• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    单斜辉石中石英出溶体的显微结构和成因机制

    徐海军 赵素涛 武云

    徐海军, 赵素涛, 武云, 2016. 单斜辉石中石英出溶体的显微结构和成因机制. 地球科学, 41(6): 948-970. doi: 10.3799/dqkx.2016.080
    引用本文: 徐海军, 赵素涛, 武云, 2016. 单斜辉石中石英出溶体的显微结构和成因机制. 地球科学, 41(6): 948-970. doi: 10.3799/dqkx.2016.080
    Xu Haijun, Zhao Sutao, Wu Yun, 2016. Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene. Earth Science, 41(6): 948-970. doi: 10.3799/dqkx.2016.080
    Citation: Xu Haijun, Zhao Sutao, Wu Yun, 2016. Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene. Earth Science, 41(6): 948-970. doi: 10.3799/dqkx.2016.080

    单斜辉石中石英出溶体的显微结构和成因机制

    doi: 10.3799/dqkx.2016.080
    基金项目: 

    国家自然科学基金项目 41172070

    国家自然科学基金项目 41272080

    国家自然科学基金项目 41204060

    高等学校博士学科点专项科研基金项目 20120145120003

    详细信息
      作者简介:

      徐海军(1978-),男,副教授,博士,主要从事显微构造和大陆深部构造研究.E-mail: hj_xu@sina.com

    • 中图分类号: P583; P588.34

    Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene

    • 摘要: 矿物出溶结构保存有早期母体矿物的物理化学条件信息,对其开展研究不仅有助于了解寄主岩石的来源深度,而且有助于研究减压折返的动力学演化过程.在世界许多高压-超高压带的榴辉岩和石榴辉石岩中,人们普遍发现单斜辉石中有定向排列的针状或棒状SiO2析出物,其矿物相主要为α石英,有时会伴生钙质角闪石等含水矿物.这些定向针状或棒状体通常平行于单斜辉石c[001]轴方向延伸,石英长轴可以为其c[0001]轴或a[1120]轴.电子背散射衍射(EBSD)测试结果表明,多数石英(96%)析出物与寄主单斜辉石具有结晶学取向关系:(1) 50%的石英c轴平行,并且[0001]Qz//[001]Cpx;(2)35%的石英至少有一个a轴平行,并且[1120]Qz//[001]Cpx;(3)11%的石英至少有一个s{1121}面平行,并且(1121)Qz//(100)Cpx.钙质角闪石析出物与寄主单斜辉石也具有密切结晶学取向关系:(100)Amp//(100)Cpx、[010]Amp//[010]Cpx、[001]Amp//[001]Cpx、[100]Amp∧[100]Cpx≈32°.上述定量显微构造证据表明,单斜辉石中定向石英析出物是由出溶作用所形成,并且多数石英出溶体形成于α石英稳定域.已有高温高压实验研究数据表明,单斜辉石中空位的形成和钙埃斯科拉组分(CaEs)的含量均受化学组成、压力、温度等多种因素综合影响:单斜辉石中CaEs含量对化学组成非常敏感,并受到共生矿物体系中自由SiO2相和蓝晶石的共同缓冲;相同化学组成和等压条件下,CaEs含量总体上随温度升高缓慢降低;相同化学组成和等温条件下,CaEs含量在<6 GPa区间随压力升高而增加,在>6 GPa区间随压力升高而降低.单斜辉石定向SiO2析出物的形成可能涉及多种因素,高压只是其中必要条件之一.榴辉岩质单斜辉石中“石英±角闪石”析出物很可能形成于开放体系,与熔流体活动密切相关,涉及多阶段物质扩散、晶体成核生长、重结晶、退变质反应等复杂作用过程.单斜辉石中定向SiO2析出物的显微结构特征并非超高压岩石的必要条件,这种特殊显微结构也不能作为证明超高压的充分条件.

