• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    月球钻孔取心机具试验与钻进规程

    李大佛 殷参 雷艳 许少宁 谭松成

    李大佛, 殷参, 雷艳, 许少宁, 谭松成, 2016. 月球钻孔取心机具试验与钻进规程. 地球科学, 41(9): 1611-1618. doi: 10.3799/dqkx.2016.119
    引用本文: 李大佛, 殷参, 雷艳, 许少宁, 谭松成, 2016. 月球钻孔取心机具试验与钻进规程. 地球科学, 41(9): 1611-1618. doi: 10.3799/dqkx.2016.119
    Li Dafo, Yan Shen, Lei Yan, Xu Shaoning, Tan Songcheng, 2016. Coring Tests of Core Drilling Tool and Analysis of Drilling Parameters. Earth Science, 41(9): 1611-1618. doi: 10.3799/dqkx.2016.119
    Citation: Li Dafo, Yan Shen, Lei Yan, Xu Shaoning, Tan Songcheng, 2016. Coring Tests of Core Drilling Tool and Analysis of Drilling Parameters. Earth Science, 41(9): 1611-1618. doi: 10.3799/dqkx.2016.119

    月球钻孔取心机具试验与钻进规程

    doi: 10.3799/dqkx.2016.119
    基金项目: 

    国家“十二五”重点攻关项目“月球三期工程”分支项目 20128Y101003

    详细信息
      作者简介:

      李大佛(1937—2016),男,教授,长期从事机械钻探与电镀技术的教学、科技及产品开发工作.E-mail:ztgs@cug.edu.cn

    • 中图分类号: P634

    Coring Tests of Core Drilling Tool and Analysis of Drilling Parameters

    • 摘要: 我国探月工程第3期工程的核心任务是实现月球钻探取样和返回,明确采用钻取方式获取深2 m的月壤样品.针对月表极端钻进环境,提出一种内外管联合取心螺旋钻具,即内管软袋提拉取心,外管螺旋集输取心.模拟月壤钻进试验结果表明,该取心钻具能实现有效钻进可靠取心,特别适合小于0.6 m浅层模拟月壤钻取.试验研究了钻进规程对模拟月壤取心率和钻进功耗的影响规律,得出了钻进转速、进给速度值域与功率值域的关联性,对月球环境下取心钻具研制和钻进规程制定具有实际工程应用价值.

       

    • 图  1  钻具结构示意

      Fig.  1.  Sketch of the coring device structure

      图  2  不同转速的变化对功率的影响

      Fig.  2.  Influence of rotational speed to drilling power

      图  3  转速对取心率的影响关系

      Fig.  3.  Influence of rotation speed to coring recovery rate

      图  4  转速对3种取心率的影响关系

      Fig.  4.  Influences of rotation speed to the three kinds of coring recovery rates

      图  5  转速对功率的影响关系

      Fig.  5.  Influence of rotation speed to drilling power

      图  6  回转转速对钻进功耗的影响

      Fig.  6.  Influences of rotation speed to the different components of drilling power

      图  7  钻压对钻进功耗的影响

      Fig.  7.  Influences of weight on bit to the different components of drilling power

      表  1  CUG-1A型模拟月壤颗粒级配分布

      Table  1.   Grain size distribution of the CUG-1A simulant lunar soil

      粒径(mm)>0.0750.075~0.0500.050~0.0100.010~0.0050.005~0.002<0.002
      含量(%)20.040.312.517.42.57.3
      下载: 导出CSV

      表  2  CUG-1A型模拟月壤与实际月壤的主要物理力学性能对比

      Table  2.   Comparison of the main physics and mechanics parameters between simulant and actual lunar soil

      参数密度(g/cm3)相对密度(g/cm3)内摩擦角(°)内聚力(kPa)
      实际月壤1.60~1.802.90~3.2025~500.20~1.80
      模拟月壤1.45~1.902.8820~210.21~1.71
      下载: 导出CSV

      表  3  内管取心试验数据

      Table  3.   Test data of the inner tube coring

      序号转速(r/min)进给量(mm/min)进尺(mm)模拟月壤质量(g)内管取心率(%)功率(W)
      1401007503123.9
      2401007509271.117
      34010075012596.7
      4801007305844.8
      58010071010379.635
      6801007207457.2
      71201006905260.1
      81201008008863.853
      912010078010678.8
      101601007904230.8
      1116010099013176.779
      1216010099013981.4
      1320010099000
      1420010099014383.8100
      1520010099012070.3
      162401001 00013477.2
      172401009903218.7120
      1824010099013176.7
      1928010099013377.9
      2028010099014484.3145
      212801009007648.9
      223201009002818.0
      233201009001310.9170
      243201009009762.5
      平均87.158.0
      下载: 导出CSV

      表  4  联合取心钻进试验参数与结果

      Table  4.   Drilling parameters and test results of the combined inner and outer tube coring method

      序号转速
      (r/min)

      进给量
      (mm/min)

      进尺
      (mm)

      内管取样量
      (g)

      内管取心率
      (%)

      外管取样量
      (g)

