Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure
-
摘要: 高速远程滑坡的演化机制与运动过程受控于岩体结构.以重庆市武隆县鸡尾山滑坡为例,采用地面激光扫描技术,获取岩体结构面几何信息,基于离散元数值模拟方法,考虑岩体结构特征,分析高速远程滑坡演化过程及其致灾范围.研究结果表明:(1) 岩体结构特征由岩体内部发育的结构面所决定,针对点云数据开展空间几何计算与聚类分析,可以快速精细地获取岩体结构面产状信息,从而进行岩体结构面识别与组别划分;(2) 将岩体结构特征评价结果导入离散元模型中,能够实现高速远程滑坡致灾范围的快速评价目的,并且取得了与实际滑动距离较为吻合的结果.Abstract: Evolution mechanism and movement process of rock avalanche are dominated by rock mass structure. The geometric information on rock discontinuities in Jiweishan landslide area was collected using terrestrial laser scanner (TLS). In addition, discrete element method (DEM), which takes into account the rock mass structure, was employed to investigate the evolution process and deposit areas of Jiweishan landslide. Results show that: (1) the features of rock mass structure were determined by rock discontinuities whose orientation was obtained by geometric calculations and cluster analysis on point cloud in a short time, and the identification and clustering of rock discontinuities were completed based on the distribution of orientation; (2) DEM and features of rock mass structure were combined to assess the deposit areas of rock avalanche, and simulation results have a good agreement with the actual situations.
-
图 1 武隆鸡尾山高速远程滑坡地理位置示意
Fig. 1. Location of Jiweishan rock avalanche in Wulong County, Chongqing City, China
图 7 武隆鸡尾山高速远程滑坡3DEC离散元地质模型及其滑动面、T0、T1、T2裂缝滑体边界示意
Fig. 7. The numerical model for Jiweishan landslide and location of sliding plane, crack T0, crack T1, and crack T2
表 1 三维激光扫描参数
Table 1. The information about the scanning
参数 描述 脉冲模式 第一脉冲 扫描模式 步进式扫描 扫描起始位置 左下角 扫描方向 水平 扫描距离(m) 8.39 X方向扫描间距(mm) 1 Y方向扫描间距(mm) 1 表 2 各岩体结构面几何参数统计
Table 2. Summary of 3 types of discontinuities orientation, spacing and trace length statistics
组号 几何参数 分布形式 区间 均值 标准差 类型 1 倾向(°) 正态分布 291~16 343 15.73 层面 倾角(°) 正态分布 13~50 28 6.72 2 倾向(°) 正态分布 160~190 177 7.05 节理一 倾角(°) 对数分布 51~79 59 4.70 3 倾向(°) 正态分布 93~305 110 6.94 节理二 倾角(°) 正态分布 70~90 87 5.65 -
[1] Alpanda, S., Woglom, K.K.A.G., 2008.Numerical Modelling of the Dynamics of Debris Flows and Rock Avalanches.Geomechanics & Tunnelling, 1(2):112-119.doi: 10.1002/geot.200800010 [2] Cheng, Q.G., Zhang, Z.Y., Huang, R.Q., 2007.Study on Dynamics of Rock Avalanches:State of the Art Report.Journal of Mountain Science, 25(1):72-84. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA200701007.htm [3] Cundall, P.A., 1971.A Computer Model for Simulation Progressive Large-Scale Movements in Blocky Rock System.In:Processing of the International Symposium Rock Fracture, ISRM.Proc.2, 129-136. http://citeseerx.ist.psu.edu/showciting?cid=1722499 [4] Cundall, P.A., 1988.Formulation of a Three-Dimensional Distinct Element Model-Part Ⅰ.A Scheme to Detect and Represent Contacts in a System Composed of Many Polyhedral Blocks.