• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成

    冷秋锋 唐菊兴 郑文宝 王保宏 唐攀 王豪

    冷秋锋, 唐菊兴, 郑文宝, 王保宏, 唐攀, 王豪, 2016. 西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成. 地球科学, 41(6): 999-1015. doi: 10.3799/dqkx.2016.083
    引用本文: 冷秋锋, 唐菊兴, 郑文宝, 王保宏, 唐攀, 王豪, 2016. 西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成. 地球科学, 41(6): 999-1015. doi: 10.3799/dqkx.2016.083
    Leng Qiufeng, Tang Juxing, Zheng Wenbao, Wang Baohong, Tang Pan, Wang Hao, 2016. Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet. Earth Science, 41(6): 999-1015. doi: 10.3799/dqkx.2016.083
    Citation: Leng Qiufeng, Tang Juxing, Zheng Wenbao, Wang Baohong, Tang Pan, Wang Hao, 2016. Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet. Earth Science, 41(6): 999-1015. doi: 10.3799/dqkx.2016.083

    西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成

    doi: 10.3799/dqkx.2016.083
    基金项目: 

    中国地质调查局项目 12120114050501

    国家重点基础研究发展计划(973计划)项目 2011CB403103

    中国地质调查局项目 12120113093700

    国家自然科学基金项目 41302060

    详细信息
      作者简介:

      冷秋锋(1986-),男,博士研究生,主要从事矿物学、岩石学、矿床学方面的研究.E-mail: lengqiufeng9@126.com

      通讯作者:

      郑文宝,E-mail: zhengwenbao2009@sina.com

    • 中图分类号: P597

    Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet

    • 摘要: 拉抗俄Cu-Mo矿床是冈底斯成矿带东段典型的斑岩型矿床,前人对该矿床进行了初步的矿床地球化学研究,但欠缺系统性.在系统的野外地质调查基础上,对拉抗俄斑岩Cu-Mo矿床的含矿斑岩开展了详细的地球化学和年代学研究,旨在精确确定矿床含矿斑岩的成岩年龄、岩石成因及源区特征.岩石地球化学特征显示,含矿花岗闪长斑岩富硅,相对贫镁和钙,SiO2含量为62.51%~72.41%,MgO含量为0.59%~1.30%,CaO含量为0.95%~3.44%;碱含量高,Na2O含量为3.51%~4.75%,K2O含量为3.30%~4.97%;偏铝质或弱的过铝质,A/CNK比值为0.90~1.01;相对富集大离子亲石元素Rb、Ba、Th、U、Sr,明显亏损Nb、Ta、Ti、P、Zr等高场强元素.岩体稀土总量较低,为82.80×10-6~132.09×10-6;富集轻稀土,且轻重稀土分异明显;具有弱的Eu负异常和弱Ce负异常.采用LA-ICP-MS锆石U-Pb同位素测年技术对含矿花岗闪长斑岩进行定年,岩体成岩年龄为13.58±0.42 Ma,系中新世岩浆活动的产物.锆石εHf(t)值为-3.99~4.49,Hf同位素两阶段模式年龄tDM2为808~1 349 Ma.研究结果显示拉抗俄含矿花岗闪长斑岩具有埃达克岩地球化学特征,其岩浆源区主要来源于新生地壳部分熔融的组分,在岩浆侵位过程中遭受了古老地壳物质的混染,岩石形成于印度-亚洲大陆碰撞造山带的后碰撞伸展构造背景.

       

    • 图  1  冈底斯成矿带地质简图及主要斑岩-矽卡岩矿床分布

      矿床:1.汤不拉;2.亚贵拉;3.沙让;4.洞中拉;5.吹败子;6.弄如日;7.冲木达;8.蒙亚啊;9.哈海岗;10.甲玛;11.驱龙;12.拉抗俄;13.程巴;14.努日;15.克鲁;16.达布;17.厅宫;18.冲江;19.吉如;20.雄村;21.朱诺.SL.南冈底斯;CL.中冈底斯;NL.北冈底斯;BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂带;IYZSZ.印度河-雅鲁藏布江缝合带;底图据Zheng et al.(2014)修改

      Fig.  1.  Geological sketch of the Gangdese metallogenic belt showing the major ore deposit

      图  2  拉抗俄矿区地质简图

      1.第四系残坡积物、冲洪积物;2.上侏罗统多底沟组一段;3.中下侏罗统叶巴组二段;4.中下侏罗统叶巴组一段;5.花岗斑岩;6.花岗闪长斑岩;7.地质界线;8.实测断层;9.钻孔及编号;10.勘探线及编号

      Fig.  2.  Geological sketch of Lakang'e mining area

      图  3  拉抗俄矿床含矿花岗闪长斑岩手标本及正交偏光镜下照片

      Qtz.石英;Bi.黑云母;Pl.斜长石

      Fig.  3.  Photograph and microphotograph of ore-bearing granodiorite-porphyry in Lakang'e deposit

      图  4  含矿花岗闪长斑岩锆石CL照片

      Fig.  4.  CL images of zircons from the ore-bearing granodiorite-porphyry

      图  5  含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb测年谐和图解

      Fig.  5.  Zircon U-Pb concoria diagram from the ore-bearing granodiorite-porphyry

      图  6  拉抗俄含矿斑岩SiO2-K2O (a)、A/CNK-A/NK关系(b)

      Fig.  6.  Relations of SiO2-K2O (a)、A/CNK-A/NK (b) from the Lakang'e ore-bearing porphyry

