zhacangsi thermal field are calculated using reasonable geothermometers. The Na-K-Mg equilibrium diagram reflects that the cold water mixing action occurred in Zhacangsi thermal field during the hot water rising process, the cold water mix proportions and the geothermal reservoir temperature before the cold water mixed are obtained using Si-enthalpy model. The geothermal reservoir temperature of Zhacangsi thermal field is about 133 ℃ calculated by multi mineral balance method and geothermometers, which is close to the shallow reservoir temperature, the depth of the thermal cycle is about 1 800 m; while the geothermal reservoir average temperature of Zhacangsi geothermal field is 222 ℃ before the cold water mixed and the cold water in geothermal fluid mixed with 60%-68% analyzed by Si-enthalpy model, which is close to the deep geothermal reservoir temperature, the depth of the thermal cycle is about 3 200 m. It is concluded that there are two geothermal reservoirs in Zhacangsi thermal field within the depth of 4 000 m This paper can facilitate further study of genetical mechanism of the high-temperature geothermal systems and provide guidance for exploration and drilling in the area.
-
Key words:
- Jiyuan Oilfield /
- chang6 reservoir /
- diagenesis /
- geologic simulation /
- porosity evolution /
- petroleum geology
-
表 1 典型样品岩石组分特征统计
Table 1. Parameters of sandstone components of typical samples in Chang 6 reservoir
参数类型 陆源碎屑体积含量 (%) 结构成熟度 填隙物 (%) 脆性指数 石英类 长石类 火成岩 变质岩 沉积岩+云母 绿泥石 伊利石 高龄石 碳酸盐类 硅质类 其他 最大值 36.50 53.00 5.00 8.00 10.00 0.76 12.00 18.00 9.00 22.00 5.00 3.00 0.89 平均值 26.10 48.11 3.14 5.20 6.21 0.43 2.38 1.77 3.96 3.71 0.90 0.17 0.73 最小值 21.00 37.50 1.50 2.50 3.00 0.31 0.40 1.00 0.50 1.00 0.20 0.05 0.54 注:结构成熟度=石英质量分数/(长石质量分数+岩屑质量分数);脆性指数=石英质量分数/(石英质量分数+碳酸盐质量分数+黏土质量分数)( Rick et al., 2008 ).表 2 砂岩孔隙度演化定量计算方法
Table 2. Quantitative calculation method of porosity evolution in sandstone reservior
孔隙度演化参数 (%) 公式 备注 原始孔隙 Φ1=20.91+22.90/Sd Φ1为砂岩未固结的原始孔隙 (%);Sd为分选系数 (Sd=(P25/P75)1/2),P25,P75是累计曲线上25%与75%所对应的颗粒的直径 压实剩余孔隙度 Φ2=Φ1expnh Φ2为不同深度段机械压实的剩余孔隙度 (%);exp为指数;n为覆压下拟合的常数;h为地层埋深 (m) 胶结损失孔隙度 Φ3=C Φ3为胶结损失孔隙度 (%);C为胶结物含量 (%) 溶蚀增加的孔隙度 Φ4=P1×P2/P3 Φ4为溶蚀增加的孔隙度 (%);P1为溶蚀孔面孔率 (%);P2为气测孔隙度平均值 (%);P3为总孔隙面孔率 (%) 注:由于微裂缝、填隙物微孔的统计方法和难度较大,本次研究忽略. 表 3 不同成岩特征的孔隙度演化参数统计
Table 3. Statistics of porosity evolution parameters of various diagenesis stages
参数类型 (%) Φ1 Φ2 Φ3-早 Φ4 Φ3-中晚 Φ P So Ⅰ 38.71 14.88 4.05 3.47 2.85 11.45 11.72 46.69 Ⅱ 38.12 13.16 4.24 7.96 6.91 9.97 10.36 38.25 Ⅲ 38.44 7.65 1.00 1.59 4.14 4.47 4.21 10.16 Ⅳ 37.95 30.36 25.27 0.17 1.86 3.39 3.51 7.11 注:Ⅰ.最大粒间孔面孔率;Ⅱ.最大溶蚀面孔率;Ⅲ.最大压实率;Ⅳ.最大胶结率;Φ1.原始孔隙;Φ2.压实剩余孔隙度;Φ3-早.早期胶结损失孔隙度;Φ4.溶蚀增加的孔隙度;Φ3-中晚.中晚期胶结损失孔隙度;Φ.计算孔隙度;P.气测孔隙度;So.测井含油饱和度. -