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3):107-116.doi: 10.1016/0148-9062(88)92293-0 [5] Dong, X.J., 2007.The Three-Dimensional Laser Scanning Technique and Research on Its Engineering Application (Dissertation).Chengdu University of Technology, Chengdu. http://europepmc.org/abstract/AGR/IND43673775 [6] Gao, Y., 2014.Scraping Dynamic Analysis of the Rapid and Long Runout Landslide-A Case Study of Jiweishan Rockslide in Wulong, Chongqing (Dissertation).Chang'an University, Xi'an. [7] Ge, Y.F., 2014.Research on Roughness and Peak Shear Strength for Rock Discontinuities Based on BAP (Dissertation).China University of Geosciences, Wuhan. http://www.sciencedirect.com/science/article/pii/S0266352X13001511 [8] Ge, Y.F., Tang, H.M., Xiong, C.R., et al., 2014.Effect of Sliding Plane Mechanical Parameters on Landslide Stability-A Case Study of Jiweishan Rockslide in Wulong.Chinese Journal of Rock Mechanics and Engineering, 33(Suppl.2):3873-3884. https://www.researchgate.net/publication/288271023_Mechanism_of_slope_failure_induced_by_undermining_-_A_case_study_of_jiweishan_rockslide_in_wulong [9] Genevois, R., Ghirotti, M., 2005.The 1963 Vaiont Landslide.Giornale di Geologia Applicata, 1:41-52.doi: 10.1474/GGA.2005-01.0-05.0005 [10] Gigli, G., Casagli, N., 2011.Semi-Automatic Extraction of Rock Mass Structural Data from High Resolution LIDAR Point Clouds.International Journal of Rock Mechanics and Mining Sciences, 48(2):187-198.doi: 10.1016/j.ijrmms.2010.11.009 [11] Hart, R., Cundall, P.A., Lemos, J., 1988.Formulation of a Three-Dimensional Distinct Element Model-Part Ⅱ.Mechanical Calculations for Motion and Interaction of a System Composed of Many Polyhedral Blocks.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3):117-125.doi: 10.1016/0148-9062(88)92294-2 [12] He, B.S., Ding, L.Q., Sun, P., 2007.The Application of 3-D Laser Scanning Technology in Rock Joint Sets Identification.Journal of China Institute of Water Resources and Hydropower Research, 5(1):43-48. http://www.utdallas.edu/~aiken/data/THESIS/THESIS/paper3/Fracture_june07.doc [13] Hsü, K.J., 1975.Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls.Geological Society of America Bulletin, 86(1):129. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 [14] Keefer, D.K., Larsen, M.C., 2007.GEOLOGY:Assessing Landslide Hazards.Science, 316(5828):1136-1138.doi: 10.1126/science.1143308 [15] Itasca Consulting Group Inc., 2007.3DEC-3 Dimensional Distinct Element Code User's Guide Version 4.1.Minneapolis, Minnesota. [16] Keefer, D.K., Larsen, M.C., 2007.GEOLOGY:Assessing Landslide Hazards.Science, 316(5828):1136-1138.doi: 10.1126/science.1143308 [17] Kulatilake, P.H.S.W., Ucpirti, H., Wang, S., et al., 1992.Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-Persistent Joints and to Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses.Rock Mechanics and Rock Engineering, 25(4):253-274.doi: 10.1007/bf01041807 [18] Kulatilake, P.H.S.W., Wu, T.H., 1984.Sampling Bias on Orientation of Discontinuities.Rock Mechanics and Rock Engineering, 17(4):243-253.doi: 10.1007/bf01032337 [19] Lato, M., Diederichs, M.S., Hutchinson, D.J., et al., 2009.Optimization of LiDAR Scanning and Processing for Automated Structural Evaluation of Discontinuities in Rockmasses.International Journal of Rock Mechanics and Mining Sciences, 46(1):194-199.doi: 10.1016/j.ijrmms.2008.04.007 [20] Lemos, J.V., Hart, R.D., Cundall, P.A., 1985.A Generalized Distinct Element Program for Modeling Jointed Rock Mass.Proceedings of the International Symposium on