      图  7  拉抗俄含矿斑岩稀土元素配分曲线(a)和微量元素蛛网图(b)

      a.球粒陨石数据,据Sun and McDonough (1989);b.原始地幔数据,据McDonough et al.(1992)

      Fig.  7.  Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spider diagrams (b) of the ore-bearing porphyry in Lakang'e deposit

      图  8  拉抗俄含矿花岗闪长斑岩Sr/Y-Y(a)和(La/Yb)N-YbN(b)关系

      底图据Defant and Drummond (1990)

      Fig.  8.  Relations of Sr/Y-Y (a) and (La/Yb)N-YbN (b) from the Lakang'e ore-bearing porphyry

      图  9  拉抗俄含矿花岗闪长斑岩锆石U-Pb年龄-Hf同位素组成关系

      驱龙数据杨志明(2008);甲玛数据引自应立娟,未刊资料;邦铺数据引自王立强,未刊资料;QL.驱龙;JM.甲玛;BP.邦铺;底图据侯增谦等(2012)

      Fig.  9.  Relations between U-Pb ages and Hf isotopic composition of zircons from the ore-bearing granodiorite-porphyry in Lakang'e deposit

      图  10  拉抗俄含矿花岗闪长斑岩R1-R2构造环境判别关系

      ① 幔斜长花岗岩;② 破坏性活动板块边缘(板块碰撞前)花岗岩;③ 版块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山期A型花岗岩;⑥ 同碰撞(S型)花岗岩;⑦ 造山期后A型花岗岩.底图据Bachelor and Bowden(1985)

      Fig.  10.  R1-R2 factor diagram of the ore-bearing granodiorite-porphyry in Lakang'e deposit

      表  1  拉抗俄矿床含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年结果

      Table  1.   LA-ICP-MS zircon U-Pb analyses of the ore-bearing granodiorite-porphyry in Lakang'e deposit

      分析点号 组成(10-6) Th/U 同位素比值 年龄(Ma)
      Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      1 3 408.84 1 874.23 1.82 0.048 83 0.010 02 0.014 88 0.003 18 0.002 17 0.000 10 138.98 422.17 15.00 3.18 13.97 0.62
      2 4 429.35 2 355.40 1.88 0.048 33 0.003 22 0.014 07 0.000 96 0.002 11 0.000 04 122.31 142.57 14.19 0.96 13.60 0.27
      3 2 717.49 1 351.95 2.01 0.046 02 0.006 03 0.014 42 0.003 03 0.002 21 0.000 21 error 14.54 3.03 14.22 1.37
      4 2 424.72 1 544.63 1.57 0.048 02 0.008 41 0.013 34 0.002 95 0.001 95 0.000 13 101.94 375.88 13.46 2.95 12.56 0.81
      5 707.50 1 054.51 0.67 0.053 07 0.014 73 0.015 94 0.003 03 0.002 38 0.000 19 331.54 531.11 16.06 3.02 15.30 1.23
      6 1 870.43 1 360.07 1.38 0.051 36 0.011 59 0.015 08 0.003 09 0.002 24 0.000 13 257.47 448.10 15.19 3.09 14.39 0.82
      7 2 931.11 3 478.54 0.84 0.050 55 0.009 81 0.013 95 0.002 55 0.002 02 0.000 05 220.44 396.25 14.07 2.56 13.01 0.31
      8 1 799.15 1 552.69 1.16 0.048 20 0.009 44 0.016 25 0.003 69 0.002 46 0.000 31 109.35 407.36 16.36 3.68 15.86 2.00
      9 14 711.74 3 800.91 3.87 0.050 76 0.006 49 0.016 48 0.001 97 0.002 42 0.000 08 231.55 270.34 16.60 1.97 15.59 0.53
      下载: 导出CSV

      表  2  拉抗俄矿床含矿花岗闪长斑岩主量元素含量(%)、CIPW标准矿物及相关参数

      Table  2.   Major oxide compositions (%) with calculated CIPW-normative minerals and parameters of the ore-bearing granodiorite-porphyry in Lakang'e deposit

      样品编号-深度(m) SiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O TiO2 MnO P2O5 烧失量 总量 / / / Q An Ab Or C Di Hy Mt Ap A/CNK A/NK SI AR AKI DI
      ZK201-26.8 67.40 14.61 0.97 3.07 1.03 1.90 4.56 3.30 0.34 0.060 0.14 2.01 99.39 / / / 21.62 8.72 39.60 20.05 0.44 / 7.13 0.66 1.44 0.34 1.01 1.32 7.97 2.82 0.76 81.27
      ZK201-86.0 62.51 15.51 1.15 2.63 1.30 3.44 4.48 3.43 0.53 0.060 0.21 4.06 99.32 / / / 14.67 12.68 39.78 21.30 / 3.13 5.12 1.06 1.75 0.51 0.90 1.40 10.00 2.43 0.72 75.75
      ZK201-47.8 66.45 14.96 0.84 2.71 1.12 1.99 4.72 3.45 0.39 0.050 0.16 2.64 99.48 / / / 19.23 9.10 41.20 21.08 0.24 / 6.74 0.77 1.25 0.39 0.99 1.30 8.72 2.86 0.77 81.51
      ZK101-109.7 72.42 12.84 0.44 1.89 0.67 0.95 3.51 4.97 0.24 0.050 0.09 1.35 99.42 / / / 29.47 4.20 30.29 29.97 0.17 / 4.57 0.46 0.65 0.21 1.00 1.15 5.83 4.20 0.87 89.73
      ZK101-140.2 71.92 13.33 0.65 1.87 0.68 1.06 3.67 4.92 0.24 0.040 0.10 1.06 99.54 / / / 27.98 4.70 31.53 29.55 0.27 / 4.33 0.47 0.95 0.23 1.00 1.17 5.77 3.96 0.85 89.06
      ZK101-431.8 69.80 14.42 0.84 1.38 0.59 1.95 4.75 3.48 0.24 0.003 0.08 2.12 99.64 / / / 24.29 7.97 41.19 21.07 / 1.16 2.43 0.46 1.24 0.19 0.95 1.24 5.35 3.02 0.80 86.55
      注:Q.石英;An.钙长石;Ab.钠长石;Or.钾长石;C.刚玉;Di.透辉石;Hy.紫苏辉石;Ⅱ.钛铁矿;Mt.磁铁矿;Ap.磷灰石;A/CNK=n(Al2O3)/[n(CaO)+n(Na2O)+n(K2O)];A/NK=n(Al2O3)/[n(Na2O)+n(K2O)];AKI=[n(Na2O)+n(K2O)]/n(Al2O3);SI.固结指数;AR.莱特碱度率;DI.分异指数.
      下载: 导出CSV