      外管取心率
      (%)

      本机具取心率
      (%)

      功率
      (W)
      1401008007755.858086.281.0
      2401008008763.160289.585.013
      34010080010072.559087.785.1
      4801008009770.364095.190.1
      58010080011885.565597.395.331
      68010080012389.260189.389.2
      712010080012892.865296.896.2
      812010080012691.3705104.7102.361
      912010080012087.058086.286.3
      1016010080013094.2715106.2104.2
      111601008007151.4715106.297.070
      121601007409171.3767123.2114.4
      1320010072010685.4609100.597.9
      1420010080012489.8743110.5107.090
      1520010080010979.060089.187.5
      1624010080010374.6700104.099.0
      172401008008591.6802119.2109.3120
      1824010080011684.1745110.7106.2
      1928010068010085.2623108.9104.8
      2028010072010887.0685113.1108.6130
      2128010080011784.8741110.1103.8
      2232010080013195.0789117.2113.5
      233201007107561.5685114.7105.6150
      2432010080012489.5687102.1100.0
      平均106.980.4675.4102.898.7
      下载: 导出CSV
    • [1] Barsukov, V.L., 1977.Preliminary Data for the Regolith Core Brought to Earth by the Automatic Lunar Station Luna 24.8th Lunar Science Conference, Houston, 3303-3318.
      [2] Cremers, C.J., Hsia, H.S., 1973.Thermal Conductivity of Apollo 15 Fines at Low Density.Abstracts of the Lunar and Planetary Science Conference, Houston, (4):164-166.
      [3] Duan, L.C., Li, Q., Zhang, D.W., et al., 2014.Experimental Research on Surface Sampling based on Lunar Soil Simulants.Exploration Engineering (Rock & Soil Drilling and Tunneling), 41(1):3-8 (in Chinese with English abstract). http://www.rockmech.org/EN/abstract/abstract28857.shtml
      [4] Houck, K.J., 1982.Modal Petrology of Six Soils from Apollo 16 Double Drive Tube Core 64002.Journal of Geophysical Research, 87(S1):A210.doi: 10.1029/jb087is01p0a210
      [5] He, X.X., Xiao, L., Huang, J., et al., 2011.Lunar Soil Simulant Development and Lunar Soil Simulant CUG-1A.Geological Science and Technology Information, 30(4):137-142 (in Chinese with English abstract). https://isru.msfc.nasa.gov/lib/workshops/2009/03_JSC-1A_Lunar_RegSimulant_Update_BGustafson.pdf
      [6] Ivanov, A.V., Tarasov, L.S., Rode, O.D., et al., 1973.Comparative Characteristics of Regolith Samples Delivered from the Lunar Mare and Highland Regions by the Automatic Stations Luna-16 and Luna-20.Proceedings of the Lunar Science Conference, Houston, (1):351-364.
      [7] Jiang, L., Su, B., Wang, C.K., et al., 2010.Study on LBD Lunar Soil Simulant.The 7th Annual Seminar Symposia of CDSET-CSA, Harbin, 192-198 (in Chinese).
      [8] Li, D.F., Lei, Y., Xu, S.N., 2013.Particular Coring Bit for Lunar Soil Drilling.Earth Science, 38(Suppl.):167-173 (in Chinese with English abstract). https://www.researchgate.net/publication/289783737_Experiment_in_torque_model_of_digging_the_lunar_soil_simulant
      [9] Li, D.F., Li, T.M., Chen, H.J., et al., 2011.Coring Device for Shallow Lunar Soil Drilling.Chinese Patent, ZL200910272392.6 (in Chinese).
      [10] Li, D.F., Li, T.M., Chen, H.J., et al., 2012.Coring Device for Lunar Soil Drilling at Outer Hole.Chinese Patent, ZL201110043881.1(in Chinese).
      [11] Li, Q., Duan, L.C., Gao, H., 2014.Correction and Application of Lunar Soil Simulation Surface Sampling Based on Experiments.Exploration Engineering(Rock & Soil Drilling and Tunneling), 41(9):75-80 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0273117716303763
      [12] Li, D.F., Lei, Y., Xu, S.N., 2013.Particular Coring Bit for Lunar Soil Drilling.Earth Science, 38(Suppl.):167-173 (in Chinese with English abstract). https://www.researchgate.net/publication/289783737_Experiment_in_torque_model_of_digging_the_lunar_soil_simulant
      [13] Ling, Y., Song, A.G., Lu, W., 2014.Dynamics Analysis of a Rigid-Flexible Combined Lunar Sampler.Journal of Astronautics, 35(7):770-776 (in Chinese with English abstract). https://www.researchgate.net/publication/289448322_Dynamics_analysis_of_a_rigid-flexible_combined_lunar_sampler
