The Chronology, Geochemical Characteristics and Geological Significance of the Mesozoic Shiyaogou Hidden Granite at the East Qinling
-
摘要: 石瑶沟花岗岩是华北陆块南缘东秦岭熊耳山地区近年来发现的首个埋藏在地下,与钼矿化有关的隐伏花岗岩体.主要岩性为中-细粒黑云母二长花岗岩和斑状花岗岩,LA-ICP-MS锆石U-Pb定年结果显示其主体形成时期为140.46±0.59 Ma~136.53±0.44 Ma,为早白垩世岩浆活动产物.石瑶沟花岗岩SiO2=70.27%~73.22%,Al2O3=12.71%~14.96%,MgO=0.23%~0.54%,全碱(K2O+Na2O)含量(质量百分比)变化范围为6.43%~11.78%,显示高硅、富碱特征.里特曼指数(δ)变化范围为2.11~3.02,AR介于1.48~5.73之间,为钙碱性;ACNK值=0.95~1.01,属准铝质-过铝质Ⅰ型花岗岩.岩体稀土总量(∑REE)变化于147×10-6~322×10-6,LREE/HREE比值变化于15.2~25.2,LaN/YbN=19.1~50.5×10-6,轻重稀土分馏程度较高,在球粒陨石标准化分配模式图上总体表现为轻稀土富集、左陡右平的右倾斜型.岩体Sr含量变化较大(133×10-6~759×10-6,平均371×10-6),Y、Yb含量(Y=10.02×10-6~18.80×10-6,平均12.57×10-6;Yb=1.16×10-6~2.02×10-6,平均1.40×10-6)和Sr/Y比值(12.77~61.66,平均30.44) 低,具中等-弱的负Eu异常(δEu=0.53~0.71,平均0.62),反映岩浆发生过长石分离结晶作用.石瑶沟花岗岩Isr=0.707 44~0.713 84,εSr(t)= 44.1~134.9,εNd(t)=-12.96~-13.46,其tDM2=2.00~2.01 Ga,显示其与附近中生代合峪花岗岩基具同源性,岩浆源区包括南秦岭地块、扬子陆块以及部分太华群、熊耳群物质.综合石瑶沟隐伏花岗岩特征和区域地质演化,可得出结论:东秦岭地区在侏罗纪前的陆内俯冲体制下,南秦岭地块及扬子基底向华北陆块下俯冲碰撞使地壳加厚,侏罗纪-白垩纪之交的挤压向伸展转换过程中形成的减压增温环境,使该区中-下地壳岩石发生部分熔融,最终在早白垩世形成石瑶沟花岗岩.Abstract: The Shiyaogou granite is a related to the molybdenum mineralization hidden granite, which is found for the first time in the Xionger Mountain at the East Qinling, southern margin of North China landmass. The lithology of the granite is mainly medium-fine biotite monzogranite and porphyritic granite, and the LA-ICP-MS zircon U-Pb dating results indicate that it was formed in the early Cretaceous(140.45±0.75 Ma-136.64±0.55 Ma). The geochemical data show that the granite is characterized by SiO2(70.27%-73.22%), Al2O3(12.71%-14.96%), MgO(0.23%-0.54%), the total alkaline(K2O+Na2O) ranging from 6.43% to 11.78wt%, which suggests that the granite has high silicon and rich alkali characteristics. The Rittmann Index (δ) ranges from 2.11 to 3.02, and AR ranges from 1.48 to 5.73, which shows the granite is calc-alkaline series. The A/CNK value is 0.95-1.01, and shows a Aluminum-peraluminous Ⅰ-type granite characteristic. The ∑REE of the granite ranges form 147×10-6 to 322×10-6, the ratio of LREE/HREE ranges from 15.2 to 25.2, and the value of LaN/YbN ranges from 19.10×10-6 to 50.50×10-6. The chonrite standardized distribution pattern is characterized by enrichment of LREE in the right-dipping type with medium-weak negative Eu anomalies(δEu=0.53-0.71, average 0.62). The trace elements are characterized by the value of Sr(133×10-6-759×10-6, average 371×10-6), the low value of Y and Yb(Y=10.02×10-6-18.80×10-6, average 12.57×10-6; Yb=1.16×10-6-2.02×10-6, average 1.40×10-6), and the lower ratio of Sr/Y(12.77-61.66, average 30.44). The geochemical characteristics reflect the granite melt experienced feldspar fractional crystallization in the magma. The initial isotopic Sr ratio(Isr=0.707 44-0.713 84), the initial epsilon Sr(εSr(t)= 44.1-134.9) and Nd(εNd(t)=-12.96 to -13.46) disclose the Shiyaogou hidden granite has a magma homology with the Mesozoic Heyu granite. The Nd model ages(tDM2) of the granites are concentrated in 2.00-2.01 Ga. All the isotopic data suggest the granite formed by the melting of the South Qinling and Yangtze block crystalline basement and with participation of Taihua and Xionger groups. The regional geology and geochemical characteristics suggest that the formtion of the Shiyaogou granite experienced two stages: Before Jurassic, the crust of East Qinling thickened with the subduction-collision of South Qinling and Yangtze Block under the North China block; In the Jurassic and Cretaceous, when the extrusion environment changed to the extension condition, with the decompression and warming, partial melting of the middle-lower continental crust, finally formed the Shiyaogou granite in the Early Cretaceous.