      表  3  拉抗俄矿床含矿花岗闪长斑岩微量及稀土元素含量(10-6)及相关参数

      Table  3.   Results of trace and REE compositions (10-6) and parameters of the ore-bearing granodiorite-porphyry in Lakang'e deposit

      样品编号-深度(m) Rb Ba Th U K Ta Nb Sr Nd P Zr Hf Sm Ti Y Yb Lu / / / / / La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE LREE HREE LREE/HREE LaN/YbN Eu/Eu* Ce/Ce*
      ZK201-26.8 94 538 5.74 1.43 27 419 0.27 1.68 594 21.92 623 102 2.89 3.55 2034 5.62 0.49 0.08 / / / / / 23.79 40.88 5.08 21.92 3.55 1.06 2.42 0.27 1.11 0.20 0.61 0.08 0.49 0.08 5.62 101.54 96.28 5.26 18.31 34.68 1.05 0.87
      ZK201-86.0 92 648 3.79 1.89 28 498 0.19 2.39 688 29.64 923 114 1.63 4.91 3195 4.92 0.44 0.06 / / / / / 23.44 48.23 6.54 29.64 4.91 1.34 3.26 0.34 1.25 0.21 0.58 0.07 0.44 0.06 4.92 120.32 114.10 6.22 18.35 38.66 0.96 0.94
      ZK201-47.8 119 729 5.26 1.41 28 673 0.21 1.86 509 31.33 709 112 3.22 4.78 2347 6.09 0.53 0.08 / / / / / 30.10 50.96 7.36 31.33 4.78 1.19 3.14 0.34 1.30 0.24 0.66 0.08 0.53 0.08 6.09 132.09 125.73 6.36 19.77 41.05 0.88 0.81
      ZK101-109.7 145 1416 8.49 2.41 41 291 0.13 1.29 392 18.70 397 89 1.30 2.90 1423 5.35 0.42 0.07 / / / / / 18.98 32.64 4.49 18.70 2.90 0.82 1.99 0.22 0.88 0.17 0.48 0.06 0.42 0.07 5.35 82.80 78.52 4.28 18.33 32.33 0.99 0.84
      ZK101-140.2 132 737 7.11 2.09 40 876 0.11 1.11 483 18.44 422 94 2.78 2.84 1456 3.92 0.42 0.07 / / / / / 18.66 35.29 4.31 18.44 2.84 0.84 2.02 0.22 0.87 0.16 0.46 0.06 0.42 0.07 3.92 84.66 80.39 4.27 18.81 32.10 1.02 0.93
      ZK101-431.8 82 602 7.58 2.16 28 864 0.13 1.25 548 20.70 357 113 3.27 3.09 1415 5.49 0.56 0.09 / / / / / 23.29 34.37 5.01 20.70 3.09 0.84 2.16 0.25 1.04 0.20 0.60 0.08 0.56 0.09 5.49 92.28 87.29 4.99 17.51 29.65 0.94 0.74
      注:Eu/Eu*=2EuN/(SmN+GdN);Ce/Ce*=2CeN/(LaN+PrN).
      下载: 导出CSV

      表  4  拉抗俄矿床花岗闪长斑岩锆石Hf同位素组成

      Table  4.   Hf isotope composition of zircons from the ore-bearing granodiorite-porphyry in Lakang'e deposit

