Geochemical Characteristics, Sedimentary Environment and Tectonic Setting of Huangqikou Formation, Ordos Basin
-
摘要: 鄂尔多斯盆地西南部及邻区沉积了一套以黄旗口组为代表的巨厚的中元古界碎屑岩系,该套地层具有重要的油气勘探潜力,但目前人们对该套地层的勘探认识尚不够深入,利用碎屑组分、主微量、稀土元素等地球化学手段,结合区域及深部背景特征,探讨了该套地层形成时期的沉积环境和构造背景.结果显示,黄旗口组整体形成于气候干燥的淡水氧化或富氧的过渡环境,沉积期古海水温度较高(平均为32 ℃);黄旗口组碎屑组分及其主微量元素特征与东非裂谷区相似,加之其沉积于淡水环境,并具有自下段至上段石英砂岩含量逐渐增加的特征,表明研究区黄旗口组应处于陆内裂谷构造背景,自早至晚构造沉积环境日趋稳定,其中早期应为陆内裂谷环境,晚期可能变为坳陷环境,该构造背景的形成可能与华北克拉通逆时针旋转有关.Abstract: A set of ultra-thick Middle Proterozoic clastic sedimentary rocks deposited in and around southwestern Ordos basin, with the Huangqikou Formation(HKF) as the most typical one, has great potential for oil and gas exploration. However, our understanding of HKF needs to be enhanced. Thus, by means of main-trace, rare elements and detrital component method, we probed into the sedimentary environment and tectonic setting of the HKF. The sedimentary environment discrimination diagrams of both main and trace elements show that the HKF was deposited wholly under a dry environment with fresh water oxidized, or an oxygen-enriched environment, with an average paleoseawater temperature of 32 ℃. The tectonic environment discrimination diagrams of clastic composition, and main and trace elements all show similarity to those of the East African rift basin, and gradual increasing of the quartz sandstone content from the lower to the upper parts, suggesting that HKF deposited under an intracontinental rift tectonic-sedimentary setting, which may have been caused by the counterclockwise rotation of North China Craton. It is concluded that the HKF was deposited in an intracontinental rift basin in the fresh water, and the tectonic setting became more stable from early to late stage, which was intra-continental rift in the early stage and post-rift depression in the late one.
-
Key words:
- Huangqikou Formation (HKF) /
- geochemistry /
- sedimentary environment /
- tectonic setting /
- Ordos basin
-
图 3 lg(Fe2O3/K2O)-lg(SiO2/Al2O3)陆源砂岩-页岩分类
Fig. 3. Terrigenous sand-shale classification of lg(Fe2O3/K2O)-lg(SiO2/Al2O3)
图 4 黄旗口组V/Cr(a)、V/(V+Ni)(b)、Ni/Co(c)和U/Th(d)氧化还原环境判别
据Hatch and Leventhal(1992), Jones and Manning(1994)和Rimmer et al.(2004)
Fig. 4. Redox environment discriminations of V/Cr (a), V/(V+Ni) (b), Ni/Co (c) and U/Th (d) for Huangqikou Formation
图 5 黄旗口组Sr/Cu(a)、Fe/Mn(b)、Mg/Ca(c)比值和古气候环境判别与古水体温度曲线(d)
据Lerman and Baccini(1978)和袁海军和赵兵(2012)
Fig. 5. Paleoclimate environment discrimination of Sr/Cu (a), Fe/Mn (b), Mg/Ca (c) and ancient water temperature curve (d) for Huangqikou Formation in Ordos region
图 6 黄旗口组Sr/Ba(a)、Rb/K(b)、Sr含量(c)和Ni含量(d)海陆环境判别图
Fig. 6. Marine environment discrimination diagrams of Sr/Ba (a), Rb/K (b), Sr (c), and Ni (d) for Huangqikou Formation in Ordos region
图 7 黄旗口组主量元素构造沉积背景判别