-
图 1 东秦岭钼成矿带及石瑶沟钼矿区地质
图a中:a.商丹断裂带;b.栾川断裂带;c.三门峡-鲁山断裂带;d.太行山断裂带;e.南漳断裂带;图b中:1.金堆城钼矿;2.木龙沟铁(钼)矿;3.银家沟钼多金属硫铁矿;4.夜长坪钼矿;5.上房沟钼矿;6.南泥湖钼矿;7.三道庄钼矿;8.雷门沟钼矿;9.东沟钼矿;10.鱼池岭钼矿;11.石瑶沟钼矿;图c中:Chj.熊耳群焦园组;Chp.熊耳群坡前街组;K2-E1g1.上白垩统-第三系;Q.第四系;据叶会寿等(2006)略改
Fig. 1. Simplified geological map of the East Qinling Molybdenum belt and Shiyaogou Mo deposit
图 5 石瑶沟花岗岩Na2O-K2O和铝饱和指数
Na2O-K2O据Collins(1982);铝饱和指数据Maniar and Piccolli(1989)
Fig. 5. Na2O-K2O and Al saturation index diagrams of Shiyaogou granites
图 6 石瑶沟钼矿花岗岩微量元素原始地幔标准化蛛网图
原始地幔标准化值引自McDonough(1992)
Fig. 6. Chondrite-nomalized REE patterns and primitive mantle-normalized spider diagrams of granites from Shiyaogou Mo mine
图 7 石瑶沟花岗岩Sr-Yb分类
a.埃达克岩;b.低Sr低Y型花岗岩;c.高Sr高Y型花岗岩;d.低Sr高Y型花岗岩;e.极低Sr高Y型花岗岩;据张旗等(2006)
Fig. 7. The classification of Shiyaogou granitoids on the basis of Sr and Yb contents
图 8 石瑶沟花岗岩(La/Yb)N-YbN及Sr/Y-Y关系
底图据Defant and Drummond et al.(1990);合峪花岗岩数据据高昕宇等(2010)
Fig. 8. (La/Yb)N-YbN and Sr/Y-Y relationship for Shiyaogou granites
图 9 石瑶沟钼矿隐伏花岗(斑)岩Nd-Sr同位素组成
B源区.玄武岩源区;C源区.陆壳源区;BC源区.过渡源区;据张旗等(2008)
Fig. 9. Isotopic plot of Nd-Sr for Shiyaogou granites
图 10 秦岭造山带构造块体结晶基底和盖层的Nd同位素组成
Fig. 10. Nd isotopic composition of the Qinling orogenic belt
表 1 石瑶沟花岗岩主要岩性特征
Table 1. The mainly lithology of Shiyaogou granites
中-细粒黑云母二长花岗岩 斑状花岗岩 花岗细晶岩 颜色 灰白色-浅肉红色 浅肉红色-肉红色 鲜肉红色、浅红色 结构 似斑状结构,基质细粒花岗结构 多斑结构-基质细微晶结构 似斑状结构,基质细粒花岗结构 矿物组合 斑晶 斜长石:15%±;钾长石:30%~35%;石英:15%± 钾长石:25%;斜长石25%;石英:10%;黑云母:3%~5% 斜长石:2%;钾长石:2%;石英:1% 基质 斜长石:15%±;钾长石:5%~10%;石英:10%~15%;黑云母:3%~5% 钾长石:10%~15%;斜长石:10%;石英:10%;黑云母:2%~3% 斜长石:30%;钾长石:35%~40%;石英:25%;黑云母:3%~5% 副矿物 磁铁矿、磷灰石、锆石、榍石、褐帘石 磷灰石、锆石、褐帘石 磁铁矿、磷灰石、锆石、榍石 次生矿物 绢云母、白云母、高岭土、绿泥石等 绢云母、白云母、高岭土、碳酸盐、石英、锡石等 绢云母、白云母、高岭土、硬石膏、绿泥石、不透明矿物、锡石等 图 图 2a 图 2b 图 2c 表 2 石瑶沟花岗岩LA-ICP-MS锆石U-Pb测试结果
Table 2. LA-ICP-MS zircon U-Pb date for the Shiyaogou granites
表 3 石瑶沟花岗岩主量(质量百分比)、微量元素(10-6)分析
Table 3. Major element (%) and trace element (10-6) compositions of Shiyaogou granites
样号 中-细粒黑云母二长花岗岩 斑状花岗岩 花岗细晶岩 479-63 599-48 599-51 599-58 5507-10' 519-40 519-43 479-66 5507-8' SiO2 71.67 71.66 72.24 70.27 73.14 71.42 72.23 71.49 73.22 Al2O3 13.42 13.87 13.93 14.96 13.48 13.86 13.46 12.87 12.71 Fe2O3 1.38 0.68 0.97 1.22 1.08 0.72 0.94 1.11 1.00 FeO 0.66 0.73 0.78 0.97 0.84 0.87 0.74 0.94 0.39 MgO 0.47 0.27 0.38 0.44 0.40 0.35 0.35 0.54 0.23 CaO 1.36 1.39 1.37 1.71 1.49 1.45 1.27 1.31 0.91 Na2O 2.84 3.30 3.72 4.34 3.70 3.10 3.06 2.35 2.14 K2O 5.95 5.89 5.09 4.50 4.29 5.55 5.49 6.70 7.44 MnO 0.05 0.07 0.07 0.06 0.05 0.05 0.05 0.04 0.05 P2O5 0.12 0.08 0.09 0.10 0.09 0.08 0.08 0.16 0.07 TiO2 0.34 0.28 0.27 0.36 0.31 0.26 0.26 0.27 0.28 H2O+ 0.66 0.62 0.37 0.36 0.38 0.59 0.71 0.66 0.51 H2O- 0.09 0.09 0.08 0.09 0.04 0.95 0.11 0.10 0.08 LOI 1.48 1.56 0.90 0.88 0.94 2.08 1.87 2.05 1.32 Total 99.75 99.78 99.80 99.80 99.81 99.79 99.80 99.82 99.76 Fe2O3T 1.41 0.69 0.98 1.23 1.10 0.74 0.96 1.14 1.02 FeOT 1.93 1.36 1.66 2.09 1.84 1.55 1.63 1.99 1.32 DI 89.32 90.96 90.01 87.51 88.83 89.31 90.13 90.24 93.69 A/NK 1.21 1.18 1.20 1.25 1.26 1.25 1.23 1.16 1.10 A/CNK 0.99 0.97 0.99 0.99 1.00 1.01 1.01 0.95 0.96 K2O/Na2O 2.09 1.79 1.37 1.04 1.16 1.79 1.80 2.85 3.48 SI 4.18 2.45 