Fundamentals of Rock Joints, Bjorkliden, Sweden, 335-343. http://www.sciencedirect.com/science/article/pii/0148906288922954 [21] Li, M.H., Sung, R.T., Dong, J.J., et al., 2011.The Formation and Breaching of a Short-Lived Landslide Dam at Hsiaolin Village, Taiwan-Part Ⅱ:Simulation of Debris Flow with Landslide Dam Breach.Engineering Geology, 123(1-2):60-71.doi: 10.1016/j.enggeo.2011.05.002 [22] Li, X.L., Tang, H.M., Xiong, C.R., et al., 2012.Influence of Substrate Ploughing and Erosion Effect on Process of Rock Avalanche.Rock and Soil Mechanics, 33(5):1527-1534, 1541. http://www.rockmech.org/EN/abstract/abstract29416.shtml [23] Liu, C.J., Ding, L.Q., Sun, D.Y., 2011.Automatic Fuzzy Clustering Analysis and Geometric Information Acquisition of Rock Mass Discontinuities Based on Laser Point Cloud Data.Chinese Journal of Rock Mechanics and Engineering, 30(2):358-364. https://www.researchgate.net/publication/289214117_Automatic_fuzzy_clustering_analysis_and_geometric_information_acquisition_of_rock_mass_discontinuities_based_on_laser_point_cloud_data [24] Liu, C.J., Ding, L.Q., Zhang, S.F., et al., 2014.Fuzzy Cluster Analysis of Rock Mass Discontinuity of Tunnel Based on Laser Measurement and FKM Clustering Algorithm.Journal of Jilin University(Earth Science Edition), 44(1):285-294. https://www.researchgate.net/publication/286140025_Fuzzy_cluster_analysis_of_rock_mass_discontinuity_of_tunnel_based_on_laser_measurement_and_FKM_clustering_algorithm [25] Liu, C.Z., 2010.Preliminary Findings on Dazhai Landslide-Debris Flow Disaster in Guizhou Province of June 28, 2010.Journal of Engineering Geology, 18(5):623-630. https://www.researchgate.net/publication/287849336_Analysis_on_the_development_trend_of_Sanyanyu_valley_debris_flow [26] Liu, W., 2002.Study on the Characteristics of Huge Scale-Super Highspeed-Long Distance Landslide Chain in Yigong, Tibet.The Chinese Journal of Geological Hazard and Control, 13(3):9-18. [27] Maerz, N.H., Youssef, A.M., Otoo, J.N., et al., 2013.A Simple Method for Measuring Discontinuity Orientations from Terrestrial LiDAR Data.Environmental & Engineering Geoscience, 19(2):185-194.doi: 10.2113/gseegeosci.19.2.185 [28] Priest, S.D., Hudson, J.A., 1981.Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3):183-197.doi: 10.1016/0148-9062(81)90973-6 [29] Shi, X.B., 2010.Research for Identifying Structural Plane Based on Three-Dimensional Laser Scanning Data (Dissertation).China University of Geosciences, Beijing. https://www.researchgate.net/institution/China_University_of_Geosciences_Beijing/publications [30] Slob, S., van Knapen, B.V., Hack, R., et al., 2005.Method for Automated Discontinuity Analysis of Rock Slopes with Three-Dimensional Laser Scanning.Transportation Research Record:Journal of the Transportation Research Board, 1913:187-194.doi: 10.3141/1913-18 [31] Sun, G.Z., 1988. Rock Mass Structural Mechanics.Science Press, Beijing. [32] Tang, C.L., Hu, J.C., Lin, M.L., et al., 2009.The Tsaoling Landslide Triggered by the Chi-Chi Earthquake, Taiwan:Insights from a Discrete Element Simulation.Engineering Geology, 106(1-2):1-19.doi: 10.1016/j.enggeo.2009.02.011 [33] Tang, C., 1991.A Study on