       

    • 图  1  榴辉岩单斜辉石中石英出溶体显微照片

      a.新鲜榴辉岩矿物组合为石榴石+绿辉石+金红石,其中半自形绿辉石中含丰富石英棒状体;b.放大图像显示不同长度和宽度的石英棒状体呈定向排列,其长轴延长方向平行寄主单斜辉石c[001]方向;c.弱退变质榴辉岩矿物组合为石榴石+单斜辉石+金红石+石英+角闪石+斜长石,退变质角闪石沿着石榴子石与单斜辉石颗粒边界分布,单斜辉石中含有若干定向粗大石英棒状体和大量细小石英析出体;d.石英析出体截面呈柱状或不规则多边形状,部分石英析出体一侧伴生细小角闪石,注意角闪石+石英析出体常与粒内微裂隙相邻;e.单斜辉石内部含有大量石英±角闪石析出体和粒间与粒内微裂隙;f.放大图像显示较粗大角闪石紧邻粒内开放式裂隙.a,b来自南大别双河新鲜榴辉岩(RP-28);c,d,e,f来自苏鲁威海刘公岛弱退变质榴辉岩(WH08-4).a,b,c为光学显微镜单偏光图像;d,e,f为扫描电镜电子背散射图像;Amp.角闪石;Cpx.单斜辉石;Grt.石榴子石;Qz.石英;Rt.金红石

      Fig.  1.  Photographs showing parageneses and textures of clinopyroxene with quartz precipitations in eclogite

      图  2  天然榴辉岩单斜辉石中主量元素和端元组分对应关系

      a.单斜辉石中Na2O-Al2O3质量百分比对应关系;b.单斜辉石单位分子中Na-Si原子数对应关系;c.钙切尔马克(CaTs)分子与硬玉(Jd)分子对应关系;d.钙埃斯科拉(CaEs)分子与硬玉(Jd)分子对应关系.电子探针数据据Katayama et al.(2000)Tsai and Liou(2000)Dobrzhinetskaya et al.(2002)Page et al.(2005)梁金龙等(2006)Proyer et al.(2009)Xu et al.(2015)

      Fig.  2.  Relations for major element and end-number contents in clinopyroxene from natural eclogites

      图  3  威海榴辉岩(WH08-4) 电子背散射照片和Si、Na、Al、Mg、Ca元素面分布照片

      Fig.  3.  BSE image and Si, Na, Al, Mg and Ca mappings of eclogite (WH08-4) from Weihai, eastern China

      图  4  高温高压实验合成单斜辉石中CaEs和Si含量变化

      a.CaEs摩尔含量随压力变化;b.Si原子数随压力变化;c.CaEs摩尔含量随温度变化;d.Si原子数随温度变化;e.CaEs摩尔含量与总阳离子数对应关系;f.Si与Al原子数对应关系;g.CaEs摩尔含量与Si原子数对应关系;h.Si与Na+K原子数对应关系.数据引自Wood and Henderson(1978)Gasparik(1985, 1986)、Zhao et al.(2011)Kawasaki and Osanai(2015)

      Fig.  4.  Variation of CaEs component and Si cation per formula unit in clinopyroxene synthesized in high pressure and high temperature experiments

      图  5  石英和角闪石析出体与寄主单斜辉石结晶学取向对应关系

      a.单斜辉石中角闪石析出体结晶学取向上半球散点图;b.单斜辉石中石英析出体结晶学取向上半球散点图;c.石英析出体结晶学取向反极图.EBSD测量数据来自两块榴辉岩:南大别双河新鲜榴辉岩(RP-28,170 Qz in 17 Cpx)和苏鲁威海刘公岛弱退变质榴辉岩(WH08-4,53 Amp and 2 015 Qz in 35 Cpx).为获得统计对比分析结果,所有寄主单斜辉石均旋转到同一取向,石英和角闪石的结晶学取向则随寄主单斜辉石作协同旋转.单斜辉石的结晶学参考坐标已在上半球等角度散点图中标出,即[001]cpx位于南北方向,[010]cpx位于东西方向,(100)cpx位于圆心.石英反极图分别沿着//[010]cpx,//[001]cpx和⊥(100)cpx三个方向投影

      Fig.  5.  Diagnostic crystallographic topotactic relationships between quartz and amphibole precipitates and host clinopyroxene