3.47 3.88 3.91 3.34 3.34 4.61 2.04 AR 1.48 1.55 1.64 1.70 1.66 1.51 1.52 4.52 5.73 Mg# 16.12 13.29 15.12 14.26 14.64 15.25 14.60 17.56 11.99 δ 2.68 2.92 2.64 2.85 2.11 2.61 2.47 2.84 3.02 La 52.34 43.85 43.93 60.66 49.96 41.90 42.34 33.19 81.85 Ce 98.00 87.00 87.00 115.00 98.00 83.00 86.00 66.00 151.00 Pr 11.37 9.83 9.52 13.49 10.94 9.12 9.39 7.56 16.44 Nd 38.50 32.65 32.01 46.60 37.01 30.27 30.85 25.55 52.56 Sm 5.53 4.86 4.84 7.97 5.58 4.42 4.61 3.99 7.11 Eu 1.14 0.98 0.95 1.26 1.04 0.86 0.89 0.86 1.20 Gd 4.68 3.78 4.02 6.21 4.70 3.73 4.00 3.29 5.89 Tb 0.62 0.47 0.51 0.86 0.60 0.50 0.53 0.45 0.64 Dy 2.72 2.17 2.33 3.90 2.72 2.24 2.50 2.07 2.57 Ho 0.45 0.36 0.39 0.67 0.45 0.41 0.45 0.37 0.42 Er 1.33 1.04 1.15 1.89 1.44 1.22 1.38 1.11 1.25 Tm 0.20 0.15 0.18 0.30 0.21 0.18 0.23 0.18 0.17 Yb 1.39 1.18 1.26 2.02 1.44 1.39 1.51 1.24 1.16 Lu 0.22 0.16 0.18 0.29 0.23 0.22 0.27 0.23 0.21 ∑REE 218 188 188 261 214 180 185 147 322 LREE 207 179 178 245 203 170 174 138 310 HREE 11.61 9.30 10.01 16.13 11.80 9.90 10.88 8.95 12.31 L/H 17.81 19.24 17.77 15.19 17.18 17.14 15.97 15.37 25.17 LaN/YbN 27.03 26.77 25.04 21.57 24.95 21.55 20.11 19.14 50.50 LaN/SmN 6.11 5.83 5.86 4.92 5.78 6.12 5.93 5.37 7.43 GdN/LuN 2.60 2.90 2.78 2.65 2.53 2.07 1.82 1.75 3.55 Eu/Eu* 0.67 0.67 0.64 0.53 0.60 0.63 0.62 0.71 0.55 Ce/Ce* 0.94 0.98 0.99 0.94 0.98 1.00 1.01 0.99 0.95 Rb 208 337 254 200 180 369 330 269 450 Ba 718 903 838 808 726 798 727 495 1059 Th 20.99 20.39 19.49 25.69 20.86 20.08 18.48 22.84 16.47 U 5.46 6.98 6.32 9.10 5.45 11.52 11.24 14.58 5.72 K 50 272 49 784 42 699 37 776 36 015 47 175 46 518 56 855 62 742 Nb 19.99 11.55 15.81 45.55 25.02 19.11 18.72 18.62 10.61 Ta 1.16 1.17 1.14 3.71 1.62 1.48 1.73 1.18 0.71 Pb 21.41 32.22 26 23.98 19.41 22.26 24.18 21.79 29.52 Sr 759.1 306 326.1 361.3 328.9 489.9 396 133 243.5 P 531 366 385 443 407 355 372 712 292 Zr 231 201 201 216 216 182 181 198 252 Hf 7.04 6.91 6.60 8.13 6.48 6.38 6.53 7.00 7.82 Ti 2 089 1 722 1 663 2 164 1 895 1 605 1 617 1 660 1 707 Y 12.31 10.02 11.03 18.80 13.37 11.21 12.26 10.41 12.29 Cs 4.02 4.81 3.78 4.05 2.66 7.12 6.22 4.77 5.37 Cu 56.8 48.2 8.0 7.1 5.9 22.5 37.5 303.3 17.5 Zn 31.2 133.6 55.3 56.1 42.8 40.0 36.1 33.6 41.9 Cr 16.1 16.0 17.0 17.4 18.8 16.3 15.4 15.9 17.3 Co 2.73 0.98 1.01 2.34 2.31 1.47 1.89 3.45 1.34 Ni 1.3 1.0 1.2 1.2 1.3 1.3 1.1 2.2 0.8 V 37.4 36.6 37.3 42.6 48.2 39.4 35.3 32.6 38.7 Sc 3.90 3.69 4.21 4.80 4.37 4.20 4.03 4.67 3.87 Mo 208 55 23 2 1 4 12 265 1 In 0.04 0.09 0.04 0.04 0.03 0.03 0.03 0.10 0.04 Sb 0.16 0.09 0.10 0.09 0.08 0.18 0.17 0.25 0.10 W 2.75 5.27 1.26 2.32 4.62 6.31 8.60 6.37 5.96 Tl 1.29 1.76 1.24 0.87 0.91 2.02 1.90 1.76 2.31 Bi 0.43 0.72 0.14 0.08 0.05 0.12 0.26 0.55 0.49 Rb/Sr 0.27 1.10 0.78 0.55 0.55 0.75 0.83 2.02 1.85 Sr/Y 61.66 30.55 29.55 19.22 24.61 43.72 32.31 12.77 19.81 T(℃) 938 922 923 931 931 911 911 921 948 注:Fe2O3T为全铁;A/CNK=Al2O3/(Na2O+K2O+CaO)为摩尔数分数比;A/NK=Al2O3/(Na2O+K2O)为摩尔数分数比;Mg#=100×Mg2+/(Fe2++Mg2+);Eu/Eu*=2EuN/(SmN+GdN);Ce/Ce*=2CeN/(LaN+PrN);LaN/YbN、LaN/SmN、GdN/LuN为球粒陨石标准化值,标准化值引自McDonough(1992);TZr为锆石饱和温度,计算公式为TZr=12 900/[2.95+0.85M+ln(496 000/Zrmelt)],式中M=(Na+K+2Ca)/(Al×Si),Zrmelt为熔体中Zr含量(Watson and Harrison, 1983). 表 4 石瑶沟花岗岩全岩Sr-Nd同位素组成