[1] Athy, L.F|1930.Density, Porosity and Compaction of Sedimentary Rocks.AAPG Bulletin,14(1):1-24.doi: 10.1306/3D93289E-16B1-11D7-8645000102C1865D [2] Cowan, G., Shaw, H|1991.Diagenesis of Namurian Fluvio-Deltaic Sandstones from the Trumfleet Field, South Yorkshire.Marine & Petroleum Geology,8(2):212-224. https://www.researchgate.net/publication/223005733_Diagenesis_of_Namurian_fluvio-deltaic_sandstones_from_the_Trumfleet_Field_South_Yorkshire [3] Chu, M.J., Guo, Z.Q., Qi, Y.L., et al|2013.Quantitative Diagenesis and Diagenetic Fades Analysis on Chang 8 Reservoir of Yanchang Formation in Ordos Basin.Natural Gas Geoscience,24(3):477-484 (in Chinese with English abstract). https://www.researchgate.net/publication/289350680_Research_on_quantitative_diagenetic_fades_of_the_Yanchang_Formation_in_Longdong_Area_Ordos_Basin [4] Deng, X.Q., Liu, X.S., Li, S.X|2009.The Relationship between Campacting History and Hydrocarbon Accumulating History of the Super-Low Permeability Reservoirs in the Triassic Yanchang Formation in the Ordos Basin.Oil and Gas Geology,30(2):156-161 (in Chinese with English abstract). https://www.researchgate.net/publication/292437575_The_relationship_between_compacting_history_and_hydrocarbon_accumulating_history_of_the_super-low_permeability_reservoirs_in_the_Triassic_Yanchang_Formation_in_the_Ordos_Basin [5] Fu, J.H., Li, S.X., Liu, X.Y|2013.Ueological Theory and Practice of Petroleum Exploration in the Ordos Basin.Natural Uas Ueoscience,24(6):1091-1101 (in Chinese with English abstract). https://www.researchgate.net/publication/286534157_Geological_theory_and_practice_of_petroleum_exploration_in_the_Ordos_Basin [6] Gier, S., Worden, R.H., Johns, W.D., et al|2008.Diagenesis and Reservoir Quality of Miocene Sandstones in the Vienna Basin, Austria.Marine & Petroleum Geology,25(25):681-695.doi: 10.1016/j.marpetgeo.2008.06.001 [7] Guo, Z.Q., Qi, Y.L., Chu, M.J., et al|2012.Recovery of Compact History of Yanchang Reservoir in Upper Triassic, Ordos Basin.Petroleum Geology & Experiment,34(6):594-598 (in Chinese with English abstract). https://www.researchgate.net/publication/288964347_Recovery_of_compact_history_of_Yanchang_reservoir_in_Upper_Triassic_Ordos_Basin [8] Lai, J., Wang, G.W., Chai, Y., et al|2014.Mechanism Analysis and Quantitative Assessment of Pore Structure for Tight Sandstone Reservoirs:An Example from Chang 8 Oil Layer in the Jiyuan Area of Ordos Basin.Chinese Journal of Geology,88(11):2119-2130 (in Chinese with English abstract). https://www.researchgate.net/publication/261801550_Characterization_and_evaluation_of_ultra-deep_fracture-pore_tight_sandstone_reservoirs_A_case_study_of_Cretaceous_Bashijiqike_Formation_in_Kelasu_tectonic_zone_in_Kuqa_foreland_basin_Tarim_NW_China [9] Liu, X.Y., Hui, X., Li, S.X|2012.Review of Iormation Rulefor Low Permeability Reservoir of Mesozoic in Ordos Basin.Acta Sedimentologica Sinica,30(5):964-974 (in Chinese with English abstract). https://www.researchgate.net/publication/284258732_Proposals_for_the_application_of_fracturing_by_stimulated_reservoir_volume_SRV_in_shale_gas_wells_in_China [10] Luo, J.L., Liu, X.S., Fu, X.Y., et al|2014.Impact of Petrologic Components and their Diagenetic Evolution on Tight Sandstone Reservoir Quality and Gas Yield:A Case Study from He 8 Gas-Bearing Reservoir of Upper Paleozoic in Northern Ordos Basin.Earth Science,39(5):537-545 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqkx201405004 [11] Pan, G.F., Liu, Z., Zhao, S., et al|2011.Quantitative