      图  6  单斜辉石析出石英+角闪石的可能模式

      a.超高压环境条件下,在柯石英稳定域内,超硅单斜辉石可以含有过量硅和一定空位;b.随着压力降低,亚稳态超硅单斜辉石释放出少量硅,这些析出硅在单斜辉石核部结晶生长;c.随着压力和温度进一步降低,在α石英稳定域,单斜辉石在开放体系熔流体活动的促进下丢失Na等化学组分,同时伴有大量硅析出并在单斜辉石核部结晶生长出大量α石英微晶;d.在α石英稳定域,早期石英微晶重结晶形成较为粗大的定向棒状体,并伴随后续硅的析出和结晶形成微细石英针状体;e.在裂隙附近,单斜辉石和石英析出体受熔流体活动影响,发生退变质反应形成石英+角闪石特殊结构

      Fig.  6.  Possible quartz+amphibole precipitate formation model in clinopyroxene

    • [1] Bakun-Czubarow, N., 1992.Quartz Pseudomorphs after Coesite and Quartz Exsolutions in Eclogitic Omphacites of the Zlote Mountains in the Sudetes (SW Poland).Archiwum Mineralogiczne, 48:3-25. doi: 10.1007/s12583-010-0130-0
      [2] Boudeulle, M., 1994.Disproportionation in Mineral Solid Solutions:Symmetry Constraints on Precipitate Orientation and Morphology.Implications for the Study of Oriented Intergrowths.Journal of Applied Crystallography, 27(4):567-573.doi: 10.1107/S0021889894000750
      [3] Bruno, M., Compagnoni, R., Hirajima, T., et al., 2002.Jadeite with the Ca-Eskola Molecule from an Ultra-High Pressure Metagranodiorite, Dora-Maira Massif, Western Alps.Contributions to Mineralogy and Petrology, 142(5):515-519.doi: 10.1007/s004100100307
      [4] Chen, J., Xu, Z.Q., 2005.Pargasite and Ilmenite Exsolution Texture in Clinopyroxenes from the Hujialing Garnet-Pyroxenite, Su-Lu UHP Terrane, Central China:A Geodynamic Implication.European Journal of Mineralogy, 17(6):895-903.doi: 10.1127/0935-1221/2005/0017-0895
      [5] Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118.doi: 10.1007/BF00381838
      [6] Day, H.W., Mulcahy, S.R., 2007.Excess Silica in Omphacite and the Formation of Free Silica in Eclogite.Journal of Metamorphic Geology, 25(1):37-50.doi: 10.1111/j.1525-1314.2006.00677.x
      [7] Dobrzhinetskaya, L.F., Schweinehage, R., Massonne, H. J., et al., 2002.Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland:Evidence of Deep Subduction.Journal of Metamorphic Geology, 20(5):481-492.doi: 10.1046/j.1525-1314.2002.00383.x
      [8] Dobrzhinetskaya, L.F., Wirth, R., Rhede, D., et al., 2009.Phlogopite and Quartz Lamellae in Diamond-Bearing Diopside from Marbles of the Kokchetav Massif, Kazakhstan:Exsolution or Replacement Reaction?Journal of Metamorphic Geology, 27(9):607-620.doi: 10.1111/j.1525-1314.2009.00832.x
      [9] Dobrzhinetskaya, L.F., Faryad, S.W., 2011.Frontiers of Ultrahigh-Pressure Metamorphism:View from Field and Laboratory.In:Dobrzhinetskaya, L.F., Faryad, S.W., Wallis, S., Cuthbert, S., eds., Ultrahigh-Pressure Metamorphism:25 Years After The Discovery of Coesite And Diamond.Elsevier, London, 1-39.doi:10.1016/B978-0-12-385144-4.00020-5
      [10] Eskola, P., 1921.On the Eclogites of Norway.Videnskaps-selskapets i Kristiana Skrifter I.Matamatisk-Naturvi-denskabelig Klasse, 8:1-118.
      [11] Franchi, S., 1902.Ueber Feldspath-Uralitisirung der Natron-thonerde-Pyroxene aus den eklogitischen Glimmerschiefern der Gebirge von Biella (Graiische Alpen).Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 1902:112-126 (in French). https://www.researchgate.net/publication/223579660_Eclogites_and_their_geodynamic_interpretation_A_history