      测点 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ 176Hf/177Hf(t) εHf(o) εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf
      2 13.60 0.039 932 0.001 656 0.282 891 0.000 011 0.282 887 4.21 4.49 521 808 -0.95
      3 14.22 0.019 518 0.000 852 0.282 777 0.000 014 0.282 955 0.16 0.47 672 1 065 -0.97
      4 12.56 0.084 787 0.002 967 0.282 823 0.000 013 0.282 854 1.80 2.05 642 962 -0.91
      5 15.30 0.016 333 0.000 734 0.282 650 0.004 367 0.259 309 -4.32 -3.99 848 1 349 -0.98
      6 14.39 0.021 006 0.000 885 0.282 749 0.000 013 0.282 897 -0.83 -0.52 712 1 128 -0.97
      7 13.01 0.020 204 0.000 919 0.282 738 0.000 011 0.282 975 -1.19 -0.91 727 1 152 -0.97
      8 15.86 0.016 218 0.000 783 0.282 691 0.000 014 0.282 967 -2.88 -2.54 792 1 257 -0.98
      注:εHf(t)=10 000{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};tDMC=1/λ×ln{1+[(176Hf/177Hf)S, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;球粒陨石及亏损地幔现在的176Hf/177Hf和176Lu/177Hf同位素比值分别为0.282 77和0.033 2,0.283 25和0.038 4,据Blichert-Toft and Albarède(1997)Griffin et al.(2000)λ=1.867×10-11 a-1,据Söderlund et al.(2004);(176Lu/177Hf)C=0.015,t.锆石结晶年龄;进行数据处理时,176Lu的衰变常数采用1.867×10-11 a-1,据Söderlund et al.(2004)εHf(t)值的计算利用Bouvier et al.(2008)推荐的球粒陨石n(176Hf)/n(177Hf)比值(0.282 772) 及176Lu/177Hf比值(0.033 2);Hf模式年龄计算时采用当前亏损地幔的(176Hf)/(177Hf)比值(0.283 25) 和(176Lu)/(177Hf)比值(0.015) 及(176Lu)/(177Hf)比值(0.015),据Amelin et al.(1999).
      下载: 导出CSV
    • [1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth′s Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, 399(6733):252-255.doi: 10.1038/20426
      [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      [3] Atherton M.P., Pertord N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362(6416):144-146.doi: 10.1038/362144a0
      [4] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55.doi: 10.1016/0009-2541(85)90034-8
      [5] Belousova, E.A., Griffin, W.L., O′Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622.doi: 10.1007/s00410-002-0364-7
      [6] Blichert-Toft J, Albarède F., 1997.The Lu-Hf Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148:243-258.doi: 10.1016/s0012-821x(97)00040-x
      [7] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57.doi: 10.1016/j.epsl.2008.06.010
      [8] Castillo, P.R., 2006.An Overview of Adakite Petrogenesis.Chinese Science Bulletin, 51(3):257-268.doi: 10.1007/s11434-006-0257-7
      [9] Chen, M.H., Zhang, W., Yang, Z.X., et al., 2009.Zircon SHRIMP U-Pb Age and Hf Isotopic Composition of Baiceng Ultrabasic Dykes in Zhenfeng County, Southwestern Guizhou Province.Mineral Deposits, 28(3) :240-250 (in Chinese with English abstract).
      [10] Defant M.J., Drummond M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665.doi: 10.1038/347662a0
      [11] Defant M.J., Drummond M.S., 1993.Mount St.Helens:Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc.Geology, 21(6):547-550.doi:10.1130/0091-7613(1993)021<0547:mshpeo>2.3.co;2
      [12] Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996.Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas.Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1-2):205-215.doi: 10.1017/s0263593300006611
      [13] Feng, R., Kerrich, R., 1992.Geochemical Evolution of Granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac Subprovince, Superior Province, Canada:Implications for Tectonic History and Source Regions.Chemical Geology, 98(1-2):23-70.doi: 10.1016/0009-2541(92)90090-r
      [14] Gaetani, M., Garzanti, E., 1991.Multicyclic History of the Northern India Continental Margin (Northwestern Hinwlaya).AAPG Bulletin, 75:1427-1446.doi: 10.1306/0c9b2957-1710-11d7-8645000102c1865d
      [15] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Analysis of Forty-Two Major and Trace Elements of USGS and NIST SRM Glasses by LA-ICP-MS.Geostandard Newslett, 22:181-196. https://www.researchgate.net/publication/252188504_Analysis_of_forty-two_major_and_trace_elements_in_USGS_and_NIST_SRM_glasses_by_LA-ICPMS
      [16] Gao, Y.F., Hou, Z.Q., Wei, R.H., 2003.Neogene Porphyries from Gangdese:Petrological, Geochemical Characteristics and Geodynamic Significances.Acta Petrologica Sinica, 19(3):418-428 (in Chinese with English abstract). https://www.researchgate.net/publication/286970950_Neogene_porphyries_from_Gangdese_Petrological_geochemical_characteristics_and_geodynamic_significances
      [17] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China, 30:1261-1274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201108013.htm
      [18] Geng, Q.R., Wang, L.Q., Pan, G.T., et al., 2007.Volcanic Rock Geochemistry and Tectonic Implication of the Luobadui Formation on the Gangdese Zone, Xizang (Tibet).Acta Petrologica Sinica, 23(11):2699-2714 (in Chinese with English abstract). https://www.researchgate.net/publication/292234727_Discovery_and_tectonic_significance_of_Permian_basic_volcanic_rocks_in_the_Selong_area_on_the_northern_slope_of_the_Himalayas_southern_Tibet
      [19] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/s0016-7037(99)00343-9
      [20] Hanchar, J.M., Miller, C.F., 1993.Zircon Zonation Patterns as Revealed by Cathodoluminescence and Backscattered Electron Images:Implications for Interpretation of Complex Crustal Histories.Chemical Geology, 110(1-3):1-13.doi: 10.1016/0009-2541(93)90244-d
      [21] He, Z.H., Yang, D.M., Zheng, C.Q., et al., 2012.Isotopic Dating of the Mamba Granitoid in the Gangdise Tectonic Belt and Its Constraint on the Subduction Time of the Neotethys.Geological Review, 52(1):100-106 (in Chinese with English abstract). doi: 10.1007/s11430-009-0131-y
      [22] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). https://www.researchgate.net/profile/Antonio_Simonetti/publication/260862937_In-situ_petrographic_thin_section_U-Pb_dating_of_zircon_and_titanite_by_laser_ablation-MC-ICP-MS/links/57c4881208ae5e5a8191bbd9.pdf?origin=publication_list