Large-Scale Catastrophic Landslide at Touzhai Gully of Zhaotong.Yunnan Geographic Environment Research, 3(2):64-71. http://www.gcdz.org/EN/abstract/abstract11244.shtml [34] Tang, H.M., Yan, E.C., Hu, X.L., 2001.The Theory and Method of Numerical Simulation in Engineering Geology.China University of Geosciences Press, Wuhan. [35] Wang, H.D., 2006.Study on Mechanism of Airblast Created by High-Speed Landslide (Dissertation).Southwest Jiaotong University, Chengdu. doi: 10.1080/14498596.2015.1051148?src=recsys [36] Wang, X.R., Zhang, Z., Jia, X.F., 2015.Analysis of Numerical Simulation of Tunnel Excavation Based on High Performance Parallel Finite Element Computing.Earth Science, 40(12):2119-2124. https://www.scientific.net/AMR.368-373.2533 [37] Wu, Y.H., Liu, K.F., Chen, Y.C., 2013.Comparison between FLO-2D and Debris-2D on the Application of Assessment of Granular Debris Flow Hazards with Case Study.Journal of Mountain Science, 10(2):293-304.doi: 10.1007/s11629-013-2511-1 [38] Xiao, S.R., Liu, D.F., Hu, Z.Y., 2010.Study of High Speed Slide Mechanism of Qianjiangping Landslide in Three Gorges Reservoir Area.Rock and Soil Mechanics, 31(11):3531-3536. https://www.researchgate.net/publication/289422751_Study_on_high_speed_slide_mechanism_of_Qianjiangping_landslide_in_China_three_Gorges_reservoir [39] Xu, Q., Huang, R.Q., Yin, Y.P., et al., 2009.The Jiweishan Landslide of June 5, 2009 in Wulong, Chongqing:Characteristics and Failure Mechanism.Journal of Engineering Geology, 17(4):433-444. https://www.researchgate.net/publication/285760233_The_Jiweishan_landslide_of_June_5_2009_in_Wulong_Chongqing_Characteristics_and_failure_mechanism [40] Xu, Q., Fan, X.M., Huang, R.Q., et al., 2010.A Catastrophic Rockslide-Debris Flow in Wulong, Chongqing, China in 2009:Background, Characterization, and Causes.Landslides, 7(1):75-87.doi: 10.1007/s10346-009-0179-y [41] Yin, Y.P., Sun, P., Zhang, M., et al., 2010.Mechanism on Apparent Dip Sliding of Oblique Inclined Bedding Rockslide at Jiweishan, Chongqing, China.Landslides, 8(1):49-65.doi: 10.1007/s10346-010-0237-5 [42] Zhang, L., Tang, H.M., Xiong, C.R., et al., 2012.Movement Process Simulation of High-Speed Long-Distance Jiweishan Landslide with PFC3D.Chinese Journal of Rock Mechanics and Engineering, 31(Suppl.1):2601-2611. https://www.researchgate.net/publication/285764786_Movement_process_simulation_of_high-speed_long-distance_Jiweishan_landslide_with_PFC_3D [43] Zhang, M., Yin, Y.P., Wu, S.R., et al., 2010.Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches.Journal of Engineering Geology, 18(6):805-817. doi: 10.1007/s10346-016-0793-4 [44] Zhang, Y.F., Xu, G.L., Shen, Y.J., et al., 2015.PFC3D Mesoscopic Simulation of Self-Boring In-Situ Shear Pressure-Meter Model Tees.Earth Science, 40(11):1922-1932. https://www.researchgate.net/publication/288228310_PFC3D_mesoscopic_simulation_of_self-boring_in-situ_shear_pressure-meter_model_test?ev=auth_pub [45] Zhu, Q., Cheng, Q.G., Wang, Y.F., et al., 2014.Mechanism of Airblasts of Rapid and Long-Runout Landslide at Niujuangou.Chinese Journal of Rock Mechanics and Engineering, 33(6):1212-1226. https://www.researchgate.net/publication/287325223_Mechanism_of_airblasts_of_rapid_and_long-runout_landslide_at_Niujuangou [46] Zhu, Y.F., 2012.The Theory and System Development of Discontinuity Identification Based on 3D Laser Scanning Data (Dissertation).China University of Geosciences, Beijing. http://www.lsgi.polyu.edu.hk/academic_staff/John.Shi/index.htm [47] 程谦恭, 张倬元, 黄润秋, 2007.