Simulation of Sandstone Porosity Evolution:A Case from Yanchang Formation of the Zhenjing Area, Ordos Basin.Acta Petrolei Sinica,32(2):249-256 (in Chinese with English abstract). https://www.researchgate.net/publication/287942779_Quantitative_simulation_of_sandstone_porosity_evolution_A_case_from_Yanchang_Formation_of_the_Zhenjing_area_Ordos_Basin [12] Paola, R., Andrea, O., Ornella, B., et al|2010.Depositional Setting and Diagenetic Processes and Their Impact on the Reservoir Quality in the Late Visean-Bashkirian Kashagan Carbonate Platform (Pre-Caspian Basin, Kazakhstan).AAPG Bulletin,94(8):1313-1348. https://www.researchgate.net/publication/239556994_Stratigraphy_depositional_setting_and_diagenetic_history_of_the_Saint-Jules_Formation_Upper_Devonian_or_Mississippian_a_newly_identified_post-Acadian_red_clastic_unit_in_the_southern_Gaspe_Peninsula_Q [13] Qu, D.F., Jiang, Z.X., Liu, H.M., et al|2012.A Reconstruction Method of Porosity for Clastic Reservoirs during the Crucial Period of Hydrocarbon Accumulation.Acta Petrolei Sinica, 33(3):404-413 (in Chinese with English abstract). https://www.researchgate.net/publication/287511332_A_reconstruction_method_of_porosity_for_clastic_reservoirs_during_the_crucial_period_of_hydrocarbon_accumulation [14] Rick, R., Michael, J.M., James, E.P., et al|2008.A Practical Use of Shale Petrophysics for Stimulation Design Optimization:All Shale Plays are not Clones of the Barnett Shale.SPE115258. https://www.researchgate.net/publication/254528250_A_Practical_Use_of_Shale_Petrophysics_for_Stimulation_Design_Optimization_All_Shale_Plays_Are_Not_Clones_of_the_Barnett_Shale [15] Schmid, S., Worden, R.H., Fisher, Q.J|2004.Diagenesis and Reservoir Quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, West of Ireland.Marine & Petroleum Geology,21(3):299-315.doi: 10.1016/j.marpetgeo.2003.11.015 [16] Schmoker, J.W., Gautier, D.L|1988.Sandstone Porosity as a Function of Thermal Maturity.Geology,16(11):1007-1010. doi: 10.1130/0091-7613(1988)016<1007:SPAAFO>2.3.CO;2 [17] Tang, X.P., Huang, W.H., Li, M., et al|2013.Diagcnctic Environment Evolution of Deep Sandstones in the Upper Es4 the Palaeogene in Lijin Sag.Earth Science,38(4):843-852(in Chinese with English abstract). https://www.researchgate.net/publication/287728258_Diagenetic_environment_evolution_of_deep_sandstones_in_the_upper_Es4_of_the_palaeogene_in_Lijin_sag [18] Taylor, T.R., Giles, M.R., Hathon, L.A., et al|2010.Sandstone Diagenesis and Reservoir Quality Prediction:Models Myths and Reality.AAPG Bulletin,94(8):1093-1132.doi: 10.1306/04211009123 [19] Wu, X.B., Hou, J.G., Sun, W|2011.Microstructure Characteristics and Quantitative Analysis on Porosity Evolution of Ultra-Low Sandstone Reservoir.Journal of Central South University (Science and Technology),42(11):3438-3446 (in Chinese with English abstract). https://www.researchgate.net/publication/283519338_Microstructure_characteristics_and_quantitative_analysis_on_porosity_evolution_of_ultra-low_sandstone_reservoir [20] Xi, S.L., Li, R.X., Zhu, D.M., et al|2013.Formation of Low Permeable Reservoir Chang 4+5 in Jiyuan