      [12] Gasparik, T., 1985.Experimental Study of Subsolidus Phase Relations and Mixing Properties of Pyroxene and Plagioclase in the System Na2O-CaO-Al2O3-SiO2.Contributions to Mineralogy and Petrology, 89(4):346-357.doi: 10.1007/BF00381556
      [13] Gasparik, T., 1986.Experimental Study of Subsolidus Phase Relations and Mixing Properties of Clinopyroxene in the Silica-Saturated System CaO-MgO-Al2O3-SiO2.American Mineralogist, 71(5-6):686-693. https://www.researchgate.net/publication/282312774_Experimental_study_of_subsolidus_phase_relations_and_mixing_properties_of_clinopyroxene_in_the_silica-saturated_system_CaO-MgO-Al2O3-Si2O
      [14] Gayk, T., Kleinschrodt, R., Langosch, A., et al., 1995.Quartz Exsolution in Clinopyroxene of High-Pressure Granulite from the Münchberg Massif.European Journal of Mineralogy, 7(5):1217-1220.doi: 10.1127/ejm/7/5/1217
      [15] Green, H.W., Dobrzhinetskaya, L., Bozhilov, K.N., 2000.Mineralogical and Experimental Evidence for Very Deep Exhumation from Subduction Zones.Journal of Geodynamics, 30(1-2):61-76.doi: 10.1016/S0264-3707(99)00027-7
      [16] Harlow, G.E., 1999.Interpretation of Kcpx and CaEs Components in Clinopyroxene from Diamond Inclusions and Mantle Samples.In:Gurney J.J., Gurney J.L., Pascoe M.D., Richardson S.H., eds., Proceedings of the Seventh International Kimberlite Conference.Red Roof Design, Cape Town, 321-331.
      [17] Hermann, J., 2002.Experimental Constraints on Phase Relations in Subducted Continental Crust.Contributions to Mineralogy and Petrology, 143(2):219-235.doi: 10.1007/s00410-001-0336-3
      [18] Hill, T.R., Konishi, H., Xu, H.F., 2013.Natural Occurrence of Keatite Precipitates in UHP Clinopyroxene from the Kokchetav Massif:A TEM Investigation.American Mineralogist, 98(1):187-196.doi: 10.2138/am.2013.4170
      [19] Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986.The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implication.Earth and Planetary Science Letters, 77(2):245-256.doi: 10.1016/0012-821X(86)90165-2
      [20] Isaacs, A.M., Brown, P.E., Valley, J.W., et al., 1981.An Analytical Electron Microscopic Study of A Pyroxene-Amphibole Intergrowth.Contributions to Mineralogy and Petrology, 77(2):115-120.doi: 10.1007/BF00636515
      [21] Janák, M., Froitzheim, N., Lupták, B., et al., 2004.First Evidence for Ultrahigh-Pressure Metamorphism of Eclogites in Pohorje, Slovenia:Tracing Deep Continental Subduction in the Eastern Alps.Tectonics, 23, TC5014, doi: 10.1029/2004TC001641
      [22] Katayama, I., Parkinson, C.D., Okamoto, K., et al., 2000.Supersilicic Clinopyroxene and Silica Exsolution in UHPM Eclogite and Pelitic Gneiss from the Kokchetav Massif, Kazakhstan.American Mineralogist, 85(10):1368-1374.doi: 10.2138/am-2000-1004
      [23] Kawasaki, T., Osanai, Y., 2015.Experimental Evidence of Bulk Chemistry Constraint on SiO2 Solubility in Clinopyroxene at High-Pressure Conditions.Lithos, 226:4-16.doi: 10.1016/j.lithos.2015.01.025
      [24] Khanukhova, L.T., Zharikov, V.A., Ishbuatov, R.A., et al., 1976.Excess silica in Solid-Solution of High-Pressure Clinopyroxenes as Shown by Experimental Study of the System CaMgSi2O6-CaAl2SiO6 at 35 Kilobars and 1 200 ℃.Trans.Doklady Akademii Nauk SSSR, Earth Sciences Section, 229:170-172. http://www.sciencedirect.com/science/article/pii/S002449371500033X