      [23] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155.doi: 10.1016/s0012-821x(04)00007-x
      [24] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004.Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen.Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract). https://www.researchgate.net/publication/279572227_Genesis_of_adakitic_porphyry_and_tectonic_controls_on_the_Gangdese_Miocene_porphyry_copper_belt_in_the_Tibetan_orogen
      [25] Hou, Z.Q., Ma, H.W., Zaw, K., et al., 2003.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet.Economic Geology, 98(1):125-145.doi: 10.2113/98.1.125
      [26] Hou, Z.Q., Qu, X.M., Wang, S.X., et al., 2003.Re-Os Dating of Molybdenite from the Gangdese Metallogenic Belt, Tibet:Applications of Mineralization Time and Dynamic Background.Science in China (Series D), 33(7):609-618 (in Chinese with English abstract).
      [27] Hou, Z.Q., Wang, E.Q., 2008.Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3):275-292 (in Chinese with English abstract). https://www.researchgate.net/publication/285912159_Metallogenesis_of_the_Indo-Asian_collisional_orogen_New_advances
      [28] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews, 36(1-3):25-51.doi: 10.1016/j.oregeorev.2008.09.006
      [29] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting :Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits, 31(4):647-670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204003.htm
      [30] Ji, W.Q., Wu, F.Y., Zhong, S.L., et al., 2009.Petrogenesis and Ages of Granites in the Gangdese Batholith, South Tibet.Science in China (Series D), 39(7):849-871 (in Chinese w ith English abstract). https://www.researchgate.net/profile/Wei_Qiang_Ji/publication/227064098_Geochronology_and_petrogenesis_of_granitic_rocks_in_Gangdese_batholith_southern_Tibet/links/54640ced0cf2cb7e9da99ddc.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
      [31] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2015.Re-Os Dating of Molybdenite from the Lakang′e Porphyry Cu-Mo Deposit in Tibet and Its Geological Significance.Geolgy in China, 42(2):570-584 (in Chinese with English abstract).
      [32] Liu, X.M., Gao, S., Yuan, H.L., et al., 2002.Analysis of 42 Major and Trace Elements in Glass Standard Reference Materials by 193 nm La-ICP-MS.Acta Petrologica Sinica, 18(3):408-418 (in Chinese with English abstract). https://www.researchgate.net/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard
      [33] Mahéo, G., Guillot, S., Blichert-Toft, J., et al., 2002.A Slab Breakoff Model for the Neogene Thermal Evolution of South Karakorum and South Tibet.Earth and Planetary Science Letters, 195(1-2):45-58.doi: 10.1016/s0012-821x(01)00578-7
      [34] McDonough, W.F., Sun, S.S., Ringwood, A.E., et al., 1992.Potassium, Rubidium and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth.Geochimica et Cosmochimica Acta., 56(3):1001-1012.doi: 10.1016/0016-7037(92)90043-i
      [35] Miller, C., Schuster, R., Klotzli, U., et al., 1999.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424.doi: 10.1093/petroj/40.9.1399
      [36] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200503001.htm
      [37] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract). https://www.researchgate.net/publication/302561161_Response_of_volcanism_to_the_India-Asia_collisionJ
      [38] Mo, X.X., Zhao, Z.D., DePaolo, D.J., et al., 2006.Three Types of Collisional and Post-Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intra-Continental Subduction and Mineralization:Evidence from Sr-Nd Isotopes.Acta Petrologica Sinica, 22(4):795-803 (in Chinese with English abstract).
      [39] Mo, X.X., Zhao, Z.D., Zhu, D.C., et al., 2009.On the Lithosphere of Indo-Asia Collision Zone in Southern Tibet:Petrological and Geochemical Constraints.Earth Science, 34(1):17-24 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=1783
      [40] Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007.Re-Os Isotopic Dating on Molybdenite Separates from the Xiaodonggou Porphyry Mo Deposit, Hexigten Qi, Inner Mongolia.Acta Geologica Sinica, 81(7):898-905 (in Chinese with English abstract). https://www.researchgate.net/publication/284973094_Re-Os_isotopic_age_dating_of_molybdenite_separates_from_the_Chaobuleng_skarn_iron-polymetallic_deposit_Dong_Ujimqin_Banner_Inner_Mongolia
      [41] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). https://www.researchgate.net/publication/279572099_Spatial-temporal_framework_of_the_Gangdese_Orogenic_Belt_and_its_evolution
      [42] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956
      [43] Pearce, J.A., Mei, H., 1988.Volcanic Rocks for the 1985 Tibet Geotraverse Lhasa to Golmud.Phil.Trans.Roy.Soc.Load.A., 327:203-213. doi: 10.1098/rsta.1988.0126
      [44] Pearce J.A., Norry M.J., 1979.Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47.doi: 10.1007/bf00375192
      [45] Qin, Z.P., Wang, X.W., Duo, J., et al., 2011.LA-ICP-MS U-Pb Zircon Age of Intermediate-Acidic Intrusive Rocks in Jiama of Tibet and Its Metallogenic Significance.Mineral Deposits, 30(2):339-348 (in Chinese with English abstract).
      [46] Qu, X.M., Hou, Z.Q., Li, Y.G., 2002.Implications of S and Pb Isotopic Compositions of the Gangdise Porphyry Copper Belt for the Ore-Forming Material Source and Material Recycling within the Orogenic Belt.Geological Bulletin of China, 21(11):768-776 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgqydz200211015
