Sound Velocity Measurement of Minerals and Rocks at Mantle Transition Zone Conditions Using Ultrasonic and Multianvil Techniques
-
摘要: 地幔矿物的波速测量研究是认识地球深部物质组成和性质的重要方法.国际上在大压机中利用超声波技术对地幔矿物材料开展了广泛的波速测量研究,实验温压范围达到地幔转换带条件,而国内大压机超声波波速测量局限于6 GPa压力以内.在中国地质大学(武汉)地球深部研究实验室1 000 t Walker型多面砧大压机上,利用超声波技术,建立了一套高压波速测量系统,对地幔转换带矿物Mg2SiO4瓦兹利石多晶样品在18 GPa压力范围内的弹性波速进行了测量,测量结果与前人超声波波速测量结果相比总体吻合程度良好.利用多面砧大压机和超声波技术,在国内首次实现了地幔转换带高压条件下的波速测量,缩短了我国高压波速测量水平与国外先进水平的差距,同时可以为中国及周边地区地球物理观测资料的解析提供矿物物理方面的实验约束,为国内岩石矿物和固体材料的弹性研究提供实验技术支持.Abstract: Experimental studies of the sound velocity of minerals of the mantle are crucial for understanding the compositions and properties of the Earth's deep interiors. The ultrasonic technique has been globally used in the multianvil press for velocity measurements of various mantle minerals at relevant P-T conditions of the mantle transition zone. However, the ultrasonic velocity measurements in multianvil in China have been limited to < 6 GPa conditions in the past. Recently, we developed a new ultrasonic velocity measurement system in a 1 000 t Walker type multianvil press installed in China University of Geosciences (Wuhan) and measured the velocities of an Mg2SiO4 wadsleyite polycrystalline sample up to 18 GPa. The results are comparable with those of previous ultrasonic studies. For the first time in China, the sound velocity measurement was taken at high pressure conditions of the mantle transition zone in a multianvil with ultrasonic techniques, bridging the gap between the domestic and the international advanced level. The technique would provide not only experimental constraints on the interpretation of the geophysical observation beneath China and surrounding regions, but also experimental supports for the studies on the elastic properties of minerals/rocks and condensed materials in China.
-
Key words:
- high pressure /
- sound velocity measurement /
- ultrasonics /
- multianvil /
- wadsleyite /
- petrology /
- geophysics
-
表 1 高压下瓦兹利石测量值
Table 1. Peak strengths and friction angles of glass beads within different cell pressures
P(GPa) tP(μs) tS(μs) l(mm) Vp(km/s) Vs(km/s) K(GPa) G(GPa) 0.0 - - 1.179 - - - - 1.6 0.244 2 0.420 8 1.176 9.63 5.59 178.8 109.3 3.0 0.237 4 0.411 6 1.172 9.88 5.70 191.6 114.5 4.5 0.233 4 0.406 2 1.170 10.02 5.76 199.8 117.9 5.8 0.231 0 0.403 0 1.167 10.10 5.79 205.3 120.0 7.1 0.228 4 0.400 0 1.165 10.20 5.82 211.6 122.1 8.3 0.226 6 0.398 2 1.162 10.26 5.84 216.6 123.4 9.5 0.225 0 0.396 0 1.160 10.31 5.86 220.5 125.0 10.6 0.223 6 0.393 8 1.158 10.36 5.88 223.9 126.6 11.6 0.222 2 0.392 6 1.157 10.41 5.89 228.2 127.6 12.6 0.221 0 0.391 4 1.155 10.45 5.90 231.8 128.5 13.5 0.220 0 0.390 2 1.154 10.49 5.91 234.7 129.5 14.3 0.219 0 0.389 2 1.152 10.52 5.92 237.8 130.3 15.1 0.218 0 0.388 2 1.151 10.56 5.93 241.0 131.1 15.8 0.217 2 0.387 2 1.150 10.59 5.94 243.4 131.9 16.4 0.216 6 0.386 6 1.149 10.61 5.94 245.4 132.5 17.0 0.216 0 0.385 8 1.148 10.63 5.95 247.2 133.1 17.5 0.215 4 0.385 2 1.147 10.65 5.96 249.2 133.6 18.0 0.214 8 0.384 6 1.147 10.68 5.96 251.2 134.1 注:本实验压力标定误差大约为0.3 GPa,长度误差大约为0.002 mm,超声波走时误差为大约0.6 ns,相应的波速误差大约分别为0.04 km/s(P波)和0.02 km/s(S波),计算得到的弹性模量的误差大约为3 GPa(K)和1 GPa(G).P.压力;tP.P波走时;tS.S波走时;l.样品长度;Vp.P波速度;Vs.S波速度;K.体积模量;G.剪切模量. 表 2 本实验测量所得弹性参数与前人数据对比