Region, Ordos Basin.Chinese Journal of Geology,48(4):1164-1176 (in Chinese with English abstract). https://www.researchgate.net/publication/286295178_Formation_of_low_permeable_reservoir_Chang_45_in_Jiyuan_region_Ordos_Basin [21] Yang, H., Li, S.X., Liu, X.Y|2013.Characteristics and Resource Prospects of Tight Oil and Shale Oil in Ordos Basin.Acta Petrolei Sinica,34(1):1-11 (in Chincsc with English abstract). doi: 10.1038/aps.2012.174 [22] Zhang, C., Sun, W., Gao, H., et al|2014.Reservoir Diagenetic Facics and Porosity Evolution Pathways of Chang 8 Formation in Huachi, Ordos Basin.Earth Science,39(4):411-420 (in Chinese with English abstract). https://www.researchgate.net/publication/287424227_Reservoir_diagenetic_facies_and_porosity_evolution_pathways_of_Chang_8_formation_in_Huachi_Ordos_basin [23] Zhong, D.K., Zhu, H.H., Sun, D.K., et al|2013.Diagenesis and Porosity Evolution of Sandstones in Longdong Area, Ordos Basin.Earth Science Frontiers,20(2):61-68(in Chinese with English abstract). https://www.researchgate.net/publication/287728109_Diagenesis_and_porosity_evolution_of_sandstones_in_Longdong_Area_Ordos_Basin [24] 楚美娟, 郭正权, 齐亚林, 等, 2013.鄂尔多斯盆地延长组长8储层定量化成岩作用及成岩相分析.天然气地球科学, 24(3):477-484. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303006.htm [25] 邓秀芹, 刘新社, 李士祥, 2009.鄂尔多斯盆地三叠系延长组超低渗透储层致密史与油藏成藏史.石油与天然气地质30(2):156-161. doi: 10.11743/ogg20090205 [26] 付金华, 李士祥, 刘显阳, 2013.鄂尔多斯盆地石油勘探地质理论与实践.天然气地球科学, 24(6):1091-1101. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201306001.htm [27] 郭正权, 齐亚林, 楚美娟, 等, 2012.鄂尔多斯盆地上三叠统延长组储层致密史恢复.石油实验地质, 34(6):594-598. doi: 10.11781/sysydz201206594 [28] 赖锦, 王贵文, 柴毓, 等, 2014.致密砂岩储层孔隙结构成因机理分析及定量评价——以鄂尔多斯盆地姬塬地区长8油层组为例.地质学报, 88(11):2119-2130. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411009.htm [29] 刘显阳, 惠潇, 李士祥, 2012.鄂尔多斯盆地中生界低渗透岩性油藏形成规律综述.沉积学报, 30(5):964-974. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205022.htm [30] 罗静兰, 刘新社, 付晓燕, 等, 2014.岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响:以鄂尔多斯盆地上占生界盒8天然气储层为例.地球科学, 39(5):537-545. http://earth-science.net/WebPage/qk.aspx?id=125# [31] 潘高峰, 刘震, 赵舒, 2011.砂岩孔隙度演化定量模拟方法——以鄂尔多斯盆地镇泾地区延长组为例.石油学报, 32(2):249-256. doi: 10.7623/syxb201102009 [32] 渠冬芳, 姜振学, 刘惠民, 等, 2012.关键成藏期碎屑岩储层古孔隙度恢复方法.石油学报, 33(3):404-413. doi: 10.7623/syxb201203009 [33] 唐鑫萍, 黄文辉, 李敏, 等, 2013.利津洼陷沙四上亚段深部砂岩的成岩环境演化.地球科学, 38(4):843-852. http://earth-science.net/WebPage/qk.aspx?id=118# [34] 魏茂安, 陈潮, 王延江, 等, 2007.地层孔隙压力预测新方法.石油与天然气地质, 28(3):395-400. doi: 10.11743/ogg20070314 [35] 吴小斌, 侯加根, 孙卫, 2011.特低渗砂岩储层微观结构及孔隙演化定量分析.中南大学学报 (自然科学版), 42(11):3438-3446. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201111034.htm [36] 席胜利, 李荣西, 朱德明, 等, 2013.鄂尔多斯盆地姬塬地区延长组长4+5低渗透储层成因.地质科学, 48(4):1164-1176. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201304014.htm [37] 杨华, 李士祥, 刘显阳, 2013.鄂尔多斯盆地致密油、页岩油特征及资源潜力.石油学报, 34(1):1-11. doi: 10.7623/syxb201301001 [38] 张创, 孙卫, 高辉, 等, 2014.鄂尔多斯盆地华池长8储层成岩相与孔隙度演化.地球科学, 39(4):411-420. http://earth-science.net/WebPage/qk.aspx?id=124# [39] 钟大康, 祝海华, 孙海涛, 等, 2013.鄂尔多斯盆地陇东地区延长组砂岩成岩作用及孔隙演化.地学前缘, 41(3):62-68. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201302010.htm