      [47] Qu, X.M., Hou, Z.Q., Li, Z.Q., 2003.40Ar/39Ar Ages of the Ore-Bearing Porphyries of the Gangdese Porphyry Copper Belt and Their Geological Significances.Acta Geological Sinica, 77(2):245-252 (in Chinese with English abstract). https://www.researchgate.net/publication/279599796_40Ar39Ar_ages_of_the_ore-bearing_porphyries_of_the_Gangdese_porphyry_copper_belt_and_their_geological_significance
      [48] Qu, X.M., Hou, Z.Q., Zaw, K., et al., 2007.Characteristics and Genesis of Gangdese Porphyry Copper Deposits in the Southern Tibetan Plateau:Preliminary Geochemical and Geochronological Results.Ore Geology Reviews, 31(1-4):205-223.doi: 10.1016/j.oregeorev.2005.03.012
      [49] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009.Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone, the Western Tibetan Plateau.Geochimica, 38(6):523-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200906005.htm
      [50] Rui, Z.Y., Hou, Z.Q., Qu, X.M., et al., 2003.Metallogenetic Epoch of Gangdese Porphyry Copper Belt and Uplift of Qinghai-Tibet Plateau.Mineral Deposits, 22(3):217-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200303000.htm
      [51] Shui, X.F., Zhao, Y.Y., Guo, S., et al., 2012.U-Pb Dating and Hf Isotopic Characteristics of Zircons from Granodiorite in the Dexing Ore Concentration.Geology in China, 39(6):1543-1561 (in Chinese with English abstract). https://www.researchgate.net/publication/287638003_U-Pb_dating_and_Hf_isotopic_characteristics_of_zircons_from_granodiorite_in_theDexingore_concentration_area
      [52] Sillitoe, R.H., 1972.A Plate Tectonic Model for the Origin of Porphyry Copper Deposits.Economic Geology, 67(2):184-197.doi: 10.2113/gsecongeo.67.2.184
      [53] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324.doi: 10.1016/s0012-821x(04)00012-3
      [54] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30 (in Chinese with English abstract). https://www.researchgate.net/publication/227743909_The_onset_of_the_Tan-Lu_fault_movement_in_eastern_China_Constraints_from_zircon_SHRIMP_and_40Ar39Ar_dating
      [55] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [56] Tang, J.X., Chen, Y.C., Duo, J., et al., 2009a.The Main Ore Types, Metallogenic Regularities and Prospecting Evaluation in the Eastern of Gangdese Metallogenic Belt, Tibet.Acta Mieralogica Sinica, 29(Suppl.1):476-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200401004.htm
      [57] Tang, J.X., Huang, Y., Li, Z.J., et al., 2009b.Element Geochemical Characteristics of Xiongcun Cu-Au Deposit in Xaitongmoin County, Tibet.Mineral Deposits, 28(1):15-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200901003.htm
      [58] Tang, J.X., Li, F.J., Li, Z.J., et al., 2010.Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet:Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite.Mineral Deposits, 29(3):461-475 (in Chinese with English abstract). https://www.researchgate.net/publication/279764755_Study_on_mineral_compositions_of_the_ore_from_the_Xiongcun_CuAu_deposit_in_Xietongmen_County_Tibet_China
      [59] Tatsumi, Y., Hamilton, D.L., Nesbitt, R.W., 1986.Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magmas:Evidence from High-Pressure Experiments and Natural Rocks.Journal of Volcanology and Geothermal Research, 29(1-4):293-309.doi: 10.1016/0377-0273(86)90049-1
      [60] Wang, C., Wei, Q.R., Liu, X.N., et al., 2014.Post-Collision Related Late Indosinian Granites of Gangdise Terrane:Evidences from Zircon U-Pb Geochronology and Petrogeochemistry.Earth Science, 39(9):1277-1288 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2935
      [61] Wang, L.L., Mo, X.X., Li, B., et al., 2006.Geochronlogy and Geochemistry of the Ore-Bearing Porphyry in Qulong Cu (Mo) Ore Deposit, Tibet.Aata Petrologica Sinica, 22(4):1001-1008 (in Chinese with English abstract). https://www.researchgate.net/publication/279718246_Geochronology_and_geochemistry_of_the_ore-bearing_porphyry_in_Qulong_Cu_Mo_ore_deposit_Tibet
      [62] Wang, L.Q., Pan, G.T., Zhu, D.C., et al., 2008.Carboniferous-Permian Island Arc Orogenesis in the Gangdise Belt, Tibet, China:Evidence from Volcanic Rocks and Geochemistry.Geological Bulletin of China, 27(9):1509-1534 (in Chinese with English abstract).
      [63] Wang, L.Q., Tang, J.X., Chen, Y.C., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of Ore-Bearing Monzogranite Porphyry in Bangpu Molybdenum(Copper) Deposit, Tibet and Its Significance.Mineral Deposits, 30(2):349-360 (in Chinese with English abstract). https://www.researchgate.net/publication/233440370_Discrimination_of_Ore-Bearing_and_Barren_Porphyries_in_the_Yulong_Porphyry_Copper_Ore_Belt_Eastern_Tibet
      [64] Wang, Q., McDermott, F., Xu, J.F., et al., 2005.Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet:Lower-Crustal Melting in an Intracontinental Setting.Geology, 33(6):465.doi: 10.1130/g21522.1
      [65] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007.Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust.Geochimica et Cosmochimica Acta, 71(10):2609-2636.doi: 10.1016/j.gca.2007.03.008
      [66] Wang, Q., Xu, J.F., Zhao, Z.H., 2001.The Summary and Comment on Research on a New Kind of Igneous Rock-Adakite.Advance in Earth Sciences, 16(2):201-208 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200102009.htm
      [67] Wang, Y., Zhang, Q., Qian, Q., 2000.Adakite:Geochemical Characteristics and Tectonic Significances.Scientia Geologica Sinica, 35(2):251-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200002017.htm
      [68] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematic and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). https://www.researchgate.net/publication/305531916_Lu-Hf_isotopic_systematics_and_thier_applications_in_petrology
      [69] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and Its Restrict on the Explanation for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1602 (in Chinese with English abstract). https://www.researchgate.net/publication/249521397_Temperature_spectra_of_zircon_crystallization_in_plutonic_rocks