a.K2O/Na2O-SiO2判别图解;b.F1-F2判别图解;c.TiO2-(Fe2O3+MgO)判别图解;d.Al2O3/SiO2-(Fe2O3+MgO)判别图解;e.K2O/Na2O-(Fe2O3+MgO)判别图解;f.Al2O3/(CaO+Na2O)-(Fe2O3+MgO)判别图解.AF.陆内裂谷扇沉积;LB.陆内裂谷湖相沉积;据Huntsman-Mapila et al.(2009).OIA.大洋岛弧;CIA.大陆岛弧;ACM.活动大陆边缘;PM.被动大陆边缘;据Bhatia(1983)
Fig. 7. Discriminate diagrams of tectonic-sedimentary background of major element for Huangqikou Formation in Ordos region
图 8 黄旗口组微量元素La-Th-Sc (a)、Th-Co-Zr/10 (b)、Th-Sc-Zr/10 (c)构造沉积背景判别三角图
A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘;据Bhatia and Crook(1986)
Fig. 8. Discriminant triangle diagrams of tectonic-sedimentary background of trace element (La-Th-Sc (a)、Th-Co-Zr/10 (b)、Th-Sc-Zr/10 (c)) for Huangqikou Formation in Ordos region
图 9 黄旗口组砂岩碎屑含量QFL三角图解
Q.石英;F.长石;L.岩屑;CB.大陆块;RO.再旋回造山带;DR.切割弧;TR.过渡弧;UR.末切割弧;据Dickinson et al.(1983)
Fig. 9. QFL ternary plot of sandstones petrofacies for Huangqikou Formation
表 1 鄂尔多斯地区黄旗口组样品主量元素(%)分析结果
Table 1. Analytical results of major elements (%) of Huangqikou Formation samples in Ordos area
样号 地点 样品名称 段 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 LOI K2O/Na2O Fe2O3/K2O CaO/MgO CIW SiO2/Al2O3 TS-03 固原炭山 泥质白云岩 上段 9.0 11.7 7.4 6.3 7.9 0.10 0.01 0.02 37.0 0.6 18.9 44.9 1.2 1.5 4.1 HT1-2-19 杭探1井 紫红色泥岩 上段 20.2 0.3 11.1 8.1 2.5 0.04 0.20 0.20 51.6 1.0 4.1 42.5 1.4 0.1 97.5 2.6 TS-01 固原炭山 褐色泥岩 上段 13.0 0.9 1.4 10.9 0.4 0.01 0.20 0.50 70.0 1.3 0.7 54.3 0.1 2.6 92.0 5.4 HT1-2-50 杭探1井 紫红色砂岩 上段 13.0 0.9 1.4 10.9 0.4 <0.01 0.20 0.50 70.0 1.3 2.5 39.6 0.6 0.5 96.5 4.2 HT1-3-40 杭探1井 紫红色砂岩 上段 16.0 0.4 5.0 7.9 0.8 <0.01 0.20 0.30 66.4 0.6 0.9 33.3 0.2 1.3 95.8 17.1 QY-07 千阳冯家山 灰白色石英岩 上段 5.2 0.1 0.7 3.7 0.1 <0.01 0.11 0.10 89.0 0.1 0.3 15.0 5.6 1.3 71.0 221.1 QY-08 贺兰山大武口 紫红色石英岩 上段 0.4 0.2 0.8 0.2 0.1 0.04 <0.01 <0.01 97.3 0.0 0.2 23.0 2.7 0.8 89.9 137.0 SZ-01 乌海桌子山 紫红色石英砂岩 上段 0.7 0.1 0.6 0.2 0.1 <0.01 <0.01 0.02 97.3 0.1 1.1 72.0 1.4 3.3 91.4 25.5 ZZ-01 杭探1井 紫红色砂岩 上段? 1.0 0.6 0.7 0.6 0.2 <0.01 <0.01 0.02 95.7 0.1 0.7 58.0 1.2 3.4 63.6 97.7 HT1-4-13 杭探1井 紫红色砂岩 下段 6.5 0.3 1.6 3.9 0.3 0.02 0.10 0.20 85.4 0.4 2.3 25.2 0.5 0.3 95.6 7.4 HT1-4-5 杭探1井 紫红色砂岩 下段 10.7 0.3 2.3 4.5 1.1 <0.01 0.20 0.10 78.6 0.5 3.3 26.3 0.3 0.3 96.4 2.7 HL-01 贺兰山 紫红色杂砂岩 下段 22.2 0.5 2.1 8.4 1.8 0.02 0.30 0.30 59.7 0.7 0.3 37.0 1.5 4.0 96.5 24.3 HL-04 百寺口 灰白色杂砂岩 下段 3.8 0.1 1.1 0.7 0.03 0.01 0.02 0.02 92.7 0.1 2.7 1.6 1.6 0.7 82.0 5.3 ZZ-03 乌海桌子山 紫红色石英岩 下段 13.4 1.3 4.0 2.6 2.0 0.02 1.60 0.30 70.7 0.5 1.5 91.0 2.3 0.6 68.9 49.8 北美页岩平均(NASC) 17.0 3.6 - 4.0 2.9 0.10 1.10 0.10 64.8 0.7 3.5 1.3 78.0 3.8 UCC上地壳组成 15.2 4.2 5.0 3.4 2.2 0.10 3.90 0.20 66.0 0.7 0.9 1.5 1.9 65.2 4.3 注:“北美页岩平均(NASC)”引自 Gromet et al.(1984) ;“UCC上地壳组成”引自McLennan(2001);LOI为烧失量,单位为%;CIW=100×Al2O3/(Al2O3+CaO+Na2O),单位为%,引自Harnois(1988).表 2 鄂尔多斯地区黄旗口组样品微量元素(10-6)分析结果
Table 2. Analytical results of trace elements (10-6) of Huangqikou Formation samples in Ordos area