Table 4. Whole-rock Sr-Nd isotope composition of Shiyaogou granites
样品号 样品名称 Rb Sr 87Sr/86Sr 87Rb/86Sr 2σ Isr εSr(0) εSr(t) 样品名称 Sm Nd 147Sm/144Nd 143Nd/144Nd 2σ ε Nd(t) t DM2(Ga) f Sm/Nd 599-58 中-细粒黑云母二长花岗岩 200 361 0.710 7 1.604 76 0.000 006 0.707 531 88.4 45.4 中-细粒黑云母二长花岗岩 7.97 46.60 0.103 323 0.511 883 0.000 003 -13.06 2.00 -0.47 5507-10 180 329 0.710 6 1.583 04 0.000 006 0.707 445 86.5 44.1 5.58 37.01 0.091 190 0.511 877 0.000 004 -12.96 2.00 -0.54 519-40 斑状花岗岩 369 490 0.717 4 2.181 20 0.000 007 0.713 168 182.9 125.4 斑状花岗岩 4.42 30.27 0.088 269 0.511 870 0.000 004 -13.10 2.00 -0.55 519-43 330 396 0.718 5 2.416 56 0.000 006 0.713 838 198.9 134.9 4.61 30.85 0.090 312 0.511 864 0.000 004 -13.26 2.01 -0.54 5507-8 花岗细晶岩 450 244 0.720 0 5.356 30 0.000 005 0.710 589 220.4 88.5 花岗细晶岩 7.11 52.56 0.081 762 0.511 855 0.000 002 -13.46 2.01 -0.58 -
[1] Bao, Z.W., Li, C.J., Qi, J.P., 2009.SHRIM-P Zircon U-Pb Age of the Gabbro Dyke in the Luanchuan Pb-Zn-Ag Orefield, East Qinling Orogen and Its Constraint on Mineralization Time.Acta Petrologica Sinica, 25(11):2951-2956(in Chinese with English abstract). [2] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622.doi: 10.1007/s00410-002-0364-7 [3] Bird, P., 1978.Initiation of Intracontinental Subduction in the Himalayas.J.Geophys.Res., 83(B10):4975-4987.doi: 10.1029/JB083iB10p04975 [4] Chen Y.J., Fu S.G., 1992.Gold Mineralization in West Henan.Seismological Press, Beijing, 234 (in Chinese with English abstract). [5] Chen Y.J., Li C., Li Z., et al., 2000.Sr and O Isotopic Characteristics of Porphyries in the Qinling Molybdenum Deposit Belt and their Implication to Genetic Mechanism and Type.Science in China (Ser.D), 43(Suppl.):82-94.doi: 10.1007/BF02911935 [6] Chen, Y.J., Li, J., Franco Pirajno, et al., 2004.Hydrothermal M Etallogeny Of The Shanggong Gold Deposit, East Qinl Ing:Stud Ieson Ore Geology And Fluid Inclusion Geochem Istry.Jmineral Petrol, 24(3):1-12 (in Chinese with English abstract). [7] Chen, Y.J., Franco Pirajno, Qi, J.P., 2008.The Shanggong Gold Deposit, Eastern Qinling Orogen, China:Isotope Geochemistry and Implications for Ore Genesis.Journal of Asian Earth Sciences, 33(2008):252-266.doi: 10.1016/j.jseaes.2007.12.002 [8] Chen, Y.J., Zhai, M.G., Jiang, S.Y., 2009.Significant Achievements and Open Issues in Study F Orogenesis and Metallogenesis Surrounding the North China Continent.Acta Petrologica Sinica, 25(11):2695-2726 (in Chinese with English abstract). [9] Chen Y.J., 2010.Indosinian Tectonic Setting, Magmatism and Metallogenesis in Qinling Orogen, Central China.Geology in China, 37(4):854-865 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004005.htm [10] Drummond, M.S., Defant, M.J., 1990.A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth Via Slab Melting:Archean To Modern Comparison.Journal of Geophysics Research, 95(B13):21503-21521.doi: 10.1029/JB095iB13p21503 [11] Fan, H.R., Xie, Y.H., Wang, Y.L., 1998.Fluid-Rock Interaction during Mineralization of the Shanggong Structure-Controlled Alteration-Type Gold Deposit in