      [25] Kihle, J., Harlov, D.E., Frigaard, ∅., et al., 2010.Epitaxial Quartz Inclusions in Corundum from A Sapphirine-Garnet Boudin, Bamble Sector, SE Norway:SiO2-Al2O3 Miscibility at High P-T Dry Granulite Facies Conditions.Journal of Metamorphic Geology, 28(7):769-784.doi: 10.1111/j.1525-1314.2010.00891.x
      [26] Klemd, R., 2003.Ultrahigh-Pressure Metamorphism in Eclogites from the Western Tianshan High-Pressure Belt (Xinjiang, Western China)—Comment.American Mineralogist, 88(7):1153-1156. https://www.researchgate.net/publication/216831987_Ultrahigh-pressure_metamorphism_in_eclogites_from_the_western_Tianshan_high-pressure_belt_Xinjiang_western_China-Comment
      [27] Knapp, N., Woodland, A.B., Klimm, K., 2013.Experimental Constraints in the CMAS System on the Ca-Eskola Content of Eclogitic Clinopyroxene.European Journal of Mineralogy, 25(4):579-596.doi: 10.1127/0935-1221/2013/0025-2326
      [28] Konzett, J., Frost, D.J., Proyer, A., et al., 2008a.The Ca-Eskola Component in Eclogitic Clinopyroxene as a Function of Pressure, Temperature and Bulk Composition:An Experimental Study to 15 GPa with Possible Implications for the Formation of Oriented SiO2-Inclusions in Omphacite.Contributions to Mineralogy and Petrology, 155(2):215-228.doi: 10.1007/s00410-007-0238-0
      [29] Konzett, J., Libowitzky, E., Hejny, C., et al., 2008b.Oriented Quartz+Calcic Amphibole Inclusions in Omphacite from the Saualpe and Pohorje Mountain Eclogites, Eastern Alps—An Assessment of Possible Formation Mechanisms based on IR-and Mineral Chemical Data and Water Storage in Eastern Alpine Eclogites.Lithos, 106(3-4):336-350.doi: 10.1016/j.lithos.2008.09.002
      [30] Kushiro, I., 1969.Clinopyroxene Solid Solutions Formed by Reactions between Diopside and Plagioclase at High Pressures.Mineralogical Society of America, Special Publication, 2:179-191. doi: 10.1134/S0016702907060055
      [31] Leake, B.E., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.American Mineralogist, 82(9-10):1019-1037. http://www.canmin.org/content/41/6/1355.abstract
      [32] Liang, J.L., Sun, X.M., Xu, L., et al., 2006.Quartz Exsolution in Omphacite of Ultrahigh Pressure Metamorphic Rocks from CCSD.Acta Geologica Sinica, 80(12):1904-1910 (in Chinese with English abstract). doi: 10.1080/00206819909465184
      [33] Liati, A., Gebauer, D., Wysoczanski, R., 2002.U-Pb SHRIMP-Dating of Zircon Domains from UHP Garnet-Rich Mafic Rocks and Late Pegmatoids in the Rhodope Zone (N Greece):Evidence for Early Cretaceous Crystallization and Late Cretaceous Metamorphism.Chemical Geology, 184(3-4):281-299.doi: 10.1016/S0009-2541(01)00367-9
      [34] Liou, J.G., Zhang, R.Y., Ernst, W.G., et al., 1998.High-Pressure Minerals from Deeply Subducted Metamorphic Rocks.Reviews in Mineralogy and Geochemistry, 37(1):33-96. http://cat.inist.fr/?aModele=afficheN&cpsidt=9898504
      [35] Liu, L., Zhang, J.F., Green, H.W., et al., 2007.Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to > 350 km.Earth and Planetary Science Letters, 263(3-4):180-191.doi: 10.1016/j.epsl.2007.08.010