      [70] Xu, Z.Q., Ji, S.C., Cai, Z.H., et al., 2012.Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya:Constraints from Deformation, Fabrics and Geochronology.Gondwana Reserch, 21(1):19-36.doi: 10.1016/j.gr.2011.06.010
      [71] Yang, D.M., Li, C., Wang, T.W., 2001.Features and Genesis of the North-South-Trending Tectonic Belt in the Eastern Sector of the Gangdese Mountains, Tibet.Regional Geology of China, 20(4):392-397 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200604013.htm
      [72] Yang, Z., Liu, R., Wang, X.Y., et al., 2014.Petrogenesis and Tectonic Significance of Late Yanshanian Granites in Yunkai Area, Southeast China:Evidence from Zircon U-Pb Ages and Hf Isotopes.Earth Science, 39(9):1258-1276 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2939
      [73] Yang, Z.M., 2008.The Qulong Giant Porphyry Copper Deposit in Tibet:Magmatism and Mineraliztion (Dissertation).Chinese Academy of Geological Sciences, Beijing, 1-145 (in Chinese with English abstract).
      [74] Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009.Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System in Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212.doi: 10.1016/j.oregeorev.2009.03.005
      [75] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.earth.28.1.211
      [76] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008.Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS.Chemical Geology, 247(1-2):100-118.doi: 10.1016/j.chemgeo.2007.10.003
      [77] Zhang, G.Y., Zheng, Y.Y., Gong, F.Z., et al., 2008.Geochronolgic Constraints on Magmatic Intrusions and Mineralization of the Jiru Porphyry Copper Deposit, Tibet, Associated with Continent-Continent Collisional Process.Acta Petrologica Sinica, 24(3):473-479 (in Chinese with English abstract). https://www.researchgate.net/publication/285572680_Alteration_and_mineralization_at_the_Zhibula_Cu_skarn_deposit_Gangdese_belt_Tibet
      [78] Zhang, Q., Wang, Y., Qian, Q., et al., 2001.The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China.Acta Petrologica Sinica, 17(2):236-244 (in Chinese with English abstract). https://www.researchgate.net/publication/279686768_The_characteristics_and_tectonic-metallogenic_significances_of_the_adakites_in_Yanshan_period_from_Eastern_China
      [79] Zhang, S., Shi, H.F., Hao, H.J., et al., 2014.Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet.Earth Science, 39(5):509-524 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2860
      [80] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014.Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet:Implications for Eocene and Miocene Magma Sources and Resource Potential.Journal of Asian Earth Sciences, 79:842-857.doi: 10.1016/j.jseaes.2013.03.029
      [81] Zhou, T.F., Fan, Y., Yuan, F., et al., 2011.Geochronology and Significance of Volcanic Rocks in the Ning-Wu Basin of China.Science in China (Series D), 41(7):960-971 (in Chinese). https://www.researchgate.net/publication/226642424_Geochronology_and_significance_of_volcanic_rocks_in_the_Ning-Wu_Basin_of_China
      [82] Zhou, X., Cao, Y.G., 1984.Tibet Plate Tectonics-Construction Plans and Specifications.Geological Publishing House, Beijing, 1-20 (in Chinese).
      [83] Zhu, D, C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract).
      [84] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2010.Presence of Permian Extension and Arc-Type Magmatism in Southern Tibet:Paleogeographic Implications.Geological Society of America Bulletin, 122(7-8):979-993.doi: 10.1130/b30062.1
      [85] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442
      [86] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Spatial-Temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdese Belt, Tibet, China.Geological Bulletin of China, 27(4):458-468 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200804004.htm
      [87] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301:241-255.doi: 10.1016/j.epsl.2010.11.005
      [88] Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction?Journal of Asian Earth Sciences, 34(3):298-309.doi: 10.1016/j.jseaes.2008.05.003
      [89] 陈懋弘, 章伟, 杨宗喜, 等, 2009.黔西南白层超基性岩墙锆石SHRIMP U-Pb年龄和Hf同位素组成研究.矿床地质, 28(3): 240-250. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903003.htm
      [90] 高永丰, 侯增谦, 魏瑞华, 2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报, 19(3): 418-428. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303004.htm
      [91] 耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8): 1261-1274. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108013.htm
      [92] 耿全如, 王立全, 潘桂棠, 等, 2007.西藏冈底斯带洛巴堆组火山岩地球化学及构造意义.岩石学报, 23(11): 2699-2714. doi: 10.3969/j.issn.1000-0569.2007.11.003
      [93] 和钟铧, 杨德明, 郑常青, 等, 2012.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评, 52(1): 100-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200601016.htm
      [94] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4): 481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
      [95] 侯增谦, 高永丰, 孟祥金, 等, 2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报, 20(2): 239-248. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm
      [96] 侯增谦, 曲晓明, 王淑贤, 等, 2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D辑), 33(7): 609-618. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm
      [97] 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3): 275-292. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803004.htm
      [98] 侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4): 647-670. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803004.htm