Western Henan Province, Central China.Acta Petrologica Sinica, 14(4):529-541 (in Chinese with English abstract). http://www.oalib.com/paper/1472453 [12] Foland, K.A., Allen, J.C., 1991.Magma Sources for Mesozoic Anorogenic Granites of the White Mountain Magma Series.New England, USA.Contributions to Mineralogy and Petrology, 109(2):195-211.doi: 10.1007/BF00306479 [13] Gao, X.Y., Zhao, T.P., Yuan, Z.L., et al., 2010.Geochemistry and Petrogenesis of the Heyu Batholith in the Southern Margin of the North China Block.Acta Petrologica Sinica, 26(12):3485-3506 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201012005.htm [14] Ge, X.Y., Li, X.H., Chen, Z.G., et al., 2002.Geochemical Characteristics and Petrogenesis of the Yanshan High-Sr/Low-Y Intermediate Felsic Igneous Rocks from Eastern China:Constraints on Crustal Thickness of Eastern China.Chinese Science Bulletln, 47(6):47-480 (in Chinese). [15] Hoskin, P.W.O., Ireland, T.R., 2000.Rare Earth Element Chemistry of Zircon and Its Use as A Provenance Indicator.Geology, 28(7):627-630.doi:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO; 2 [16] Huang, D.H., Wu, C.Y., Du, A.D., et al., 1994.Re-Os Isotope Age of Molybdenum Deposits in East Qinling and Their Significance.Mineral Deposits, 13(3):221-230 (in Chinese with English abstract). doi: 10.1007/BF02872630?no-access=true [17] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation Microprobe Inductively Coupled Plasma Mass Spectrometry (LAM-ICP-MS) To in Situ U-Pb Zircon Geochronology.Chem.Geo., 211(1-2):47-69.doi: 10.1016/0009-2541(93)90058-Q [18] Li, X.H., 1996.A Discussion on the Model and Isochron Ages of Sm-Nd Isotopic Systematic:Suitability and Limit at Ion.Scientia Geologica Sinica, 31(1):97-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX601.010.htm [19] Li, Y.F., Wang, C.Q., Bai, F.J., et al., 2004.Re-Os Dating and Metallogenetic Tectonic Settings for Mo Deposits of East Qinling.Mine and Geology, 18(6):571-578(in Chinese with English abstract). [20] Li, Y.F., Mao, J.W., Hu, H.B., et al., 2005.Geology, Distribution, Types and Tectonic Settings of Mesozoic Molybdenum Deposits in East Qinling Area.Mineral Deposits, 24(3):292-304(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200503008.htm [21] Ludwing, K., 1999.Isoplot/Exversion 2.0:A Geochronological Tool Kit for Microsoft Excel Geochronology Center Berkeley, Special Publication. [22] Lu, X.X., Luo, Z.H., Huang, F., et al., 2011.Mo Deposit Types and Mineralization Assemblage Charact-Eristics in Qinling-Dabie Mountain Area.Geology in China, 38(6):1518-1535 (in Chinese with English abstract). [23] Mao, J.W., Xie, G.Q., Bierlein, F., et al., 2008.Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt.Geochimica et Cosmochimica Acta, 72(18):4607-4626.doi: 10.1016/j.gca.2008.06.027 [24] Mao, J.W., Zhang, Z.H., Yu, J.J., et al., 2003.Geodynamic Settings of Mesozoic Large-Scale Mineralization in North China and Adjacent Areas:Implication from the highly Precise and Accurate Ages of Metal Deposits.Science in China (Series D), 33(4):289-300(in Chinese with English abstract). http://earth.scichina.com:8080/sciDe/CN/abstract/abstract306753.shtml [25] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005.Mesozoie Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings.Acta Petrologica Sinica, 21(1):169-188(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200501018.htm [26] Mao, J.W., Xie, G.Q., Pirajno, F., et al., 2010.Late Jurassic-Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central-Eastem China:SHRIMP Zircon U-Pb Ages and Tectonic Implications.Australian Journal of Earth Sciences, 57(1):51-78.doi: 10.1080/08120090903416203 [27] Mc-Lennan, S.M., Hemming, S., 1992.Samarium/Neodymium Elemental and Isotopic Systematics in Sedimentary Rocks.Geochim.Cosmochim.Acta, 56(3):887-898.doi: 10.1016/0016-7037(92)90034-G [28] Ren, J.S., 1991.The Basic Characteristics of China Continental Lithosphere Structure.Regional Geology of China, 4:289-293(in Chinese with English abstract). [29] Shi, Q.Z., Wei, X.D., Li, M.L., et al., 2004.Nappe Structure and Extend Detachment Structure of the Northern Margin of the East Qin Ling Mountain, Henan Province.Geological Publishing House, Beijing (in Chinese with English abstract). [30] Stein, H.J., Markey, R.J., Morgan, J.W., et al., 1997.Highly Precise and Accurate Re-Os Ages for Molybdenite from the East Qinling Molybdenum Belt, Shanxi Province, China.Economic Geology, 92(7):827-835.doi: 10.2113/gsecongeo.92.7-8.827 [31] Syverster, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.doi: 10.1016/S0024-4937(98)00024-3 [32] Tang, K.F., Li, J.W., 2009.Mineralization Characteristics, Metallogenetic Epoch and Ore Deposit Origin of Qianhe Gold Mine in Songxian, Henan Province.Acta Mineralogica Sinica (Supplement), 72(S1):148-149(in Chinese with English abstract). [33] Taylor, S.R., Mclennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, OxFord. [34] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in A Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821X(83)90211-X [35] Williams, I.S., Buick, A., Cartwright, I., 1996.An Extended Episode of Early Mesoproterozoic Metamophic Fluid Flow in the Reynold Region, Centural Australia.Metamophic Geol., 14(14):29-27.doi: 10.1111/j.1525-1314.1996.00029.x [36] Wu, F.Y., Ge, W.C., Sun, D.Y., 2002.The Definirion, Diacrimination of Adakites and Their Geological Role.In:Xiao, Q.H., Deng, J.F., Ma, D.Q.et al., Eds.The Ways of Investigation on Granitoids.Geological Publishing House, Beijing, 172-191(in Chinese with English abstract). [37] Xiao, E., Hu, J., Zhang, Z.Z., et al., 2012.Petrogeochemistry, Zircon U-Pb Dating and LuHf Isotopic Compositions of the Haoping and Jinshanmiao Granites from the Huashan Complex Batholith in Eastern Qinling Orogen.Acta Petrologica Sinica, 28(12):4031-4046(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201212019.htm [38] Xu, J.F., Wang, Q., 2003.Tracing the Thinkening Process of Continental Crust through Studying Adakitic Rocks:Evidence from Volcanic Rocks in the North Tibet.Earth Science Frontiers, 10:401-406 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200304011.htm [39] Ye, H.S., Mao, J.W., Li, Y.F., et al., 2006.SHRIMP Zircon U-Pb and