Table 2. The elastic parameters obtained in present measurements compared with previous data
文献 K0(GPa) K′ G0(GPa) G′ 最高压力(GPa) 研究方法 本研究 182±2 4.0±0.1 112±1 1.3±0.1 18 超声波、多面砧 Sawamoto et al., 1984 174 - 114 - 0 布里渊散射 Gwanmesia et al., 1990b - 4.8±0.2 - 1.7±0.1 3.0 超声波、活塞圆筒 Li et al., 1996 170 4.24±0.10 108 1.49±0.03 12.5 超声波、多面砧 Zha et al., 1997 170±2 4.3±0.2 115±2 1.4±0.2 14 布里渊散射 Li et al., 2001 173±1 4.2±0.1 113±1 1.5±0.1 7 超声波、多面砧 Kiefer et al., 2001 182 4.23 116 1.10 - 理论计算 -
[1] Bassett, W.A., 2009.Diamond Anvil Cell, 50th Birthday.High Pressure Research, 29(2):163-186.doi: 10.1080/08957950802597239 [2] Birch, F., 1960.The Velocity of Compressional Waves in Rocks to 10 Kilobars:1.Journal of Geophysical Research, 65(4):1083-1102.doi: 10.1029/jz065i004p01083 [3] Birch, F., 1961.The Velocity of Compressional Waves in Rocks to 10 Kilobars:2.Journal of Geophysical Research, 66(7):2199-2224.doi: 10.1029/jz066i007p02199 [4] Chang, Y.Y., Jacobsen, S.D., Kimura, M., et al., 2014.Elastic Properties of Transparent Nano-Polycrystalline Diamond Measured by GHz-Ultrasonic Interferometry and Resonant Sphere Methods.Physics of the Earth and Planetary Interiors, 228:47-55.doi: 10.1016/j.pepi.2013.09.009 [5] Cook, R.K., 1957.Variation of Elastic Constants and Static Strains with Hydrostatic Pressure:A Method for Calculation from Ultrasonic Measurements.The Journal of the Acoustical Society of America, 29(4):445-449.doi: 10.1121/1.1908922 [6] Davies, G.F., Dziewonski, A.M., 1975.Homogeneity and Constitution of the Earth's Lower Mantle and Outer Core.Physics of the Earth and Planetary Interiors, 10(4):336-343.doi: 10.1016/0031-9201(75)90060-6 [7] Dziewonski, A.M., Anderson, D.L., 1981.Preliminary Reference Earth Model.Physics of the Earth and Planetary Interiors, 25(4):297-356.doi: 10.1016/0031-9201(81)90046-7 [8] Gwanmesia, G.D., Li, B., Liebermann, R.C., 1993.Hot Pressing of Polycrystals of High-Pressure Phases of Mantle Minerals in Multi-Anvil Apparatus.Pure and Applied Geophysics, 141(2-4):467-484.doi: 10.1007/BF00998340 [9] Gwanmesia, G.D., Liebermann R.C., Guyot F., 1990a.Hot-Pressing and Characterization of Polycrystals of β-Mg2SiO4, for Acoustic Velocity Measurements.Geophysical Research Letters, 17(9):1331-1334.doi: 10.1029/GL017i009p01331 [10] Gwanmesia, G.D., Rigden, S., Jackson, I., et al., 1990b.Pressure Dependence of Elastic Wave Velocity for β-Mg2SiO4 and the Composition of the Earth's Mantle.Science, 250(4982):794-797.doi: 10.1126/science.250.4982.794 [11] Higo, Y., Funakoshi, K., Irifune, T., 2012.Development of the Elastic Wave Velocity Measurement Technique by the Ultrasonic Method to Lower Mantle Condition.AGU Fall Meeting Abstracts, San Francisco. https://www.hindawi.com/journals/amse/2017/1651753/ [12] Hughes, D.S., Cross, J.H., 1951.Elastic Wave Velocities in Rocks at High Pressures and Temperatures.Geophysics, 16(4):577-593.doi: 10.1190/1.1437706 [13] Irifune, T., Higo, Y., Inoue, T., et al., 2008.Sound Velocities of Majorite Garnet and the Composition of the Mantle Transition Region.Nature, 451(7180):814-817.doi: 10.1038/nature06551 [14] Katsura, T., Ito, E., 1989.The System Mg2SiO4-Fe2SiO4 at High Pressures and Temperatures:Precise Determination of Stabilities of Olivine, Modified Spinel, and Spinel.Journal of Geophysical Research, 94(B11):15663-15670.doi: 10.1029/JB094iB11p15663 [15] Katsura, T., Yamada, H., Nishikawa, O., et al., 2004.Olivine-Wadsleyite Transition in the System (Mg, Fe)2SiO4.Journal of Geophysical Research(Solid Earth), 109(B2):105-122.doi: 10.1029/2003jb002438 [16] Kennett, B.L.N., Engdahl, E.R., Buland, R., 1995.Constraints on Seismic Velocities in the Earth from Traveltimes.Geophysical Journal International, 122(1):108-124.doi: 10.1111/j.1365-246x.1995.tb03540.x [17] Kiefer, B., Stixrude, L., Hafner, J., et al., 2001.Structure and Elasticity of Wadsleyite at High Pressures.American Mineralogist, 86(11-12):1387-1395.doi: 10.2138/am-2001-11-1207 [18] Kono, Y., Irifune, T., Higo, Y., et al., 2010.P-V-T Relation of MgO Derived by Simultaneous Elastic Wave Velocity and In Situ X-Ray Measurements:A New Pressure Scale for the Mantle Transition Region.Physics of the Earth and Planetary Interiors, 183(1-2):196-211.doi: 10.1016/j.pepi.2010.03.010 [19] Li, B., Gwanmesia, G.D., Liebermann, R.C., 1996.Sound Velocities of Olivine and Beta Polymorphs of Mg2SiO4 at Earth's Transition Zone Pressures.Geophysical Research Letters, 23(17):2259-2262.doi: 10.1029/96gl02084 [20] Li, B., Kung, J., Liebermann, R.C., 2004.Modern Techniques in Measuring Elasticity of Earth Materials at High Pressure and High Temperature Using Ultrasonic Interferometry in Conjunction with Synchrotron X-Radiation in Multi-Anvil Apparatus.Physics of the Earth and Planetary Interiors, 143-144:559-574.doi: 10.1016/j.pepi.2003.09.020 [21] Li, B., Liebermann, R.C., 2007.Indoor Seismology by Probing the Earth's Interior by Using Sound Velocity Measurements at High Pressures and Temperatures.Proceedings of the National Academy of Sciences, 104(22):9145-9150.doi: 10.1073/pnas.0608609104 [22] Li, B., Liebermann, R.C., 2014.Study of the Earth's Interior Using Measurements of Sound Velocities in Minerals by Ultrasonic Interferometry.Physics of the Earth and Planetary Interiors, 233:135-153.doi: 10.1016/j.pepi.2014.05.006 [23] Li, B., Liebermann, R.C., Weidner, D.J., 1998.Elastic Moduli of Wadsleyite (β-Mg2SiO4) to 7 Gigapascals and 873 Kelvin.Science, 281(5377):675-677.doi:0.1126/science.281.5377.675 [24] Li, B., Liebermann, R.C., Weidner, D.J., 2001.P-V-Vp-Vs-T Measurements on Wadsleyite to 7 GPa and 873 K:Implications for the 410-km Seismic Discontinuity.Journal of Geophysical Research(Solid Earth), 106(B12):30579-30591. doi: 10.1029/2001jb000317 [25] Liebermann, R.C., 2011.Multi-Anvil, High Pressure Apparatus:A Half-Century of Development and Progress.High Pressure Research, 31(4):493-532.doi: 10.1080/08957959.2011.618698 [26] Liu, Z., Irifune, T., Gréaux, S., et al., 2014.Elastic Wave Velocity of Polycrystalline Mj80Py20 Garnet to 21 GPa and 2 000 K.Physics and Chemistry of Minerals, 42(3):213-222 doi: 10.1007/s00269-014-0712-y [27] Ma, M.N., Bai, W.M., 1999.Progress of High Temperature and Pressure Study on Elastic Wave Velocity and Its Geodynamical Implications.Progress in Geophysics, 14(1):40-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201106009.htm [28] McSkimin, H.J., 1950.Ultrasonic Measurement Techniques Applicable to Small Solid Specimens.The Journal of the Acoustical Society of America, 22(4):413-413. doi: 10.1121/1.1906618 [29] Sawamoto, H., Weidner, D.J, Sasaki, S., et al., 1984.Single-Crystal Elastic Properties of the Modified