• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深海热液金属硫化物矿电性结构

    席振铢 李瑞雪 宋刚 周胜

    席振铢, 李瑞雪, 宋刚, 周胜, 2016. 深海热液金属硫化物矿电性结构. 地球科学, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
    引用本文: 席振铢, 李瑞雪, 宋刚, 周胜, 2016. 深海热液金属硫化物矿电性结构. 地球科学, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
    Xi Zhenzhu, Li Ruixue, Song Gang, Zhou Sheng, 2016. Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits. Earth Science, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
    Citation: Xi Zhenzhu, Li Ruixue, Song Gang, Zhou Sheng, 2016. Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits. Earth Science, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110

    深海热液金属硫化物矿电性结构

    doi: 10.3799/dqkx.2016.110
    基金项目: 

    深圳市战略新兴产业发展专项资金项目 CXZZ20120618165608947

    大洋“十二五”重大项目 DY125-11-R-03

    国家自然科学基金资助项目 41304090

    详细信息
      作者简介:

      席振铢(1966-),男,教授,主要从事瞬变电磁方法与技术相关教学工作及研究.E-mail: xizhenzhu@163.com

    • 中图分类号: P319.3

    Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits

    • 摘要: 深海热液金属硫化物矿位于水深数千米的大洋洋底,其形态、规模及电性参数难为人知,迄今尚未有由实测数据推导其电性结构的研究.依托于“大洋一号”,在大西洋洋中脊、西南印度洋洋中脊实施了多次深海热液金属硫化物矿探测试验,实地采集热液金属硫化物矿瞬变电磁响应数据,并对试验数据进行反演分析.分析表明:大西洋TAG(trans-Atlantic geotraverse)热液区及西南印度洋49°4′E,37°5′S热液区内,深海热液金属硫化物矿形似生长于洋壳内的“蘑菇”,矿体呈透镜状或似层状结构,分布于热液喷口的卤水池内,电阻率约为0.1 Ω·m,规模为50~250 m,厚度范围为20~50 m;热液烟囱直径为10~50 m,周围岩石发生热液蚀变,蚀变岩石电阻率在0.2~0.5 Ω·m,以热液通道为中心呈圈层状变化.依据深海热液金属硫化物矿的形态特征及电性参数,矿体的电性结构模型可简化为T型异常体.

       

    • 图  1  海洋瞬变电磁测线TEM06

      Fig.  1.  Marine transient electromagnetic line TEM06

      图  2  TEM06测线AB段的数据处理

      a.瞬变电磁响应多测道剖面;b.视电阻率剖面

      Fig.  2.  Data process of section AB of line TEM06

      图  3  海洋瞬变电磁测线TEM01

      Fig.  3.  Marine transient electromagnetic line TEM01

      图  4  TEM01测线CD段的数据处理

      a.瞬变电磁响应多测道剖面;b.视电阻率剖面

      Fig.  4.  Data process of section CD of line TEM01

      图  5  深海热液金属硫化物矿电性结构模型

      Fig.  5.  Electrical structure model of deep-sea hydrothermal metallic sulfide deposits

      图  6  深海热液金属硫化物矿多测道响应剖面

      Fig.  6.  Multichannel profile of deep-sea hydrothermal metallic sulfide deposits