      [99] 纪伟强, 吴福元, 锺孙霖, 等, 2009.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学(D辑), 39(7): 849-871. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907002.htm
      [100] 冷秋锋, 唐菊兴, 郑文宝, 等, 2015.西藏拉抗俄斑岩铜钼矿床辉钼矿Re-Os同位素测年及其地质意义.中国地质, 42(2): 570-584. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201502016.htm
      [101] 柳小明, 高山, 袁洪林, 等, 2002.193 nm LA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析.岩石学报, 18(3): 408-418. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203016.htm
      [102] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3): 281-290. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503001.htm
      [103] 莫宣学, 赵志丹, Don J DePaolo, 等, 2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报, 22(4): 795-803. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604004.htm
      [104] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3): 135-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm
      [105] 莫宣学, 赵志丹, 朱弟成, 等, 2009.西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束.地球科学, 34(1): 17-24. http://earth-science.net/WebPage/Article.aspx?id=1783
      [106] 聂凤军, 张万益, 杜安道, 等, 2007.内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义.地质学报, 81(7): 898-905. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200707003.htm
      [107] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      [108] 秦志鹏, 汪雄武, 多吉, 等, 2011.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 30(2): 339-348. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102015.htm
      [109] 曲晓明, 侯增谦, 李佑国, 2002.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报, 21(11): 768-776. doi: 10.3969/j.issn.1671-2552.2002.11.015
      [110] 曲晓明, 侯增谦, 李振清, 2003.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义.地质学报, 77(2): 245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302022.htm
      [111] 曲晓明, 王瑞江, 辛洪波, 等, 2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 38(6): 523-535. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200906005.htm
      [112] 芮宗瑶, 侯增谦, 曲晓明, 等, 2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质, 22(3): 217-225. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200303000.htm
      [113] 水新芳, 赵元艺, 郭硕, 等, 2012.德兴矿集区花岗闪长斑岩锆石U-Pb年龄、Hf同位素特征及其意义.中国地质, 39(6): 1543-1561. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201206005.htm
      [114] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(增刊): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm
      [115] 唐菊兴, 陈毓川, 多吉, 等, 2009a.西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价.矿物学报, 29(增刊1): 476-478. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1249.htm
      [116] 唐菊兴, 黄勇, 李志军, 等, 2009b.西藏谢通门县雄村铜金矿床元素地球化学特征.矿床地质, 28(1): 15-28. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200901003.htm
      [117] 唐菊兴, 黎风佶, 李志军, 等, 2010.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据.矿床地质, 29(3): 461-475. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201003007.htm
      [118] 王程, 魏启荣, 刘小念, 等, 2014.冈底斯印支晚期后碰撞花岗岩:锆石U-Pb年代学及岩石地球化学证据.地球科学, 39(9): 1277-1288. http://earth-science.net/WebPage/Article.aspx?id=2935
      [119] 王亮亮, 莫宣学, 李冰, 等, 2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报, 22(4): 1001-1008. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006065143.htm
      [120] 王立强, 唐菊兴, 陈毓川, 等, 2012.西藏邦铺钼(铜)矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义.矿床地质, 30(2): 349-360. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102016.htm
      [121] 王立全, 潘桂棠, 朱弟成, 等, 2008.西藏冈底斯带石炭纪-二叠纪岛弧造山作用:火山岩和地球化学证据.地质通报, 27(9): 1509-1534. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200809014.htm
      [122] 王强, 许继锋, 赵振华, 2001.一种新的火成岩-埃达克岩的研究综述.地球科学进展, 16(2): 201-208. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200102009.htm
      [123] 王焰, 张旗, 钱青, 2000.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学, 35(2): 251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200002017.htm
      [124] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2): 185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [125] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1602. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [126] 杨德明, 李才, 王天武, 2001.西藏冈底斯东段南北向构造特征与成因.中国区域地质, 20(4): 392-397. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200104009.htm
      [127] 杨振, 刘锐, 王新宇, 等, 2014.云开地区燕山晚期花岗岩的岩石成因及构造意义:锆石U-Pb年龄及Hf同位素证据.地球科学, 39(9): 1258-1276. http://earth-science.net/WebPage/Article.aspx?id=2939
      [128] 杨志明, 2008.西藏驱龙超大型斑岩铜矿床——岩浆作用与矿床成因(博士学位论文).北京:中国地质科学院, 1-145. http://cdmd.cnki.com.cn/Article/CDMD-82501-2008177369.htm
      [129] 张刚阳, 郑有业, 龚福志, 等, 2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束.岩石学报, 24(3): 473-479. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803007.htm
      [130] 张旗, 王焰, 钱青, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17(2): 236-244. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm
      [131] 张硕, 史洪峰, 郝海健, 等, 2014.青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义.地球科学, 39(5): 509-524. http://earth-science.net/WebPage/Article.aspx?id=2860
      [132] 周涛发, 范裕, 袁峰, 等, 2011.宁芜(南京-芜湖)盆地火山岩的年代学及其意义.中国科学(D辑), 41(7): 960-971. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107010.htm
      [133] 周详, 曹佑功, 1984.西藏板块构造-建造图及说明书.北京:地质出版社, 1-20. http://cdmd.cnki.com.cn/Article/CDMD-10616-2010218663.htm
      [134] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2): 1-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200902002.htm
      [135] 朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4): 458-466. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200804004.htm
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  4169
    • HTML全文浏览量:  1652
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-11-30
    • 刊出日期:  2016-06-15

    目录

      /

      返回文章
      返回