      [14] Liu, T.L., Li, L.X., Jiang, G.S., et al., 2015.A New Drilling Fluid for Drilling in Marine Gas Hydrate Bearing Sediments.Earth Science, 40(11):1913-1921(in Chinese with English abstract). https://www.researchgate.net/publication/288228583_A_new_drilling_fluid_for_drilling_in_marine_gas_hydrate_bearing_sediments
      [15] Tan, S.C., Duan, L.C., Huang, F., et al., 2014.Mechanics and Power Analysis of Auger Drilling Based on Simulated Lunar Soil.Exploration Engineering (Rock & Soil Drilling and Tunneling), 41(9):81-84 (in Chinese with English abstract). doi: 10.1061/%28ASCE%29AS.1943-5525.0000767
      [16] Vinogradov, A.P., 1971.Preliminary Data on Lunar Ground brought to Earth by Automatic Probe "Luna-16".Proceedings of the Second Lunar Science Conference, Houston, (1):1-16.
      [17] Wang, S.J., Li, X.Y., Tang, H., et al., 2010.Lunar Surface Environment and Properties of Lunar Soil:A Review.Geochimica, 39(1):73-81 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0094576508001239
      [18] Yan, T.N., Ran, H.Q., Duan, X.S., 2010.Universe Exploration and Drilling Technique.Exploration Engineering (Rock & Soil Drilling and Tunneling), 37(1):3-7 (in Chinese with English abstract). https://dailyreckoning.com/2-new-drilling-techniques-that-will-shatter-us-oil-expectations/
      [19] Yin, S., Chen, L., Dong, Z.F., 2012.Lunar Soil Simulant for Drilling Tool Research.Geology and Exploration, 48(1):165-169 (in Chinese with English abstract). https://www.researchgate.net/publication/287362924_Experimental_research_on_lunar_soil_simulant_drilling_load_analysis
      [20] Zhang, S.S., Wang, S.J., Li, X.Y., et al., 2013.Properties and Harmfulness of Lunar Dust:A Review.Earth Science, 38(2):339-350(in Chinese with English abstract). https://www.researchgate.net/publication/287743227_Properties_and_harmfulness_of_lunar_dust_a_review
      [21] 段隆臣, 李谦, 张大伟, 等, 2014.基于模拟月壤的表层采样试验研究.探矿工程(岩土钻掘工程), 41(1): 3-8. http://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201401002.htm
      [22] 贺新星, 肖龙, 黄俊, 等, 2011.模拟月壤研究进展及CUG-1A型模拟月壤.地质科技情报, 30(4): 137-142. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104023.htm
      [23] 江磊, 苏波, 王长科, 等, 2010. LBD模拟月壤研究. 中国宇航学会深空探测技术专业委员会第七届学术年会论文集. 哈尔滨: 哈尔滨工业大学.
      [24] 李大佛, 雷艳, 许少宁, 2013.月球钻探取心特种钻头研制与试验.地球科学, 38(增刊1): 167-173. http://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201302000.htm
      [25] 李大佛, 李天明, 陈洪俊, 等, 2011. 月球月壤浅层钻孔取心钻具. 中国专利, ZL200910272392. 6.
      [26] 李大佛, 李天明, 陈洪俊, 等, 2012. 月球月壤钻孔孔外取芯装置. 中国专利, ZL201110043881. 1.
      [27] 李谦, 段隆臣, 高辉, 2014.基于试验的模拟月壤表层取样理论修正及其应用.探矿工程(岩土钻掘工程), 41(9): 75-80. http://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201409017.htm
      [28] 李谦, 段隆臣, 张大伟, 等, 2013.基于模拟月壤挖取采样扭矩试验及建模.地球科学, 38(6): 1363-1370. http://www.earth-science.net/WebPage/Article.aspx?id=2799
      [29] 凌云, 宋爱国, 卢伟, 2014.一种刚、柔机械臂组合的月壤取样器动力学分析.宇航学报, 35(7): 770-776. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201407006.htm
      [30] 刘天乐, 李丽霞, 蒋国胜, 等, 2015.一种海洋水合物地层钻井用新型钻井液.地球科学, 40(11): 1913-1921. http://www.earth-science.net/WebPage/Article.aspx?id=3198
      [31] 谭松成, 段隆臣, 黄帆, 等, 2014.模拟月壤螺旋钻进力载特性分析.探矿工程(岩土钻掘工程), 41(9): 81-84. http://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201409018.htm
      [32] 王世杰, 李雄耀, 唐红, 等, 2010.月面环境与月壤特性研究的主要问题探讨.地球化学, 39(1): 73-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201001012.htm
      [33] 鄢泰宁, 冉恒谦, 段新胜, 2010.宇宙探索与钻探技术.探矿工程(岩土钻掘工程), 37(1): 3-7. http://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201001003.htm
      [34] 殷参, 陈轮, 董志峰, 2012.钻进取样试验用模拟月壤.地质与勘探, 48(1): 165-169. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201201022.htm
      [35] 张森森, 王世杰, 李雄耀, 等, 2013.月尘的性质及危害评述.地球科学, 38(2): 339-350. http://www.earth-science.net/WebPage/Article.aspx?id=2371
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  4026
    • HTML全文浏览量:  1736
    • PDF下载量:  16
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-01-10
    • 刊出日期:  2016-09-15

    目录

      /

      返回文章
      返回