    • [1] Cheesman, S.J., Edwards, R.N., Chave, A.D., 1987.On the Theory of Sea-Floor Conductivity Mapping Using Transient Electromagnetic Systems.Geophysics, 52(2):204-217.doi: 10.1190/1.1442296
      [2] Cheesman, S.J., Edwards, R.N., Law, L.K., 1990.A Test of a Short-Baseline Sea-Floor Transient Electromagnetic System.Geophysical Journal International, 103(2):431-437.doi: 10.1111/j.1365-246X.1990.tb01782.x
      [3] Constable, S., Srnka, L.J., 2007.An Introduction to Marine Controlled-Source Electromagnetic Methods for Hydrocarbon Exploration.Geophysics, 72(2):WA3-WA12.doi: 10.1190/1.2432483
      [4] Cox, C.S., 1981.On the Electrical Conductivity of the Oceanic Lithosphere.Physics of the Earth and Planetary Interiors, 25(3):196-201.doi: 10.1016/0031-9201(81)90061-3
      [5] Deng, X.G., 2007.The Deposits and Mineral Compositions of Hydrothermal Sulphides in Mid-Ocean Ridge.Geological Research of South China Sea, 54-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHDZ200700009.htm
      [6] Edwards, R.N., Law, L.K., DeLaurier, J.M., 1981.On Measuring the Electrical Conductivity of the Oceanic Crust by a Modified Magnetometric Resistivity Method.Journal of Geophysical Research, 86(B12):11609.doi: 10.1029/JB086iB12p11609
      [7] Eidesmo, T., Ellingsrud, S., Macgregor, L.M., et al., 2002.Sea Bed Logging (SBL), a New Method for Remote and Direct Identification of Hydrocarbon Filled Layers in Deepwater Areas.First Break, 20(20):144-152. https://www.mendeley.com/research-papers/sea-bed-logging-sbl-new-method-remote-direct-identification-hydrocarbon-filled-layers-deepwater-area/
      [8] Ellingsrud, S., Eidesmo, T., Johansen, S., et al., 2002.Remote Sensing of Hydrocarbon Layers by Seabed Logging (SBL):Results from a Cruise Offshore Angola.The Leading Edge, 21(10):972-982.doi: 10.1190/1.1518433
      [9] Evans, R.L., Everett, M.E., 1994.Discrimination of Hydrothermal Mound Structures Using Transient Electromagnetic Methods.Geophysical Research Letters, 21(6):501-504.doi: 10.1029/94GL00418
      [10] Key, K., Constable, S., 2002.Broadband Marine MT Exploration of the East Pacific Rise at 9°50′N.Geophysical Research Letters, 29(22):11-1-11-4.doi: 10.1029/2002GL016035
      [11] Liu, C.S., Lin, J., 2006.Transient Electromagnetic Response Modeling of Magnetic Source on Seafloor and the Analysis of Seawater Effect.Chinese Journal of Geophysics, 49(6):1891-1898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200606038.htm
      [12] Myer, D.G., Constable, S., Key, K., 2006.Electromagnetic Exploration of the Loihi Seamount.American Geophysical Union, San Francisco.
      [13] Swidinsky, A., Hölz, S., Jegen, M., 2012.On Mapping Sea Floor Mineral Deposits with Central Loop Transient Electromagnetics.Geophysics, 77(3):171-184.doi: 10.1190/geo2011-0242.1
      [14] Tada, N., Seama, N., Goto, T.N., et al., 2005.1-D Resistivity Structures of the Oceanic Crust around the Hydrothermal Circulation System in the Central Mariana Through Using Magnetometric Resistivity Method.Earth, Planets and Space, 57(7):673-677.doi: 10.1186/BF03351846
      [15] Wetheim, G.K., 1954.Studies of the Electric Potential between Key West, Florida, and Havana, Cuba.Earth and Space Science News, 35(6):872-882.doi: 10.1029/TR035i006p00872
      [16] Ye, J., 2010.Mineralization of Polymetallic Sulfides on Ultra-Slow Spreading Southwest Indian Ridge at 49.6°E (Dissertation).The Institute of Oceanology, Chinese Academy of Science, Qingdao (in Chinese with English abstract).
      [17] Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2011.Resource Estimation of Co-Rich Crusts of Seamounts in Pacific.Earth Science, 36(1):1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101002.htm
      [18] Zhou, S., Xi, Z.Z., Song, G., et al., 2012.Response of the Towed Transient Electromagnetic Sounding on Deep Seafloor.Journal of Central South University (Sicence and Technology), 43(2):605-610 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201202034.htm
      [19] Zhu, K.C., Ren, J.B., Wang, H.F., et al., 2015.Enrichment Mechanism of REY and Geochemical Characteristics of REY-Rich Clay from the Central Pacific.Earth Science, 40(6):1052-1060 (in Chinese with English abstract).
      [20] Богданов, Ю.A., 2007.Modern Ocean Sulphide Deposits Category.Translated by Chen B.Y., Marine Geology, (4):18-30 (in Chinese).
      [21] 邓希光, 2007.大洋中脊热液硫化物矿床分布及矿物组成.南海地质研究, 54-64. http://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ200700009.htm
      [22] 刘长胜, 林君, 2006.海底表面磁源瞬变响应建模及海水影响分析.地球物理学报, 49(6): 1891-1898. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200606038.htm
      [23] 叶俊, 2010. 西南印度洋超慢速扩张脊49. 6°E热液区多金属硫化物成矿作用研究(博士学位论文). 青岛: 中国科学院海洋研究所. http://cdmd.cnki.com.cn/Article/CDMD-80068-1012411037.htm
      [24] 张富元, 章伟艳, 朱克超, 等, 2011.太平洋海山钴结壳资源量估算.地球科学, 36(1): 1-11. http://earth-science.net/WebPage/Article.aspx?id=2059
      [25] 周胜, 席振铢, 宋刚, 等, 2012.深海拖曳式瞬变电磁的响应规律.中南大学学报(自然科学版), 43(2): 605-610. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201202034.htm
      [26] 朱克超, 任江波, 王海峰, 等, 2015.太平洋中部富REY深海粘土的地球化学特征及REY富集机制.地球科学, 40(6): 1052-1060. http://earth-science.net/WebPage/Article.aspx?id=3106
      [27] 尤·阿·博格达诺夫, 2007. 大洋现代硫化物矿藏分类. 陈邦彦, 译. 海洋地质, (4): 18-30. http://www.cqvip.com/Main/Detail.aspx?id=26267471
    • 加载中
    图(6)
    计量
    • 文章访问数:  5037
    • HTML全文浏览量:  1884
    • PDF下载量:  11
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-02-16
    • 刊出日期:  2016-08-15

    目录

      /

      返回文章
      返回