样号 地点 样品名称 段 Ca Co Cr Cu Ba Fe Mg Mn Rb Ni Sr Th U V V/Cr Ni/Co U/Th V/(V+Ni) Mg/Ca Sr/Cu Sr/Ba Fe/Mn T(℃) TS-03 固原炭山 白云岩 上段 8.15 6.2 36 6.6 220 5.1 4.9 452 89 29 92 12 3 67 1.9 4.7 0.2 0.7 0.6 14.0 0.4 0.01 30.8 HT1-2-19 杭探1井 紫红色泥岩 0.26 18.0 56 4.7 690 7.2 1.3 305 128 52 337 23 2 70 1.3 3.0 0.1 0.6 5.2 71.7 0.5 0.02 27.7 ZZ-01 乌海桌子山 紫红色砂岩 0.43 1.1 24 2.7 60 0.5 0.1 83 10 3 11 2 1 7 0.3 2.5 0.2 0.7 0.2 4.2 0.2 0.01 31.8 TS-01 固原炭山 褐色泥岩 0.65 0.8 26 4.0 410 0.9 0.2 43 52 2 76 15 3 48 1.8 2.5 0.2 1.0 0.3 19.0 0.2 0.02 31.0 HT1-2-50 杭探1井 紫红色砂岩 0.29 3.8 22 1.4 1 150 3.5 0.5 105 86 12 260 14 1 25 1.1 3.1 0.1 0.7 1.6 186.0 0.2 0.03 28.7 HT1-3-40 杭探1井 紫红色砂岩 0.12 0.4 9 0.7 330 0.4 0.1 44 67 2 93 7 1 5 0.6 5.8 0.2 0.7 0.4 132.0 0.3 0.01 30.8 QY-07 千阳冯家山 灰白色石英岩 0.18 3.2 32 6.3 60 0.6 0.1 311 6 9 8 0 0 8 0.3 2.7 1.0 0.5 0.6 1.3 0.1 0.00 31.8 QY-08 紫红色石英岩 0.06 1.2 21 3.2 90 0.5 0.1 28 8 5 27 1 1 10 0.5 3.9 1.4 0.7 1.0 8.3 0.3 0.02 31.6 SZ-01 贺兰山大武口 紫红色石英砂岩 0.26 2.9 26 2.1 130 0.7 0.1 93 22 7 19 6 1 19 0.7 2.3 0.1 0.7 0.2 8.9 0.1 0.01 31.7 HT1-4-13 杭探1井 紫红色砂岩 下段 0.24 3.0 16 0.7 820 1.5 0.6 84 115 8 151 7 1 13 0.8 2.5 0.1 0.6 2.6 215.0 0.2 0.02 30.0 HT1-4-5 杭探1井 紫红色砂岩 0.32 6.7 97 1.3 930 1.3 0.9 86 135 16 237 13 2 46 0.5 2.4 0.1 0.7 2.8 182.0 0.3 0.01 29.0 HL-01 紫红色杂砂岩 贺兰山百寺口 0.09 0.2 20 0.6 20 0.8 0.0 33 9 2 77 3 0 4 0.2 10.0 0.1 0.7 0.2 129.0 3.9 0.02 31.0 HL-04 灰白色杂砂岩 0.97 4.7 150 13.0 290 2.7 1.2 204 137 17 99 6 2 66 0.4 3.6 0.3 0.8 1.2 7.5 0.3 0.01 30.7 ZZ-03 乌海桌子山 灰白色石英岩 0.63 4.8 34 8.9 90 1.5 0.8 139 8 7 52 4 2 13 0.4 1.4 0.6 0.7 1.2 5.8 0.6 0.01 31.3 -
[1] Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.Journal of Geology, 91(6):611-627.doi: 10.1086/628815 [2] Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193.doi: 10.1007/bf00375292 [3] Boboye, O.A., Nwosu, O.R., 2014.Petrography and Geochemical Indices of the Lagos Lagoon Coastal Sediments, Dahomey Basin (Southwestern Nigeria):Sea Level Change Implications.Quaternary International, 338:14-27.doi: 10.1016/j.quaint.2013.07.006 [4] Chen, J.B., Zhang, P.Y., Gao, Z.J., et al., 1999.Stratigraphical Lexicon of China:Mesoproterozoic Era.Geological Publishing House, Beijing (in Chinese). [5] Di, L.J., Xie, G.C., 2008.Queries about Helan Aulacogen.Lithologic Reservoirs, 20(2):16-21, 36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX200802004.htm [6] Dickinson, W.R., Suczek, C.A., 1979.Plate Tectonics and Sandstone Compositions.AAPG Bulletin, 63(12):2164-2182.doi: 10.1306/2f9188fb-16ce-11d7-8645000102c1865d [7] Dickinson, W.R., Beard, L.S., Brakenridge, G.R., et al., 1983.Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting.Geological Society of America Bulletin, 94(2):222-235.doi:10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2 [8] El-Askary, M.A., El-Mahdy, O.R., 2001.The Nubia Sandstone at Kharga Oasis—A Fresh-Water Deposit:Geochemical Evidence.Chemical Geology, 17(1976)1-11.doi: 10.1016/0009-2541(76)90017-6 [9] Fu, J.H., Wei, X.S., Ren, J.F., et al., 2006.Gas Exploration and Developing Prospect in Ordos Basin.Acta Petrolei Sinica, 27(6):1-4, 13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB200606000.htm [10] Garzanti, E., Andò, S., Padoan, M., et al., 2015.The Modern Nile Sediment System:Processes and Products.Quaternary Science Reviews, 130:9-56.doi: 10.1016/j.quascirev.2015.07.011 [11] Gao, L.Z., Ding, X.Z., Pang, W.H., et al., 2011.New Geologic Time Scale of Meso-and Neoproterozoic of China and Geochronologic Constraint by Shrimp Zircon U-Pb Dating.Journal of Stratigraphy, 35(1):1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201101002.htm [12] Gong, W.B., 2014.Characteristics and Significances of Structural Deformation of Western Part of the North China Craton in the Late Paleoproterozoic (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [13] Gromet, L.P., Dymek, R.F., Haskin, L.A., et al., 1984.The "North American Shale Composite":Its Compilation, Major and Trace Element Characteristics.Geochimica et Cosmochimica Acta, 48:2469-2482. doi: 10.1016/0016-7037(84)90298-9 [14] Hao, Y.W., Luo, M.S., Xu, Z.L., et al., 2014.Division of Sedimentary Basins and Its Tectonic Evolution in North China from Newproterozoic to Mesozoic.Earth Science, 39(8):1230-1242 (in Chinese with English abstract). https://www.researchgate.net/publication/286163120_Division_of_sedimentary_basins_and_its_tectonic_evolution_in_North_China_from_Newproterozoic_to_Mesozoic [15] Harnois, L., 1988.The CIW Index:A New Chemical Index of Weathering.Sedimentary Geology, 55(3-4):319-322.doi: 10.1016/0037-0738(88)90137-6 [16] Hatch, J.R., Leventhal, J.S., 1992.Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A..Chemical Geology, 99(1-3):65-82.doi: 10.1016/0009-2541(92)90031-y [17] Herron, M.M., 1988.Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data.Journal of Sedimentary Research, 58(5):820-829.doi: 10.1306/212f8e77-2b24-11d7-8648000102c1865d [18] Hou, G.T., Li, J.H., Qian, X.L., et al., 2000.Paleomagnetism Research and Its Geological Significance of Mesoproterozoic Dike Swarm in the Middle Segment of North China Craton.Science in China (Series D), 30(6):602-608 (in Chinese with English abstract). doi: 10.1007/BF02879661 [19] Hua, H., Qiu, S.Y., Xiao, L.J., 1993.The Discovery of Trace Fossils from the Middle Proterozoic Changcheng System in Helan Mountain, Ningxia.Journal of Northwest University, 23(5):459-462 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199105006.htm [20] Huang, Z.Q., Huang, H., Du, Y.S., 2013.Depositional Chemistry of Cherts of the Late Paleozoic in Napo Rift Basin, Guangxi and Its Implication for the Tectonic Evolution.Earth Science, 38(2):253-265 (in Chinese with English