Molybdenum Re-Os dating for the Superlarge Donggou Porphyry Mo Deposit in East Qinling, China, and its Geological Implication.Acta Geologica Sinica, 80(7):1078-1088(in Chinese with English abstract). doi: 10.1111/j.1755-6724.2008.tb00332.x/abstract [40] Yuan, H.L., Wu, F.Y., Gao, S., et a1., 2003.LA-ICP-MS Zircon U-Pb Age and REE of Cenozoic Plut on in NE China.Chinese Science Bulletin, 48(14):1511-1520 (in Chinese). [41] Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001.Qinling Orogenic Belt and Continental Dynamics.Science Press, Beijing (in Chinese). [42] Zhang, H.F., Zhang, B.R., Ling, W.L., et al., 1997.Late Proterozoic Crustal Accretion of South Qingling:Nd Isotopic Study from Grantic Rock.Geochimica, 26(5):16-23 (in Chinese with English abstract). [43] Zhou, H.W., Zhong, Z.Q., Ling, W.L., et al., 1998.Sm-Nd Isochron for the Amphibolites with in Taihua Complex from Xiao Qinling Area, Western Henan and its Geological Imp Licat Ions.Geochimica, 27(4):367-372 (in Chinese with English abstract). [44] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and its Implications.Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200609000.htm [45] Zhang Q., Pan G.Q., Li C.D., et al., 2007.Are Discrimination Diagrams Always indicative of Correct Tectonic Settings of Granites? Some Crucial Questions on Granite Study(3).Acta Petrologica Sinica, 23(11):2683-2698(in Chinese with English abstract). http://www.oalib.com/paper/1472428#.WXgt8PmEDkE [46] Zhang, Z.W., Zhu, B.Q., Chang, X.Y., et al., 2001.Petrogenetic-Metallogenetic Background and Time-Space Relaion ship of the East Qinling Molybdenum Ore Belt, China.Geological Journal of China Universities, 7(3):307-315 (in Chinese with English abstract). https://www.researchgate.net/publication/285168912_Petrogenetic-metallogenetic_background_and_time-space_relationship_of_the_East_Qinling_molybdenum_ore_belt_China [47] Zhao Y., Yang Z.Y., Ma X.H., 1994.Geotectonic Transition from Paleoasian System and Paleotethyan System To Paleopacific Active Continental Margin in Eastern Asia.Scientia Geologica Sinica, (2):105-119(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX402.000.htm [48] 包志伟, 李创举, 祁进平, 2009.东秦岭栾川铅锌银矿田辉长岩锆石SHRIMP U-Pb年龄及成矿时代.岩石学报, 25(11):2952-2956. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911026.htm [49] 陈衍景, 富士谷, 1992.豫西金矿成矿规律.北京:地震出版社. [50] 陈衍景, 李超, 张静, 等, 2000.秦岭钼矿带斑岩体锶氧同位素特征与岩石成因机制和类型.中国科学地球科学, 30(增刊1):64-72. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1008.htm [51] 陈衍景, 李晶, Franco Pirajno, 等, 2004.东秦岭上宫金矿流体成矿作用:矿床地质和包裹体研究.矿物岩石, 24(3):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200403001.htm [52] 陈衍景, 翟明国, 蒋少涌, 2009.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报, 25(11):2695-2726. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911003.htm [53] 陈衍景, 2010.秦岭印支期构造背景-岩浆活动及成矿作用.中国地质, 37(4):854-865. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004005.htm [54] 范宏瑞, 谢奕汉, 王英兰, 1998.豫西上宫构造蚀变岩型金矿成矿过程中的流体-岩石反应.岩石学报, 14(4):529-541. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB804.010.htm [55] 高昕宇, 赵太平, 原振雷, 等, 2010.华北陆块南缘中生代合峪花岗岩的地球化学特征与成因.岩石学报, 26(12):3485-3506. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012005.htm [56] 葛小月, 李献华, 陈志刚, 等, 2002.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报, 47(6):474-480. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200206021.htm [57] 黄典豪, 吴澄宇, 杜安道, 等, 1994.东秦岭地区钼矿床的铼-锇同位素年龄及其意义.矿床地质, 13(3):221-230. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ403.003.htm [58] 李献华, 1996.Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学, 31(1):97-104. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.010.htm [59] 李永峰, 王春秋, 白凤军, 等, 2004.东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景.矿产与地质, 18(6):571-578. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200406013.htm [60] 李永峰, 毛景文, 胡华斌, 等, 2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质, 24(3):292-304. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200503008.htm [61] 卢欣祥, 罗照华, 黄凡, 等, 2011.秦岭-大别山地区钼矿类型与矿化组合特征.中国地质, 38(6):1518-1535. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201106013.htm [62] 罗铭玖, 张辅民, 董群英, 等.1991.中国钼矿床, 郑州:河南科学技术出版社. [63] 毛景文, 张作衡, 余金杰, 等, 2003.华北及邻区中生代大规模成矿的地球化学背景:从金属矿床年龄精测得到启示.中国科学(D辑), 33(4):289-300. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304000.htm [64] 毛景文, 谢桂青, 张作衡, 等, 2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报, 21(1):169-188. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [65] 任纪舜, 1991.论中国大陆岩石圈构造的基本特征.中国区域地质, 4:289-293. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199104000.htm [66] 石铨曾, 尉向东, 李明立, 等, 2004.河南省东秦岭山脉北缘的推覆构造及伸展拆离构造.北京:地质出版社. [67] 唐克非, 李建威, 2009.河南嵩县前河金矿矿化特征、成矿时代与矿床成因.矿物学报(增刊), 136-137. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1072.htm [68] 吴福元, 葛文春, 孙德有, 2002.埃达克质岩的概念、识别标志及其地质意义.见:肖庆辉, 邓晋福, 马大铨等.花岗岩研究思维与方法.北京:地质出版社, 172-191. [69] 肖娥, 胡建, 张遵忠, 等, 2012.东秦岭花山复式岩基中蒿坪与金山庙花岗岩体岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素组成.岩石学报, 28(12):4031-4046. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212019.htm [70] 叶会寿, 毛景文, 李永峰, 等, 2006.东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.地质学报, 80(7):1078-1088. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200607013.htm [71] 袁洪林, 吴福元, 高山, 等, 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14):1511-1520. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314007.htm [72] 张国伟, 张本仁, 袁学诚, 等, 2001.秦岭造山带与大陆动力学.北京:科学出版社. [73] 周汉文, 钟增球, 凌文黎, 等, 1998.豫西小秦岭地区华杂岩斜长角闪岩Sm-Nd等时线年龄及其地质意义.地球化学, 27(4):367-372. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199804007.htm [74] 张宏飞, 骆庭川, 李泽九, 等, 1994.东秦岭花岗岩类元素丰度及其地质意义.矿物岩石, 14(4):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS404.000.htm [75] 张宏飞, 张本仁, 凌文黎, 等, 1997.南秦岭新元古代地壳增生事件:花岗质岩石钕模式年龄同位素示踪.地球化学, 26(5):16-23. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199705001.htm [76] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm [77] 张旗, 潘国强, 李承东, 等, 2007.花岗岩构造环境问题:关于花岗岩研究的思考之三.岩石学报, 23(11):2683-2698. doi: 10.3969/j.issn.1000-0569.2007.11.002 [78] 张正伟, 朱炳权, 常向阳, 等, 2001.东秦岭钼矿带成岩成矿背景及时空统一性.高校地质学报, 7(3):307-315. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200103006.htm [79] 赵越, 杨振宇, 马醒华, 1994.东亚大地构造发展的重要转折.地质科学, (2):105-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX402.000.htm