高速远程崩滑动力学的研究现状及发展趋势.山地学报, 25(1): 72-84. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200701007.htm [48] 董秀军, 2007. 三维激光扫描技术及其工程应用研究(硕士学位论文). 成都: 成都理工大学. http://book.hzu.edu.cn/418449.html [49] 高杨, 2014. 高速远程滑坡铲刮动力学分析--以重庆武隆鸡尾山滑坡为例(硕士学位论文). 西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014070952.htm [50] 葛云峰, 2014. 基于BAP的岩体结构面粗糙度与峰值抗剪强度研究(博士学位论文). 武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340819.htm [51] 葛云峰, 唐辉明, 熊承仁, 等, 2014.滑动面力学参数对滑坡稳定性影响研究--以重庆武隆鸡尾山滑坡为例.岩石力学与工程学报, 33 (增刊2): 3873-3884. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2062.htm [52] 何秉顺, 丁留谦, 孙平, 2007.三维激光扫描系统在岩体结构面识别中的应用.中国水利水电科学研究院学报, 5(1): 43-48. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX200701007.htm [53] 李祥龙, 唐辉明, 熊承仁, 等, 2012.基底刮铲效应对岩石碎屑流停积过程的影响.岩土力学, 33(5): 1527-1534, 1541. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205039.htm [54] 刘昌军, 丁留谦, 孙东亚, 2011.基于激光点云数据的岩体结构面全自动模糊群聚分析及几何信息获取.岩石力学与工程学报, 30(2): 358-364. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102021.htm [55] 刘昌军, 丁留谦, 张顺福, 等, 2014.基于激光测量和FKM聚类算法的隧洞岩体结构面的模糊群聚分析.吉林大学学报(地球科学版), 44(1): 285-294. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401025.htm [56] 刘传正, 2010.贵州关岭大寨崩滑碎屑流灾害初步研究.工程地质学报, 18(5): 623-630. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201005005.htm [57] 刘伟, 2002.西藏易贡巨型超高速远程滑坡地质灾害链特征研析.中国地质灾害与防治学报, 13(3): 9-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200203001.htm [58] 施星波, 2010. 基于三维激光扫描数据的岩体结构面产状识别方法研究(硕士学位论文). 北京: 中国地质大学. http://d.g.wanfangdata.com.cn/Thesis_Y1783009.aspx [59] 孙广忠, 1988.岩体结构力学.北京:科学出版社. [60] 唐川, 1991.昭通头寨沟特大型灾害性滑坡研究.云南地理环境研究, 3(2): 64-71. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDL199102009.htm [61] 唐辉明, 晏鄂川, 胡新丽, 2001.工程地质数值模拟的理论与方法.武汉:中国地质大学出版社. [62] 王宏丹, 2006. 高速远程滑坡超前冲击气浪机理研究(硕士学位论文). 成都: 西南交通大学. http://cdmd.cnki.com.cn/Article/CDMD-10613-2008177574.htm [63] 王晓睿, 张振, 贾晓风, 2015.基于高性能并行计算的隧道开挖数值模拟.地球科学, 40(12): 2119-2124. http://www.earth-science.net/WebPage/Article.aspx?id=3214 [64] 肖诗荣, 刘德富, 胡志宇, 2010.三峡库区千将坪滑坡高速滑动机制研究.岩土力学, 31(11): 3531-3536. doi: 10.3969/j.issn.1000-7598.2010.11.029 [65] 许强, 黄润秋, 殷跃平, 等, 2009.2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究.工程地质学报, 17(4): 433-444. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200904002.htm [66] 张龙, 唐辉明, 熊承仁, 等, 2012.鸡尾山高速远程滑坡运动过程PFC3D模拟.岩石力学与工程学报, 31(增刊1): 2601-2611. [67] 张明, 殷跃平, 吴树仁, 等, 2010.高速远程滑坡碎屑流运动机理研究发展现状与展望.工程地质学报, 18 (6): 805-817. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006001.htm [68] 张亚飞, 徐光黎, 申艳军, 等, 2015.自钻式原位剪切旁压模型试验颗粒流模拟.地球科学, 40(11): 1922-1932. http://www.earth-science.net/WebPage/Article.aspx?id=3199 [69] 朱圻, 程谦恭, 王玉峰, 等, 2014.牛圈沟高速远程滑坡超前冲击气浪机制分析.岩石力学与工程学报, 33(6): 1212-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406015.htm [70] 朱云福, 2012. 基于三维激光扫描数据的岩体结构面识别方法研究及系统研制(硕士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364816.htm