abstract). https://www.researchgate.net/publication/286516692_Depositional_chemistry_of_cherts_of_the_Late_Paleozoic_in_Napo_Rift_Basin_Guangxi_and_its_implication_for_the_tectonic_evolution [21] Huntsman-Mapila, P., Tiercelin, J.J., Benoit, M., et al., 2009.Sediment Geochemistry and Tectonic Setting:Application of Discrimination Diagrams to Early Stages of Intracontinental Rift Evolution, with Examples from the Okavango and Southern Tanganyika Rift Basins.Journal of African Earth Sciences, 53(1-2):33-44.doi: 10.1016/j.jafrearsci.2008.07.005 [22] Jin, W., 2012.Research on Seismite in Huangqikou Formation of Changcheng System, Middle Helan Mountain (Dissertation).Chinese University of Geosciences, Wuhan (in Chinese with English abstract). [23] Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4):111-129.doi: 10.1016/0009-2541(94)90085-x [24] Lerman, A., Baccini, P., 1978.Lakes:Chemistry, Geology, Physics.Springer-Verlag, Berlin. [25] Li, M.T., Wang, C., Ma, X.D., et al., 2014.Characteristics of the Huangqikou Formation in the Middle Segment of Helan Mountain and Stratigraphic Correlation with North China.Ningxia Engineering Technology, 13(3):201-203 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NXGJ201403004.htm [26] Lin, C.S., Yang, Q., Li, S.T., 1995.The Analysis on Filling Evolution of Helan Aulacogen Basin.Geological Publishing House, Beijing (in Chinese). [27] Liu, C.Y., Zhao, H.G., Song, L.J., et al., 2015.Basin Types and Sedimentary Evolution in the Middle-Upper Proterozoic, Ordos Area.Scientific Research Report of Changqing Oilfield Branch Company, Petro China, Xi'an (in Chinese). [28] Liu, G., Zhou, D.S., 2007.Application of Microelements Analysis in Identifying Sedimentary Environment-Taking Qianjiang Formation in the Jiang Han Basin as an Example.Petroleum Geology & Experiment, 29 (3):307-310, 314 (in Chinese with English abstract). https://www.researchgate.net/publication/281538971_Application_of_microelements_analysis_in_identifying_sedimentary_environment-taking_Qianjiang_formation_in_the_Jianghan_Basin_as_an_example [29] Luo, S.S., Wang, K.M., 2010.The Application of Element Geochemical Characteristics to Recognition of Carbonate Sedimentary Sequence Boundary:A Case Study of the Mesoproterozoic Gaoyuzhuang Formation in Northern Hebei Depression.Geology in China, 37(2):430-437 (in Chinese with English abstract). [30] McLennan, S.M., 2001.Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust.Geochemistry, Geophysics, Geosystems, 2(4).doi: 10.1029/2000gc000109 [31] Parcerisa, D., Gómez-Gras, D., Travé, A., 2005.A Model of Early Calcite Cementation in Alluvial Fans:Evidence from the Burdigalian Sandstones and Limestones of the Vallès-Penedès Half-Graben (NE Spain).Sedimentary Geology, 178(3-4):197-217.doi: 10.1016/j.sedgeo.2005.04.004 [32] Peng, X.F., Wang, L.J., Jiang, L.P., 2012.Geochemical Characteristics of the Lucaogou Formation Oil Shale in the Southeastern Margin of the Junggar Basin and Its Environmental Implications.Bulletin of Mineralogy, Petrology and Geochemistry, 31(2):121-127, 151 (in Chinese with English abstract). https://www.researchgate.net/publication/287433986_Geochemical_characteristics_of_the_Lucaogou_Formation_Oil_shale_in_the_southeastern_margin_of_the_Junggar_Basin_and_its_environmental_implications [33] Qiao, X.F., Gao, L.Z., Zhang, C.H., 2007.New Idea of the Meso-and Neoproterozoic Chronostratigraphic Chart and Tectonic Environment in Sino-Korean Plate.Geological Bulletin of China, 26(5):503-509 (in Chinese with English abstract). https://www.researchgate.net/publication/279706349_New_idea_of_the_Meso-_and_Neoproterozoic_chronostratigraphic_chart_and_tectonic_environment_in_Sino-Korean_Plate [34] Rimmer, S.M., Thompson, J.A., Goodnight, S.A., et al., 2004.Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippi a Marine Black Shales:Geochemical and Petrographical Evidence.Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2):125-154.doi: 10.1016/s0031-0182(04)00466-3 [35] Roser, B.P., Korsch, R.J., 1988.Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data.Chemical Geology, 67(1-2):119-139.doi: 10.1016/0009-2541(88)90010-1 [36] Shi, X.Y., Wang, X.Q., Jiang, G.Q.et al., 2008.Pervassive Microbial Mat Colonization on Mesoproterozoic Peritidal Siliciclastic Substrates:An Example from the Huangqikou Formation (ca 1.6 Ga)in Helan Mountains, NW China.Geological Review, 54(5):577-586 (in Chinese with English abstract). https://www.researchgate.net/publication/237146045_Pervasive_microbial_mat_colonization_on_Mesoproterozoic_peritidal_siliciclastic_substrates_an_example_from_the_Huangqikou_Formation_ca_16Ga_in_Helan_Mountain_NW_China [37] Su, W.B., Li, H.K., Xu, L., et al., 2012.Luoyu and Ruyang Group at the South Margin of the North China Craton (NCC) Should Belong in the Mesoproterozoic Changchengian System:Direct Constraints from the LA-MC-ICP-MS U-Pb Age of the Tuffite in the Luoyukou Formation, Ruzhou, Henan, China.Geological Survey and Research, 35(2):96-108. https://www.researchgate.net/publication/284564542_Luoyu_and_Ruyang_Group_at_the_south_margin_of_the_North_China_Craton_NCC_should_belong_in_the_Mesoproterozoic_Changchengian_System_direct_constraints_from_the_LA-MC-ICPMS_U-Pb_age_of_the_tuffite_in_th [38] Sun, J.W., Fu, Y.T., Lan, C.L., 2014.Trace Element Geochemical Characteristics of the Marine Clastic Rocks in Qingdao and Their Sedimentary Environments Implications.Marine Sciences, 38(8):75-81 (in Chinese with English abstract). doi: 10.1007/s00710-013-0312-4 [39] Wang, T.H., 1995.Evolutionary Characteristics of Geological Structure and Oil-Gas Accumulation in Shanxi-Shaanxi Area.Journal of Geology and Mineral Resources of North China, 10(3):283-398 (in Chinese with English