Spinel (Beta) Phase of Magnesium Orthosilicate.Science, 224(4650):749-751 doi: 10.1126/science.224.4650.749 [30] Wang, X.B., Chen, T., Qi, X.T., et al., 2015.Acoustic Travel Time Gauges for In-Situ Determination of Pressure and Temperature in Multi-Anvil Apparatus.Journal of Applied Physics, 118(6):1534-1543.doi: 10.1063/1.4928147 [31] Wu, Y., Zhang, Y.F., Wang, Y.B., et al., 2013.Experimental Investigation of Phase Transformations of Olivine and Enstatite at the Lower Part of the Mantle Transition Zone:Implications for Structure of the 660 km Seismic Discontinuity.Science China Earth Sciences, 57(4):592-599.doi: 10.1007/s11430-013-4735-x [32] Xie, H.S., Zhang, Y.M., Xu, H.G., et al., 1993.A New Method of Measurement for Elastic-Wave Velocities in Minerals and Rocks at High-Temperature and High-Pressure and its Significance.Science in China (Series B), 36(10):1276-1280. http://chem.scichina.com:8081/sciBe/CN/article/downloadArticleFile.do?attachType=PDF&id=398201 [33] Xie, H.S., Zhou, W.G., Zhao, Z.D., et al., 1998.Measurement of Elastic Wave Velocities in Rocks at High Temperature and Pressure.Earth Science Frontiers, 5(4):329-337(in Chinese with English abstract). doi: 10.1360/yb1993-36-10-1276 [34] Zha, C.S., Duffy, T.S., Mao, H.K., et al., 1997.Single-Crystal Elasticity of β-Mg2SiO4 to the Pressure of the 410 km Seismic Discontinuity in the Earth's Mantle.Earth and Planetary Science Letters, 147(1-4):9-15.doi: 10.1016/S0012-821X(97)00010-1 [35] Zhang, Y.F., Wang, Y.B., Wu, Y., et al., 2013.Phase Transitions of Harzburgite and Buckled Slab under Eastern China.Geochemistry, Geophysics, Geosystems, 14(4):1182-1199. doi: 10.1002/ggge.20069 [36] Zhang, Y.F., Wu, Y., Liu, P.L., et al., 2012.Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences.Earth Science, 37(5):955-965(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201205011.htm [37] Zhao, D.P., Yu, S., Ohtani, E., 2011.East Asia:Seismotectonics, Magmatism and Mantle Dynamics.Journal of Asian Earth Sciences, 40(3):689-709.doi: 10.1016/j.jseaes.2010.11.013 [38] Zhou, C., Gréaux, S., Nishiyama, N., et al., 2014.Sound Velocities Measurement on MgSiO3 Akimotoite at High Pressures and High Temperatures with Simultaneous in Situ X-Ray Diffraction and Ultrasonic Study.Physics of the Earth and Planetary Interiors, 228:97-105.doi: 10.1016/j.pepi.2013.06.005 [39] Zhou, C.Y., Jin, Z.M., Zhang, J.F., 2010.Mantle Transition Zone:An Important Field in the Studies of Earth's Deep Interior.Earth Science Frontiers, 17(3):90-113(in Chinese with English abstract). http://www.nature.com/nature/foxtrot/svc/authoremailform?doi=10.1038/nature13080&file=/nature/journal/v507/n7491/full/nature13080.html&title=Hydrous+mantle+transition+zone+indicated+by+ringwoodite+included+within+diamond&author=D.+G.+Pearson [40] 马麦宁, 白武明, 1999.高温高压实验弹性波速研究及其地球动力学意义.地球物理学进展, 14(1): 40-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ199901002.htm [41] 谢鸿森, 周文戈, 赵志丹, 等, 1998.高温高压条件下岩石弹性波速测量, 地学前缘, 5(4): 148-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY804.019.htm [42] 张艳飞, 吴耀, 刘鹏雷, 等, 2012.Walker型28 GPa多面砧压机及其在地球科学中的应用.地球科学, 37(5): 955-965. http://earth-science.net/WebPage/Article.aspx?id=2301 [43] 周春银, 金振民, 章军锋, 2010.地幔转换带:地球深部研究的重要方向.地学前缘, 17(3): 90-113. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm