Sr-Nd-Pb Isotopic Characteristics and Its Geological Significance of the Jiling Grantic Pluton in the Middle Longshou Mountains
-
摘要: 龙首山中段芨岭早古生代花岗岩体与碱交代型铀矿化关系密切,是龙首山花岗质岩浆活动带重要组成部分,但人们对芨岭岩体的成因、岩浆源区性质以及与铀成矿之间的关系还了解得不多.花岗岩体Sr-Nd-Pb同位素研究结果表明,不同期次花岗岩(早古生代第一次灰白色二长花岗岩、第二次肉红色二长花岗岩、晚古生代肉红色细粒(钾长)花岗岩)的(87Sr/86Sr)i值均介于大陆地壳范围内(0.706~0.718),同时有(87Sr/86Sr)i均值先升后降(0.707 12→0.710 00→0.707 89)、εNd(t)均值先降后增(-7.00→-8.09→-4.65) 的特征.不同期次花岗岩体tDM2均值分别为1 735.50 Ma、1 814.66 Ma、1 737.50 Ma,接近残留地壳年龄,表明岩体的主要物质来源为古元古代龙首山群地层,并有部分幔源组分或年轻地壳物质的加入.岩体的Pb同位素比值较高,灰白色二长花岗岩的206Pb/204Pb=18.328~19.240,207Pb/204Pb=15.549~15.619,208Pb/204Pb=38.390~39.075,μ=9.37~9.43(平均为9.40);肉红色二长花岗岩的206Pb/204Pb=30.209~43.529,207Pb/204Pb=16.097~25.076,208Pb/204Pb=39.107~39.420,μ=18.47~30.24(平均为24.355);肉红色细粒(钾长)花岗岩的206Pb/204Pb=19.071~19.767,207Pb/204Pb=15.577~25.438,208Pb/204Pb=38.682~42.593,μ=9.36~9.49(平均为9.41),显示为高放射性成因铅同位素特征,表明岩体的铅为混合来源但以壳源为主.Sr-Nd-Pb同位素对比研究表明,钠交代岩(矿石)的(87Sr/86Sr)i、εNd(t)与早古生代第二次侵入的肉红色斑状二长花岗岩极为相似,在(87Sr/86Sr)i-εNd(t)图解投影点也吻合,表明研究区碱交代型铀成矿主要与早古生代第二次侵入有关.其他期次花岗岩体同样具有高铀背景值,表明其可能也提供了一定的铀源.Abstract: The Early Paleozoic granitic pluton has a closely genetic relationship with the Alkali metasomatism type uranium mineralization in the middle Longshou Moutains area, which is an important activity zone of Longshoushan granitic magma. However, people do not know more about the cause of Jiling rock mass, properties of magma source area and the relationship between Jiling rock mass and uranium mineralization. The Sr-Nd-Pb isotopic composition characteristics of granitic pluton show that the initial Sr isotope ratios (87Sr/86Sr)i of granite in different periods (with first intrusion of gray monzonitic granites in the Early Paleozoic, the pink monzonitic granites of the second intrusion, and pink fine-grained (potassium) granites of the intrusion in Late Paleozoic) fall in the range of that of the continental crust (from 0.706 to 0.718); at the same time, the average initial Sr isotope ratios (87Sr/86Sr)i has a trend of falling after rising (0.707 12→0.710 00→0.707 89), and the average of εNd(t) shows the trend of rising after falling (-7.00→-8.09→-4.65). tDM2 average of granites in different periods is 1 735.50 Ma, 1 814.66 Ma and 1 737.50 Ma respectively, which is very close to the age of residual crust, indicating that the main material source of the granitic pluton should be the group strata of paleoproterozoic Longshou mountains, with the addition of mantle or young crustal materials. Its Pb Isotope ratios are high: 206Pb/204Pb range from 18.328 to 19.240, 207Pb/204Pb range from 15.549 to 15.619, 208Pb/204Pb range from 38.390 to 39.075, μ values range from 9.37 to 9.43, with an average of 9.40, 206Pb/204Pb range from 30.209 to 43.529, 207Pb/204Pb range from 16.097 to 25.076, 208Pb/204Pb range from 39.107 to 39.42, μ values range from 18.47 to 30.24, with an average of 9.40;206Pb/204Pb range from 19.071 to 19.767, 207Pb/204Pb range from 15.577 to 25.438, 208Pb/204Pb range from 38.682 to 42.593, μ values range from 9.36 to 9.49, with an average of 9.41. All samples show high radioactive Pb isotopic characteristics with a mixed source, but the crust is the main source. The comparison of Sr-Nd-Pb Isotope shows that the initial Sr isotope ratios (87Sr/86Sr)i and εNd(t) of sodium metasomatic rock (ore) are very similar to those of pink monzonitic granites of the second intrusion in the Early Paleozoic, and the subpoint of (87Sr/86Sr)i-εNd(t) diagram is also consistent, which indicates that alkali metasomatism type uranium mineralization of the study area is mainly related to the second invasion in Early Paleozoic. The high uranium background values of granitic pluton in other periods show that it may also provide a source of uranium.
-
Key words:
- Early Paleozoic /
- Jiling pluton /
- Sr-Nd-Pb isotope /
- magma sources /
- Uranium metallogenetism /
- Longshou Moutains /
- geochemistry
-
图 1 龙首山中段大地构造位置(a)及芨岭岩体地质简图(b)
1.新近系;2.侏罗系;3.寒武系中统香山群;4.震旦系孩母山群上亚群;5.震旦系孩母山群下亚群;6.墩子沟群上亚群;7.墩子沟群下亚群;8.龙首山群踏马子沟组;9.龙首山群麒麟沟组;10.早古生代第三次细粒花岗岩;11.早古生代第一次中粗粒二长花岗岩;12.早古生代一次碱性杂岩;13.早古生代一次花岗闪长岩;14.早古生代花岗闪长岩;15.早古生代混合花岗岩;16.早古生代二次斑状花岗岩;17.早古生代闪长岩;18.早古生代基性-超基性岩;19.辉绿岩;20.酸性岩脉;21.中性岩脉;22.铀矿床;23.采样位置;图a据傅成铭等(2012)
Fig. 1. Tectonic position (a) and schenmatic geological sketch (b) of Jiling pluton in the middle Longshou Moutains
图 3 龙首山中段芨岭花岗岩体(87Sr/86Sr)i-εNd(t)关系
DM.亏损地幔,据郭志军(2014)
Fig. 3. (87Sr/86Sr)i-εNd(t) relations of Jiling granitic pluton in the middle Longshou Moutains
图 4 龙首山中段芨岭花岗岩体εNd(t)-t关系
古-中元古代地壳和大古宙地壳的界线隋振民和徐学纯(2010);底图据郭志军等(2014)
Fig. 4. εNd(t)-t relations of Jiling granitic pluton in the middle Longshou Moutains
图 5 龙首山中段芨岭花岗岩体(87Sr/86Sr)i-t关系
M.幔源型花岗岩类源区;MC.幔壳混源型或同熔型花岗岩类源区;C.壳源型或改造型花岗岩类源区:(Ⅰ).下部大陆壳;(Ⅱ).上部大陆壳;红色虚线为玄武岩源区数值范围(0.702~0.706);底图据吴利仁(1985)
Fig. 5. (87Sr/86Sr)i-t relations of Jiling granitic pluton in the middle Longshou Moutains
图 6 龙首山中段芨岭花岗岩体Pb同位素组成
DMM.亏损地幔端元;EM(Ⅰ、Ⅱ).富集地幔端元,据Zindler and Hart(1986); Geochron.零等时线;NHRL.北半球参考线据Hart(1984);中国大陆地幔、下地壳和上地壳数据据李龙等(2001);底图据张承帅等(2012)
Fig. 6. Pb isotopic diagrams of Jiling granitic pluton in the middle Longshou Moutains
图 7 龙首山中段芨岭花岗岩体Pb同位素构造模式
A.地幔;B.造山带;C.上地壳;D.下地壳;底图据Zarnnan and Doe(1981)
Fig. 7. Pb isotopic tectonic model diagrams of Jiling granitic pluton in the middle Longshou Moutains
表 1 Nd-Sr-Pb同位素测试样品采集位置与岩性
Table 1. Position and lithology for Nd-Sr-Pb isotope test samples
序号 样品号 北纬 东经 岩(矿)石名称 1 LSS12-01 38°33′16.37″ 101°47′10.53″ 斑状黑云母花岗闪长岩 2 LSS12-02 38°33′56.33″ 101°48′0.87″ 灰白色中细粒二长花岗岩 3 LSS12-03 38°33′57.15″ 101°47′59.40″ 灰白色中粗粒二长花岗岩 4 LSS12-04 38°33′59.19″ 101°47′56.78″ 肉红色中粗粒似斑状二长花岗岩 5 LSS12-05 38°33′2.12″ 101°47′56.84″ 肉红色细粒花岗岩 6 LSS12-12 38°33′59.87″ 101°47′53.29″ 肉红色中粗粒似斑状二长花岗岩 7 LSS12-15 38°33′59.87″ 101°47′53.29″ 钠交代岩(矿石) 8 LSS12-16 38°33′59.87″ 101°47′53.29″ 钠交代岩(矿石) 9 LSS12-18 38°38′6.5″ 101°39′47.3″ 钠交代岩(矿石) 10 LSS12-19 38°38′6.5″ 101°39′47.3″ 钠交代岩(矿石) 11 LSS12-20 38°31′28.45″ 101°54′9.43″ 肉红色中粒二长花岗岩 12 LSS13-26 38°34′0.84″ 101°47′53.88″ 肉红色细粒钾长花岗岩 13 LSS13-33 38°34′0.48″ 101°47′56.4″ 肉红色细粒花岗岩 14 LSS13-36 38°34′0.84″ 101°47′58.92″ 肉红色细粒钾长花岗岩 15 LSS13-41 38°34′0.89″ 101°47′58.30″ 肉红色细粒钾长花岗岩 表 2 龙首山中段芨岭岩体花岗岩类Sr、Nd同位素组成
Table 2. Sr、Nd isotopic compositions of granitoid of Jiling pluton in the middle Longshou Moutains
样品号 年龄
(Ma)Rb
(10-6)Sr
(10-6)87Rb/86Sr 87Sr/86Sr
(2σ)(87Sr/86Sr)i Sm
(10-6)Nd
(10-6)147Sm/144Nd 143Nd/144Nd
(2σ)(143Nd/144Nd)i εNd(t) fSm/Nd tDM2
(Ma)u(%) LSS12-02 425.2 45.90 686.0 0.193 6 0.707 577±0.000 015 0.706 40 16.00 88.0 0.109 9 0.512 223±0.000 008 0.511 92 -3.38 -0.44 144 1 12.78 LSS12-03 428.6 111.00 458.0 0.701 4 0.712 109±0.000 011 0.707 83 7.00 52.2 0.080 7 0.511 769±0.000 008 0.511 54 -10.62 -0.59 203 0 -88.62 LSS12-01 416.7 33.90 599.0 0.163 8 0.707 242±0.000 013 0.706 27 14.80 75.5 0.118 5 0.512 211±0.000 009 0.511 89 -4.16 -0.40 149 8 20.66 LSS12-04 416.0 13.40 211.0 0.183 8 0.709 159±0.000 009 0.708 07 8.09 52.8 0.092 6 0.511 970±0.000 006 0.511 72 -7.50 -0.53 176 8 -21.94 LSS12-12 416.0 6.24 238.0 0.075 9 0.709 780±0.000 007 0.709 33 5.81 40.6 0.086 5 0.511 924±0.000 006 0.511 69 -8.13 -0.56 181 5 -35.74 LSS12-20 416.6 5.96 191.0 0.090 3 0.713 406±0.000 013 0.712 87 17.10 83.1 0.124 4 0.511 998±0.000 007 0.511 66 -8.64 -0.37 186 1 -116.39 LSS12-05 401.3 207.00 32.9 18.319 6 0.805 374±0.000 023 0.700 68 11.90 58.3 0.123 4 0.511 961±0.000 009 0.511 64 -9.45 -0.37 191 4 -2 128.81 LSS13-26 401.3 48.60 123.0 1.143 5 0.713 135±0.000 009 0.706 60 8.37 64.7 0.078 2 0.512 167±0.000 008 0.511 96 -3.13 -0.60 140 0 -108.90 LSS13-33 401.3 0.90 42.0 0.062 2 0.709 872±0.000 009 0.709 52 7.50 77.3 0.058 6 0.512 014±0.000 008 0.511 86 -5.10 -0.70 156 1 -36.78 LSS13-36 401.3 2.81 95.4 0.085 2 0.708 035±0.000 010 0.707 55 16.30 114.0 0.086 4 0.512 302±0.000 009 0.512 08 -0.90 -0.56 122 0 3.84 LSS13-41 401.3 93.40 119.0 2.271 4 0.718 424±0.000 010 0.705 44 15.80 117.0 0.081 6 0.512 347±0.000 016 0.512 13 0.21 -0.58 112 9 -225.70 LSS12-15 398.0 3.33 379.0 0.025 4 0.709 924±0.000 011 0.709 78 6.34 38.1 0.100 6 0.511 995±0.000 009 0.511 73 -7.66 -0.49 176 6 -37.70 LSS12-16 398.0 6.23 426.0 0.042 3 0.709 854±0.000 011 0.709 61 4.98 28.8 0.104 5 0.511 975±0.000 006 0.511 70 -8.25 -0.47 181 4 -36.16 LSS12-18 398.0 2.26 233.0 0.028 1 0.710 503±0.000 012 0.710 34 6.62 35.9 0.111 5 0.511 982±0.000 006 0.511 69 -8.48 -0.43 183 1 -50.49 LSS12-19 398.0 4.98 710.0 0.020 3 0.710 552±0.000 020 0.710 44 40.00 205.0 0.123 8 0.511 956±0.000 007 0.511 63 -9.61 -0.37 192 4 -51.57 注:计算所需的参数:λ(Sr)=1.39×10-11年-1,λ(Nd)=6.54×10-12年-1,87Sr/86Sr和143Nd/144Nd所示的2σ误差为小数点后的最后位数,为减少147Sm/144Nd变化对Nd模式年龄计算产生的影响,表中所列tDM2年龄统一采用二阶段模式计算,计算公式如下:tDM2=(1/λSm)ln(1+A),A={(143Nd/144Nd)m-(143Nd/144Nd)DM-[(147Sm/144Nd)m-(147Sm/144Nd)c](eλt-1)}/[(147Sm/144Nd)c-(147Sm/144Nd)DM],式中:下角标m代表样品现今测定值,下角标DM代表亏损地幔值,(147Sm/144Nd)DM=0.213 6.(143Nd/144Nd)DM=0.513 151(Miller and O’Nions, 1985),下角标CHUR代表球粒陨石值,(147Sm/144Nd)CHUR=0.196 0;(143Nd/144Nd)CHUR=0.512 630( Bouvier et al., 2008 ;刘亮等,2013),u.花岗岩中幔源成分含量;下角标c代表大陆壳平均值,(147Sm/144Nd)c=0.118(Jahn and Condie, 1995).表 3 龙首山中段芨岭岩体花岗岩类Pb同位素组成
Table 3. Pb isotopic compositions of granitoid of Jiling pluton in the middle Longshou Moutains
样品号 年龄
(Ma)Th
(10-6)U
(10-6)Pb
(10-6)208Pb/204Pb
(2σ)207Pb/204Pb
(2σ)206Pb/204Pb
(2σ)(208Pb/204Pb)i (207Pb/204Pb)i (206Pb/204Pb)i 206Pb/207Pb μ ω Th/U LSS12-02 425.2 21.50 7.80 23.0 39.075±0.006 15.619±0.002 19.240±0.003 37.585 8 15.523 8 17.519 9 1.231 8 9.43 34.93 2.76 LSS12-03 428.6 21.50 3.49 28.5 38.390±0.003 15.549±0.001 18.328±0.001 37.205 5 15.515 1 17.715 7 1.178 7 9.37 36.29 6.16 LSS12-01 416.7 5.59 1.99 15.6 38.400±0.006 15.571±0.002 18.359±0.002 37.852 7 15.536 8 17.738 9 1.179 1 9.41 36.37 2.81 LSS12-04 416.0 47.90 44.30 47.5 39.420±0.004 16.977±0.002 43.529±0.004 37.303 6 16.633 6 37.300 1 2.564 0 30.24 32.93 1.08 LSS12-12 416.0 36.40 37.80 48.9 39.107±0.002 16.097±0.001 30.209±0.002 37.779 8 15.855 6 25.823 7 1.876 7 18.47 31.89 0.96 LSS12-20 416.6 59.10 975.00 192.0 39.375±0.007 25.076±0.004 191.806±0.030 37.725 9 20.302 2 105.226 3 7.649 0 161.24 32.78 0.06 LSS12-05 401.3 42.60 11.30 54.1 38.768±0.003 15.577±0.001 19.071±0.001 37.593 0 15.522 7 18.079 9 1.224 3 9.36 34.24 3.77 LSS13-26 401.3 27.70 9.47 30.3 39.062±0.004 15.587±0.001 19.302±0.002 37.688 0 15.505 2 17.808 3 1.238 3 9.37 34.30 2.93 LSS13-33 401.3 68.00 70.30 74.2 42.593±0.009 25.438±0.005 201.335±0.042 37.624 4 24.543 5 185.001 6 7.914 7 169.66 43.44 0.97 LSS13-36 401.3 43.50 27.60 78.1 38.682±0.003 15.637±0.001 19.543±0.002 37.845 9 15.544 6 17.856 1 1.249 8 9.45 32.30 1.58 LSS13-41 401.3 52.30 19.80 48.6 39.308±0.006 15.664±0.002 19.767±0.003 37.673 6 15.556 3 17.799 5 1.261 9 9.49 33.72 2.64 LSS12-15 398.0 69.50 232.00 103.0 40.836±0.004 24.091±0.002 167.987±0.016 37.697 3 22.269 5 134.676 4 6.973 0 140.20 37.62 0.30 LSS12-16 398.0 39.20 108.00 73.7 40.610±0.006 26.197±0.004 217.374±0.032 37.593 6 24.752 2 190.952 8 8.297 7 183.83 36.87 0.36 LSS12-18 398.0 88.80 1965.00 79.9 54.702±0.010 24.371±0.005 214.394±0.037 48.193 9 -0.665 4 -243.461 4 8.797 1 181.20 83.54 0.05 LSS12-19 398.0 >5 000 >5 000 397.0 259.995±0.029 65.515±0.007 942.629±0.099 -57.868 3 10.255 4 -67.937 0 14.388 0 824.61 763.38 - 注:计算所需的参数λ(238U)=1.551 25×10-10年-1,λ(235U)=9.848 5×10-10年-1,λ(232Th)=4.947 5×10-11年-1,μ为现代测定的N(238U)/N(204Pb);ω为现代测定的N(232Th)/N(204Pb)(周振华等,2011);(206Pb/204Pb)i=(206Pb/204Pb)实测-μ(eλt-1),(207Pb/204Pb)i=(207Pb/204Pb)实测-μ/137.88(eλt-1),(208Pb/204Pb)i=(208Pb/204Pb)实测-ω(eλt-1);t.侵入岩结晶年龄或成矿年龄. -
[1] Barbarin, B., 1999.Genesis of the Two Main Types of Peraluminous Granitoids.Geology, 24(4):295.doi:10.1130/0091-7613(1996)024<0295:gottmt>2.3.co;2 [2] Bosch, D., Maury, R.C., Azzouzi, M.E., et al., 2014.Lithospheric Origin for Neogene-Quaternary Middle Atlas Lavas (Morocco):Clues from Trace Elements and Sr-Nd-Pb-Hf Isotopes.Lithos, 205:247-265.doi: 10.1016/j.lithos.2014.07.009 [3] Bouvier, A., Vervoort, J.D., Patchett P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57.doi: 10.1016/j.epsl.2008.06.010 [4] Bureau of Geology and Mineral Resources of Gansu Province, 1989.Regional Geological Book of Gansu Province, Geological Publishing Press, Beijing (in Chinese). [5] Canals, A., Cardellach, E., 1997.Ore Lead and Sulphur Isotope Pattern from the Low-Temperature Veins of the Catalonian Coastal Ranges (NE Spain).Mineralium Deposita, 32(3):243-249.doi: 10.1007/s001260050089 [6] Chai, B.M., Tian, Z.Y., Yang, R.M., et al., 1986.The Granitic Rock Characteristics and Its Relationship with Uranium Mineralization in the Longshou Mountain (inside Information).No.203 Research Institute of Nuclear Industry, Xianyang (in Chinese). [7] Chen, D.G., Zhi, X.C., Yang, H.T., 2009.Geochemistry, Press of University of Science and Technology of China, Hefei (in Chinese). [8] Chen, N.S., Wang, X.Y., Zhang, H.F., et al., 2007.Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constrinis on Basement Nature and Tectonic Affinity.Earth Science, 32(1):7-22 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=1657 [9] Fu, C.M., Chen, Y.J., Xu, G.Z., et.al., 2012.The Analysis of Uranium Resources Potential Evaluation in the Malianjing-Yushigou of the Longshou Moutain, Gansu Province.No.203 Research Institute of Nuclear Industry, Xianyang (in Chinese). [10] Guo, Z.J., Li, J.W., Huang, G.J., et al., 2014.Sr-Nd-Pb-Hf Isotopic Characteristics of Ore-Bearing Granites in the Honghuaerji Scheelite Deposit, Inner Mongolia.Geology in China, 41(4):1226-1241 (in Chinese with English abstract). https://www.researchgate.net/publication/286215744_Sr-Nd-Pb-Hf_isotopic_characteristics_of_ore-bearing_granites_in_the_Honghuaerji_scheelite_deposit_Inner_Mongolia [11] Hart, S.R., 1984.A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle.Nature, 309(5971):753-757.doi: 10.1038/309753a0 [12] Huang, J.B., Huang, S.J., 2005.Regional Metallogenic Characteristics of China's Uranium Resources.Uranium Geology, 21(3):129-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200503001.htm [13] Jahn, B.M., Condie, K.C., 1995.Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites.Geochimica et Cosmochimica Acta, 59(11):2239-2258.doi: 10.1016/0016-7037(95)00103-7 [14] Jahn, B.M., Wu, F.Y., Hong, D.W., 2000.Important Crustal Growth in the Phanerozoic:Isotopic Evidence of Granitoids from East-Central Asia.Journal of Earth System Science, 109(1):5-20.doi: 10.1007/bf02719146 [15] Jia, X.H., Wang, X.D., Yang, W.Q., et al., 2014.The Early Jurassic A-Type Granites in Northern Guangxi, China:Petrogenesis and Implications.Earth Science, 39(1):21-36 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2826 [16] Jiang, S.Y., Yang, T., Li, L., et al., 2006.Lead and Sulfur Isotopic Compositions of Sulfides from the TAG Hydrothermal Field, Mid-Atlantic Ridge.Acta Petrologica Sinica, 22(10):2597-2602 (in Chinese with English abstract). http://www.oalib.com/paper/1471283 [17] Jing, H.X., Sun, D.Y., Gou, J., et al., 2015.Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block.Earth Science, 40(6):982-994 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=3099 [18] Kaygusuz, A., Arslan, M., Siebel, W., et al., 2014.LA-ICP MS Zircon Dating, Whole-Rock and Sr-Nd-Pb-O Isotope Geochemistry of the Camiboĝazl Pluton, Eastern Pontides, NE Turkey: Implications for Lithospheric Mantle and Lower Crustal Sources in Arc-Related I-Type Magmatism.Lithos, 192-195: 271-290.doi: 10.1016/j.lithos.2014.02.014 [19] Li, L., Sun, W.Z., Meng, X.F., et al., 2013.Geochemical and Sr-Nd-Pb Isotopic Characteristics of the Granitoids of Xiaoshan Mountain Area in the Southern Margin of North China Block and Its Geological Significance.Acta Petrologica Sinica, 29(8) :2635-2652 (in Chinese with English abstract). https://www.researchgate.net/publication/293635612_Geochemical_and_Sr-Nd-Pb_isotopic_characteristics_of_the_granitoids_of_Xiaoshan_Mountain_area_on_the_southern_margin_of_North_China_Block_and_its_geological_significance [20] Li, L., Zheng, Y.F., Zhou, J.B., 2001.Dynamis Model for Pb Isotope Evolution in the Continental Crust of China.Acta Petrologica Sinica, 17(1):61-68 (in Chinese with English abstract). https://www.researchgate.net/publication/282763047_Dynamic_model_for_Pb_isotope_evolution_in_the_continental_crust_of_China [21] Li, L.L., Zhou, H.W., Chen, Z.H., et al., 2011.Geochemical Characteristics of Granites in Taimushan Area, Fujian Provinceand their Geological Significance.Acta petrologica et Mineralogical, 30(4):593-609 (in Chinese with English abstract). https://www.researchgate.net/publication/287779767_Geochemistry_and_zircon_SHRIMP_U-Pb_dating_of_Mo-bearing_granite_bodies_in_Shuanghuang_area_southern_Zhejiang [22] Li, W., Bi, S.J., Yang, Z., et al., 2015.Zircon U-Pb Age and Hf Isotope Characterization of Sheshan Granodiorite in Southern Edge of Dayaoshan, Guidong:Constraints on Caledonian Diagenesis and Mineralization.Earth Science, 40(1):17-33 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=3016 [23] Li, W.Y., 1991.The Sinian in the Longshou Mountains Areas.Northwest Geology, 12(2):1-5 (in Chinese). https://www.researchgate.net/publication/285993584_Geologic_structure_and_tectonic_evolution_of_Leshan-Longnvsi_paleo-uplift_in_Sichuan_Basin_China [24] Li, Z.Y., 1987.Geochemistry of Jiling Granite and Uranium Mineralization.Bulletin of Mineralogy, Petrology and Geochemistry, 4:1-3 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200103005.htm [25] Ling, H.F., Shen, W.Z., Sun, T., et al., 2006.Genesis and Source Characteristics of 22 Yanshanian Granites in Guangdong Province:Study of Element and Nd-Sr Isotopes.Acta Petrologica Sinica, 22(11):2687-2703 (in Chinese with English abstract). https://www.researchgate.net/publication/258419256_Genesis_and_source_characteristics_of_22_Yanshanian_granites_in_Guangdong_province_Study_of_element_and_Nd-Sr_isotopes [26] Ling, H.F., Xu, S.J., Shen, W.Z., et al., 1998.Nd、Sr、Pb and O Isotopic Compositions of Late Proterozoic Gezong-and Donggu-Granites in the West Margin of Yangtze Plate and Comparison with Other Coeval Granitoids.Acta Petrologica Sinica, 14(3):269-278 (in Chinese with English abstract). http://www.oalib.com/paper/1471774 [27] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2003.Pb-Sr-Nd-O Isotope Characteristics of Granitoids in East Kunlun Orogenic Belt.Acta Geoscientica Sinica, 24(6):584-588 (in Chinese with English abstract). https://www.researchgate.net/publication/285328478_Pb-Sr-Nd-O_isotope_characteristics_of_granitoids_in_East_Kunlun_orogenic_belt [28] Liu, L., Qiu, J.S., Yang, Z.L., 2013.Petrogenesis of the Maoliling Pluton in Linhai County, Zhejiang Province:Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 29(12):4069-4086 (in Chinese with English abstract). https://www.researchgate.net/publication/287298581_Petrogenesis_of_the_Maoliling_pluton_in_Linhai_County_Zhejiang_Province_Constraints_from_geochronology_geochemistry_and_Sr-Nd-Hf_isotopes [29] Liu, S., Hu, R.Z., Feng, C.X., et al., 2013.U-Pb Zircon Age, Geochemical, and Sr-Nd-Pb Isotopic Constraints on the Age and Origin of Mafic Dykes from Eastern Shandong Province, Eastern China.Acta Geologica Sinica—English Edition, 87(4):1045-1057.doi: 10.1111/1755-6724.12109 [30] Luo, H.L., Wu, T.R., Zhao, L., 2010.Geochemistry and Tectonic Implications of the Permian Ⅰ-Type Granitoids from Urad Zhongqi, Inner Monglia.Acta Scientiarum Naturalium Universitatis Pekinensis, 46(5):805-820 (in Chinese with English abstract). https://www.researchgate.net/publication/249500791_Permian_High_Ba-Sr_Granitoids_Geochemistry_Age_and_Tectonic_Implications_of_Erlangshan_Pluton_Urad_Zhongqi_Inner_Mongolia [31] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55 (in Chinese with English abstract). https://www.researchgate.net/publication/307904169_Mesozoic_large_scale_mineralization_and_multiple_lithospheric_extension_in_South_China [32] Miller, R.G., O'Nions, R.K., 1985.Source of Precambrian Chemical and Clastic Sediments.Nature, 314(6009):325-330.doi: 10.1038/314325a0 [33] Peng, Y.S., Sun, Y.M., Tian, Z.Y., et al., 1983.The Study of Uranium Metallogenic Belt in Longshou Mountains, Gansu Province.No.203 Research Institute of Nuclear Industry, Xianyang (in Chinese). [34] Qin, H.P., 2012.Petrology of Early Paleozoic Granites and Their Relation to Tectonic Evolution of Orogen in the North Qinlian Orogenic Belt (Dissertation).Chinese Academy of Geological Sciences, Beijing, 93-111 (in Chinese with English abstract). https://www.researchgate.net/publication/306200430_Geochronology_geochemistry_and_tectonic_significances_of_the_Hongyuntan_granitoids_in_the_Qoltag_area_Eastern_Tianshan [35] Rong, J.S., Han, Z.H., Xia, Y.L., 1984.Granitic Pluton Type of Mineralization Characteristics of Uranium Deposits and Mineralization in China.Radioactive Geology, 1:1-11 (in Chinese). [36] Shang, P.Q., Hu, R.Z., Bi, X.W., et al., 2012.Sr, Nd and Pb Isotopic Geochemistry of Gangue Minerals in the Xiazhuang Uranium Orefield, Northern Guangdong Province.China in Geology, 39(6):1847-1857 (in Chinese with English abstract). https://www.researchgate.net/publication/281763832_Sr_Nd_and_Pb_isotopic_geochemistry_of_gangue_minerals_in_the_xiazhuang_uranium_orefield_northern_guangdong_province [37] Shao, J.A., Mu, B.L., Zhu, H.Z., et al., 2010.Material Source and Tectonic Settings of the Mesozoic Mineralization of the DaHinggan Mts.Acta Petrologica Sinica, 26(3):649-656 (in Chinese with English abstract). https://www.researchgate.net/publication/279768472_Material_source_and_tectonic_settings_of_the_Mesozoic_mineralization_of_the_Da_Hinggan_Mts [38] Shen, W.Z., 1997.Stable Isotope Geology Tutorial.Atomic Energy Press, Beijing (in Chinese). [39] Sui, Z.M., Xu, X.C., 2010.Sr-Nd Isotopic Characteristics of Jurassic Granites in Northeastern Da Hinggan Mountains and Their Geological Implications.Geology in China, 37(1):48-56 (in Chinese with English abstract). https://www.researchgate.net/publication/288293052_Sr-Nd_isotopic_characteristics_of_Jurassic_granites_in_northeastern_da_Hinggan_Mountains_and_their_geological_implications [40] Sun, G., Zhao, Z.H., 1995.Uranium Geology in Northwest China (Volume 1-Ⅱ).Bureau of Nuclear Geology of Shaanxi Province, Xi'an (in Chinese). [41] Tang, Z.L., Bai, Y.L., 1999.Geotectonic Framework and Metallogenic System in the Southwest Margin of North China Paleocontinent.Earth Science Frontiers, 6(2):271-284 (in Chinese with English abstract). https://www.researchgate.net/publication/277964075_Structural_Properties_of_the_Longshoushan_Block_Constraint_from_LA-ICP-MS_Zircon_U-Pb_Dating [42] Tang, Z.L., Bai, Y.L., Xu, Z.H., et al., 2002.Metallogenic System and Metallogenic Tectonic Dynamics in Southwest Margin of North China Continental (Longshou-Qilian Mountain), Geological Publishing Press, Beijing, 168-178 (in Chinese). [43] Tu, J.H., 1985.More Discussion About Some Problems on the Genesis of the Hongshiquan Uranium Deposit.Uranium Geology, 1(6):53-58 (in Chinese). https://www.researchgate.net/publication/284761415_The_relationship_between_uranium_metallogenesis_and_crustal_extension_during_the_Cretaceous-Tertiary_in_South_China [44] Wang, A.D., Liu, Y.C., Santosh, M., et al., 2013.Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex: Implications for Neoarchean Active Continental Margin along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids.Geoscience Frontiers, 4(1):57-71.doi: 10.1016/j.gsf.2012.05.001 [45] Wang, M.Q., Tu, H.J., Wu, S.M., et al., 1982.The Host Rock and Mineralization Characteristics in Hongshiquan Uranium Deposits.Uranium Geology, (5):390-396 (in Chinese). https://www.iaea.org/OurWork/ST/NE/NEFW/documents/RawMaterials/TM%20JOR/12%20IAEA%20Technical%20Meeting%20Amman%20Jordan%202008%20-Nie.pdf [46] Wang, Q., 2014.Study on Metamorphism of Longshoushan Baijiazuizi Group (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). [47] Wei, Q.Q., Hao, L.B., Lu, J.L., et al., 2013.LA-MC-ICP-MS Zircon U-Pb Dating of Hexipu Granite and Its Geological Implications.Bulletin of Mineralogy.Petrology and Geochemistry, 32(6):729-735 (in Chinese with English abstract). [48] Wu, F.Y., Jiang, B.M., Lin, Q., 1997.Post-Tectonic Granitic Isotope Characteristics and Crustal Growth's Significance of Northern China Orogenic Belt.Chinese Science Bulletin, 42(20):2188-2192 (in Chinese). https://www.researchgate.net/publication/283846924_Chronology_geochemistry_hafnium_isotope_characteristics_and_tectonic_implications_of_Muztag-Kongur_Indosinian_intrusive_rocks [49] Wu, L.R., 1985.Mesozic Granitoids in East China.Acta Petrologica Sinica, 1(1):1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB198501001.htm [50] Xia, M.Z., Xia, Z.D., Lu, R.H., et al., 2011.Attribution of Longshoushan Terrane:Evidence from the Crustal Structures and Mesoproterozoic-Neoproterozoic Strata.Journal of Earth Sciences and Environment, 33(2):132-137 (in Chinese with English abstract). https://www.researchgate.net/publication/226834771_Palaeoproterozoic_Khondalite_Belt_in_the_western_North_China_Craton_New_evidence_from_SHRIMP_dating_and_Hf_isotope_composition_of_zircons_from_metamorphic_rocks_in_the_Bayan_Ul-Helan_Mountains_area [51] Xiao, C.D., Zhang, Z.L., Zhao, L.Q., 2004.Nd, Sr and Pb Isotope Geochemistry of Yanshanian Granitoids in Eastern Inner Mongolia and their Origins.Geology in China, 31(1):57-64 (in Chinese with English abstract). https://www.researchgate.net/post/How_to_distinguish_serpentinites_in_ocean_and_mantle_wedge [52] Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., 2002.Granite Research Thinking and Methods.Geological publishing Press, Beijing (in Chinese). [53] Xing, F.M., 1987.On the Application of Initial Strontium Isotope Rations in Division of Granitic Types.Acta Petrologica Sinica, 2(5):75-80 (in Chinese with English abstract). http://www.oalib.com/paper/1470299 [54] Yang, Z., Liu, R., Wang, X.Y., et al., 2014.Petrogenesis and Tectonic Significance of Late Yanshanian Granites in Yunkai Area, Southeast China:Evidence from Zircon U-Pb Ages and Hf Isotopes.Earth Science, 39(9):1258-1276 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2939 [55] Yang, Z.M., Hou, Z.Q., Jiang, Y.F., et al., 2011.Sr-Nd-Pb and Zircon Hf Isotopic Constraints on Petrogenesis of the Late Jurassic Granitic Porphyry at Qulong, Tibet.Acta Petrologica Sinica, 27(7):2003-2010 (in Chinese with English abstract). http://d.g.wanfangdata.com.cn/Periodical_ysxb98201107009.aspx [56] Zarnnan, R.E., Doe, B.R., 1981.Plumbotectonics-the Model.Tectonophysics, 75:135-162. doi: 10.1016/0040-1951(81)90213-4 [57] Zhang, B.J., Hu, S.K., 2010.Evaluation of Uranium Deposit in China.China Nuclear Geology, Beijing, 179-225 (in Chinese). doi: 10.1007%2Fs10967-016-5154-1.pdf [58] Zhang, C., Jin, J.F., 1987.The Form of Uranium Migration and the Depositional Mechanism of Uranium of the Hongshiquan Deposit.Northwest Geoscience, (5):65-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199004003.htm [59] Zhang, C.S., Su, H.M., Yu, M., et al., 2012.Zircon U-Pb Age and Nd-Sr-Pb Isotopic Characteristics of Dayang-Juzhou Granite in Longyan, Fujian Province and its Geological Significance.Acta Petrologica Sinica, 28(1):225-242 (in Chinese with English abstract). https://www.researchgate.net/publication/281224837_Zircon_U-Pb_age_and_Nd-Sr-Pb_isotopic_characteristics_of_Dayang-Juzhou_granite_in_Longyan_Fujian_Province_and_its_geological_significance [60] Zhang, H.F., Jin, L.L., Zhang.L., et al., 2005.Limitations for Properties and Tectonic Properties of Basement in with Granitiods Geochemistry and Pb-Sr-Nd Isotopic Composition.Science in China (Series D), 35(10):914-926 (in Chinese). [61] Zhang, K.M., 1989.Discussions on the Uraniferous Possibility of Differnt Granite Rock Body in Longshoushan Area.Journal of East China Geological Institute, 12(2):63-67 (in Chinese with English abstract). doi: 10.1007/s00254-002-0740-7 [62] Zhou, X.M., et al., 2003.My Thinking about Granite Geneses of South China.Geological Journal of China Universities, 9(4):556-565 (in Chinese with English abstract). https://www.researchgate.net/publication/305387399_My_thinking_about_granite_geneses_of_South_China [63] Zhou, Z.H., Lü, L.S., Wang, A.S., et al., 2011.Deep Source Characteristics and Tectonic-Magmatic Evolution of Granites in the Huanggang Sn-Fe Deposit, Inner Mongolia:Constraint from Sr-Nd-Pb-Hf Multiple Isotopes.Geological Science and Technology Information, 30(1):1-14 (in Chinese with English abstract). https://www.researchgate.net/publication/257331584_The_Early_Cretaceous_Weilasituo_Zn-Cu-Ag_vein_deposit_in_the_southern_Great_Xing'an_Range_northeast_China_Fluid_inclusions_H_O_S_Pb_isotope_geochemistry_and_genetic_implications [64] Zhu, Y., Zhou, H.W., Li, S.L., et al., 2015.Late Paleoproterozoic Crustal Anatexis and Its Tectonic Significance Evidence from Petrology and Zircon U-Pb Ages of Migmatite from Xiaoqinling Area, West Henan.Earth Science, 40(5):824-839 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=3092 [65] Zindler, A., Hart, S., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14(1):493-571.doi: 10.1146/annurev.ea.14.050186.002425 [66] 甘肃省地矿局, 1989.甘肃省区域地质志.北京:地质出版社, 89-138. [67] 柴宝民, 田志永, 杨瑞木, 等, 1986. 龙首山地区花岗岩类特征及其与铀矿化的关系. 咸阳: 核工业203研究所. [68] 陈道公, 支霞臣, 杨海涛, 2009.地球化学.合肥:中国科学技术大学出版社. [69] 陈能松, 王新宇, 张宏飞, 等, 2007, 柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成:基底性质和构造属性启示.地球科学, 32(1): 7-22. http://earth-science.net/WebPage/Article.aspx?id=1657 [70] 傅成铭, 陈云杰, 徐高中, 等, 2012. 《甘肃省龙首山马莲井-玉石沟地区铀资源潜力评价》设计书. 咸阳: 核工业203所. [71] 郭志军, 李进文, 黄光杰, 等, 2014.内蒙古红花尔基白钨矿矿床赋矿花岗岩Sr-Nd-Pb-Hf同位素特征.中国地质, 41(4): 1226-1241. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201404016.htm [72] 黄净白, 黄世杰, 2005.中国铀资源区域成矿特征.铀矿地质, 21(3): 129-138. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200503001.htm [73] 贾小辉, 王晓地, 杨文强, 等, 2014.桂北圆石山早侏罗世A型花岗岩的岩石成因及意义.地球科学, 39(1): 21-36. http://earth-science.net/WebPage/Article.aspx?id=2826 [74] 蒋少涌, 杨涛, 李亮, 等, 2006.大西洋洋中脊TAG热液区硫化物铅和硫同位素研究.岩石学报, 22(10): 2597-2602. doi: 10.3969/j.issn.1000-0569.2006.10.021 [75] 敬海鑫, 孙德有, 苟军, 等, 2015.兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征.地球科学, 40(6): 982-994. http://earth-science.net/WebPage/Article.aspx?id=3099 [76] 李磊, 孙卫志, 孟宪锋, 等, 2013.华北陆块南缘蜻山地区燕山期花岗岩类地球化学、Sr-Nd-Pb同位素特征及其地质意义.岩石学报, 29(8): 2635-2652. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308002.htm [77] 李龙, 郑永飞, 周建波, 2001.中国大陆地壳铅同位素演化的动力学模型.岩石学报, 17(1): 61-68. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101007.htm [78] 李良林, 周汉文, 陈植华, 等, 2011.福建太姥山地区花岗岩岩石地球化学特征及其地质意义.岩石矿物学杂志, 30(4): 593-609. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201104005.htm [79] 李巍, 毕诗健, 杨振, 等, 2015.桂东大瑶山南缘社山花岗闪长岩的锆石U-Pb年龄及Hf同位素特征:对区内加里东期成岩成矿作用的制约.地球科学, 40(1): 17-33. doi: 10.11867/j.issn.1001-8166.2015.01.0017 [80] 李文渊, 1991.龙首山地区的震旦系.西北地质, 12(2): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI199102000.htm [81] 李占游, 1987.芨岭花岗岩及铀矿化的地球化学研究.矿物岩石地球化学通讯, 4: 1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH198704029.htm [82] 凌洪飞, 沈渭洲, 孙涛, 等, 2006.广东省22个燕山期花岗岩的源区特征及成因:元素及Nd-Sr同位素研究.岩石学报, 22(12): 2687-2703. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611006.htm [83] 凌洪飞, 徐士进, 沈渭洲, 等, 1998.格宗、东谷岩体Nd、Sr、Pb、O同位素特征及其与扬子板块边缘其它晋宁期花岗岩对比.岩石学报, 14(3): 269-278. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB803.000.htm [84] 刘成东, 莫宣学, 罗照华, 等, 2003.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征.地球学报, 24(6): 584-588. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002056.htm [85] 刘亮, 邱检生、杨泽黎, 等, 2013.浙江临海猫狸岭岩体的成因:年代学、地球化学与Sr-Nd-Hf同位素制约.岩石学报, 29(12): 4069-4086. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312003.htm [86] 罗红玲, 吴泰然, 赵磊, 2010.乌拉特中旗二叠纪Ⅰ型花岗岩类地球化学特征及构造意义.北京大学学报(自然科学版), 46(5): 805-820. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201005020.htm [87] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1): 45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm [88] 彭永石, 孙英民, 田志永, 等, 1983. 甘肃省龙首山铀成矿带调研报告. 咸阳: 核工业203所. [89] 秦海鹏, 2012. 北祁连造山带早古生代花岗岩岩石学特征及其地质意义(博士学位论文). 北京: 中国地质科学院, 93-111. [90] 戎嘉树, 韩泽宏, 夏毓亮, 1984.我国一岩体型铀矿床的矿化特征及成矿作用.放射性地质, 1: 1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ198402000.htm [91] 商朋强, 胡瑞忠, 毕献武, 等, 2012.粤北下庄铀矿田脉石矿物Sr、Nd、Pb同位素地球化学研究.中国地质, 39(6): 1847-1857. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201206027.htm [92] 邵济安, 牟保磊, 朱慧忠, 等, 2010.大兴安岭中南段中生代成矿物质的深部来源与背景.岩石学报, 26(3): 649-656. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003001.htm [93] 沈渭洲, 1997.稳定同位素地质学教程.北京:原子能出版社. [94] 隋振民, 徐学纯, 2010.大兴安岭东北部侏罗纪花岗岩类Sr-Nd同位素特征及其地质意义.中国地质, 37(1): 48-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001008.htm [95] 孙圭, 赵致和, 1995. 中国北西部铀矿地质(上卷Ⅱ). 西安: 核工业西北地质局. [96] 汤中立, 白云来, 1999.华北古大陆西南边缘构造格架与成矿系统.地学前缘, 6(2): 271-284. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY902.006.htm [97] 汤中立, 白云来, 徐章华, 等, 2002.华北古陆西南缘(龙首山-祁连山)成矿系统及成矿构造动力学.北京:地质出版社, 168-178. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY200000001D23.htm [98] 涂江汉, 1985.再谈红石泉铀矿床成因的若干问题.铀矿地质, 1(6): 53-58. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ198506010.htm [99] 王木清, 涂汉江, 伍舒梅, 等, 1982.红石泉含矿主岩及矿化特征.铀矿地质, (5): 390-396. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD198205001.htm [100] 王强, 2014. 龙首山群白家嘴子组变质作用研究(硕士学位论文). 西安: 长安大学. [101] 魏俏巧, 郝立波, 陆继龙, 等, 2013.甘肃河西堡花岗岩LA-MC-ICP-MS锆石U-Pb年龄及其地质意义.矿物岩石地球化学通报, 32(6): 729-735. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306009.htm [102] 吴福元, 江博明, 林强, 1997.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义.科学通报, 42(20): 2188-2192. doi: 10.3321/j.issn:0023-074X.1997.20.017 [103] 吴利仁, 1985.中国东部中生代花岗岩类.岩石学报.1(1): 1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200506001.htm [104] 夏明哲, 夏昭德, 卢荣辉, 等, 2011.龙首山地块的归属问题:来自地壳结构和中—新元古代地层的证据.地球科学与环境学报, 33(2): 132-137. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201102006.htm [105] 肖成东, 张忠良, 赵利青, 2004.东蒙地区燕山期花岗岩Sr-Nd-Pb同位素及岩石成因.中国地质, 31(1): 57-64. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401007.htm [106] 肖庆辉, 邓晋福, 马大铨, 等, 2002.花岗岩研究思维与研究方法.北京:地质出版社. [107] 邢凤鸣, 1987.锶同位素初始比值在划分花岗岩成因类型上的应用探讨.岩石学报, 2(5): 75-80. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198803011.htm [108] 杨振, 刘锐, 王新宇, 等, 2014.云开地区燕山晚期花岗岩的岩石成因及构造意义:锆石U-Pb年龄及Hf同位素证据.地球科学, 39(9): 1258-1276. http://earth-science.net/WebPage/Article.aspx?id=2939 [109] 杨志明, 侯增谦, 江迎飞, 等, 2011.西藏驱龙矿区早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素研究.岩石学报, 27(7): 2003-2010. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107010.htm [110] 仉宝聚, 胡绍康, 2010.中国铀矿床研究评价第五卷.北京:中国核工业地质局, 179-225. [111] 张诚, 金景福, 1987.红石泉铀矿床铀的迁移形式及沉淀机制.西北地质科学, (5): 65-74. http://www.cnki.com.cn/Article/CJFDTOTAL-XBFK198705004.htm [112] 张承帅, 苏慧敏, 于淼, 等, 2012.福建龙岩大洋-莒舟花岗岩锆石U-Pb年龄和Sr-Nd-Pb同位素特征及其地质意义.岩石学报, 28(1): 225-242. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201019.htm [113] 张宏飞, 靳兰兰, 张利, 等, 2005.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成限制基底性质及其构造属性.中国科学(D辑), 35(10): 914-926. doi: 10.3969/j.issn.1674-7240.2005.10.002 [114] 张宽谋, 1989.对龙首山地区不同花岗岩体含铀性的探讨.华东地质学院学报, 12(2): 63-67. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ198902007.htm [115] 周新民, 2003.对华南花岗岩研究的若干几思考.高校地质学报, 9(4): 556-565. http://www.cnki.com.cn/Article/CJFDTOTAL-CSDI201702049.htm [116] 周振华, 吕林素, 王挨顺, 2011.内蒙古黄岗锡铁矿床花岗岩深部源区特征与构造岩浆演化:Sr-Nd-Pb-Hf多元同位素制约.地质科技情报, 30(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201101003.htm [117] 朱越, 周汉文, 李少林, 等, 2015.豫西小秦岭地区晚古元古代地壳深熔作用及构造意义:岩石学和锆石U-Pb年代学证据.地球科学, 40(5): 824-839. http://earth-science.net/WebPage/Article.aspx?id=3092