abstract). https://www.researchgate.net/publication/286194945_Evolutionary_characteristics_of_geological_structure_and_oil-gas_accumulation_in_Shanxi-Shaanxi_area [40] Wang, Y.Y., Guo, W.Y., Zhang, G.D., 1979.Application of Some Geochemical Indicators in Determining of Sedimentary Environment of the Funing Group (Paleogene), Jin-Hu Depression, Kiangsu Province.Journal of Tongji University, 7(2):51-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TJDZ197902005.htm [41] Yu, B.D., 1997.A New Cognition on the Stratigraphic Division of Changcheng Period in Gansu Province.Acta Geologica Gansu, 6(1):2-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSDZ701.000.htm [42] Yuan, H.J., Zhao, B., 2012.Geochemical and Palaeoclimatic Approaches to the Cretaceous Mudstones in the Ya'an-Mingshan Zone, Western Sichuan.Sedimentary Geology and Tethyan Geology, 32(1):78-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD201201012.htm [43] Zhang, F.L., 1994.Natural Gas Geology in Ordos Basin.Geological Publishing House, Beijing (in Chinese with English abstract). [44] Zhang, K., 1983.Discussion on Helan Mountain Rifting Grabens.The Papers of Petroleum Geology on West Margin of Ordos Basin.Inner Mongolia People's Publishing House, Hohhot (in Chinese). [45] Zhang, K., Deng, H.G., 1981.Early Late-Proterozoic Developmental Characteristics and Oil and Gas Prospects of Ordos Fault-Block.Petroleum Expoloration and Development, 8(5):18-26 (in Chinese). [46] Zhang, W., Mu, K., Cui, Z.J., et al., 2007.Record of the Environmental Change since Holocene in the Region of Gongwang Mountain, Yunnan Province.Earth and Environment, 35(4):343-350 (in Chinese with English abstract). doi: 10.1007/s10750-012-1124-y [47] Zhao, W.J., Wu, G.X., 1989.Stromatolites from Upper-Middle Proterozoic Erathem of Ningxia.Acta Paleontologica Sinica, 28(3):391-401 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GSWX198903009.htm [48] Zheng, R.C., Liu, M.Q., 1999.Study on Paleosalinity of Chang6 Oil Reservior Set in Ordos Basin.Oil & Gas Geology, 20(1):20-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT901.019.htm [49] 陈晋镳, 张鹏远, 高振家, 等, 1999.中国地层典:中元古界.北京:地质出版社. [50] 邸领军, 谢成广, 2008.对贺兰拗拉槽的质疑.岩性油气藏, 20(2): 16-21, 36. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200802004.htm [51] 付金华, 魏新善, 任军峰, 等, 2006.鄂尔多斯盆地天然气勘探形势与发展前景.石油学报, 27(6): 1-4, 13. doi: 10.7623/syxb200606001 [52] 高林志, 丁孝忠, 庞维华, 等, 2011.中国中-新元古代地层年表的修正——锆石U-Pb年龄对年代地层的制约.地层学杂志, 35(1): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201101002.htm [53] 公王斌, 2014. 华北克拉通西部古元古代末构造变形特征及意义(博士学位论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1014269106.htm [54] 郝奕玮, 骆满生, 徐增连, 等, 2014.华北陆块新元古代-中生代沉积盆地划分及其构造演化.地球科学, 39(8): 1230-1242. http://www.earth-science.net/WebPage/Article.aspx?id=2899 [55] 侯贵廷, 李江海, 钱祥麟, 等, 2000.华北克拉通中部中元古代岩墙群的古地磁学研究及其地质意义.中国科学(D辑), 30(6): 602-608. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200006005.htm [56] 华洪, 邱树玉, 肖丽君, 1993.中元古代长城纪遗迹化石在宁夏贺兰山的发现.西北大学学报, 23(5): 459-462. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ199305014.htm [57] 黄志强, 黄虎, 杜远生, 等, 2013.广西那坡裂陷盆地晚古生代硅质岩地球化学特征及其地质意义.地球科学, 38(2): 253-265. doi: 10.11867/j.issn.1001-8166.2013.02.0253 [58] 金巍, 2012. 贺兰山中段长城系黄旗口组震积岩研究(硕士学位论文). 武汉: 中国地质大学. http://d.wanfangdata.com.cn/Thesis/Y2189642 [59] 李明涛, 王成, 马学东, 等, 2014.贺兰山中段黄旗口组特征及与华北地区地层对比.宁夏工程技术, 13(3): 201-203. http://www.cnki.com.cn/Article/CJFDTOTAL-NXGJ201403004.htm [60] 林畅松, 杨起, 李思田, 1995.贺兰山坳拉槽盆地充填演化分析.北京:地质出版社. [61] 刘池阳, 赵红格, 宋立军, 等, 2015. 鄂尔多斯地区中新元古界盆地类型及其沉积演化. 西安: 中国石油天然气股份有限公司长庆油田分公司科研报告. [62] 刘刚, 周东升, 2007.微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例.石油实验地质, 29(3): 307-310, 314. doi: 10.11781/sysydz200703307 [63] 罗顺社, 汪凯明, 2010.元素地球化学特征在识别碳酸盐岩层序界面中的应用——以冀北坳陷中元古界高于庄组为例.中国地质, 37(2): 430-437. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002017.htm [64] 彭雪峰, 汪立今, 姜丽萍, 2012.准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义.矿物岩石地球化学通报, 31(2): 121-127, 151. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201202004.htm [65] 乔秀夫, 高林志, 张传恒, 2007.中朝板块中-新元古界年代地层柱与构造环境新思考.地质通报, 26(5): 503-509. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200705001.htm [66] 史晓颖, 王新强, 蒋干清, 等, 2008.贺兰山地区中元古代微生物席成因构造——远古时期微生物群活动的沉积标识.地质论评, 54(5): 577-586. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200805003.htm [67] 苏文博, 李怀坤, 徐莉, 等, 2012.华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICP-MS U-Pb年龄的直接约束.地质调查与研究, 35(2): 96-108. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201202004.htm [68] 孙建伟, 付永涛, 兰朝利, 2014.青岛八仙墩碎屑岩微量元素地球化学特征及沉积环境意义.海洋科学, 38(8): 75-81. doi: 10.11759/hykx20121121001 [69] 王同和, 1995.晋陕地区地质构造演化与油气聚集.华北地质矿产杂志, 10(3): 283-398. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDZ199503000.htm [70] 王益友, 郭文莹, 张国栋, 1979.几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用.同济大学学报, 7(2): 51-60. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ197902005.htm [71] 俞伯达, 1997.关于甘肃长城纪地层划分的新认识.甘肃地质学报, 6(1): 2-16. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ701.000.htm [72] 袁海军, 赵兵, 2012.川西雅安-名山地区白垩系泥岩的地球化学特征及古气候探讨.沉积与特提斯地质, 32(1): 78-83. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201201012.htm [73] 张福礼, 1994.鄂尔多斯盆地天然气地质.北京:地质出版社. [74] 张抗, 1983.论贺兰裂堑.鄂尔多斯盆地西缘地区石油地质论文集.呼和浩特:内蒙古人民出版社. [75] 张抗, 邓华盖, 1981.鄂尔多斯断块晚元古代早期发育特征和含油气远景.石油勘探与开发, 8(5): 18-26. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198105002.htm [76] 张威, 穆克华, 崔之久, 等, 2007.云南拱王山地区全新世以来的环境变化记录.地球与环境, 35(4): 343-350. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200704009.htm [77] 赵文杰, 武光孝, 1989.宁夏中上元古界的叠层石.古生物学报, 28(3): 391-401. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198903009.htm [78] 郑荣才, 柳梅青, 1999.鄂尔多斯盆地长6油层组古盐度研究.石油与天然气地质, 20(1): 20-25. doi: 10.11743/ogg19990105