      [36] Liu, L., Yang, J.X., Zhang, J.F., et al., 2009.Exsolution Microstructures in Ultrahigh-Pressure Rocks:Progress, Controversies and Challenges.Chinese Science Bulletin, 54(10):1387-1400 (in Chinese). doi: 10.1007/s11434-009-0204-5
      [37] Liu, X.W., Jin, Z.M., 2008.Amphibole and Albite Exsolution in Omphacite of Eclogite from Raobazhai.Bulletin of Mineralogy, Petrology and Geochemistry, 27:379-380 (in Chinese). https://www.researchgate.net/publication/292769927_The_exsolution_of_clinoenstatite_and_quartz_in_diopside_from_garnet_pyroxenite_in_northern_Dabie
      [38] Liu, Y.C., Gu, X.F., Chen, Z.Y., 2009.Breakdown Textures and Ultrahigh Pressure Metamorphism of the Eclogites from the Luotian Dome in the North Dabie Complex.Chinese Journal of Geology, 44(1):202-212 (in Chinese with English abstract). https://www.researchgate.net/publication/288738680_Breakdown_textures_and_ultrahigh-pressure_metamorphism_of_the_eclogites_from_the_Luotian_Dome_in_the_North_Dabie_Complex
      [39] Liu, Y.C., Gu, X.F., Rolfo, F., et al., 2011.Ultrahigh-Pressure Metamorphism and Multistage Exhumation of Eclogite of the Luotian Dome, North Dabie Complex Zone (Central China):Evidence from Mineral Inclusions and Decompression Textures.Journal of Asian Earth Sciences, 42(4):607-617.doi: 10.1016/j.jseaes.2010.10.016
      [40] Mao, H.K., 1971.The System Jadeite (NaAlSi2O6)-Anorthite (CaAl2Si2O8) at High Pressures.Year book-Carnegie Institution of Washington, 69:163-168. https://www.researchgate.net/publication/286316481_Pressure_dependence_of_self-diffusion_in_NaAlSi3O8_melt_A_molecular_dynamics_study
      [41] McCormick, T.C., 1986.Crystal-Chemical Aspects of Nonstoichiometric Pyroxenes.American Mineralogist, 71(11-12):1434-1440. https://www.researchgate.net/publication/279559395_Crystal-chemical_aspects_of_nonstoichiometric_pyroxenes
      [42] McNamara, D.D., Wheeler, J., Pearce, M., et al., 2012.Fabrics Produced Mimetically during Static Metamorphism in Retrogressed Eclogites from the Zermatt-Saas Zone, Western Italian Alps.Journal of Structural Geology, 44:167-178.doi: 10.1016/j.jsg.2012.08.006
      [43] Milholland, C.S., Presnall, D.C., 1998.Liquidus Phase Relations in the CaO-MgO-Al2O3-SiO2 System at 3.0 GPa:The Aluminous Pyroxene Thermal Divide and High-Pressure Fractionation of Picritic and Komatiitic Magmas.Journal of Petrology, 39(1):3-27.doi: 10.1093/petroj/39.1.3
      [44] Miller, C., Mundil, R., Thöni, M., et al., 2005.Refining the Timing of Eclogite Metamorphism:A Geochemical, Petrological, Sm-Nd and U-Pb Case Study from the Pohorje Mountains, Slovenia (Eastern Alps).Contributions to Mineralogy and Petrology, 150(1):70-84.doi: 10.1007/s00410-005-0004-0
      [45] Mori, T., Green, D.H., 1976.Subsolidus Equilibria between Pyroxenes in the CaO-MgO-SiO2 System at High Pressures and Temperatures.American Mineralogist, 61:616-625. https://www.researchgate.net/profile/David_Green11/publication/236383966_Subsolidus_equilibria_between_pyroxenes_in_the_CaO-MgO-SiO2_system_at_high_pressures_and_temperatures/links/00b7d52531d4e9bc68000000.pdf?origin=publication_detail
      [46] Ono, S., Yasuda, A., 1996.Compositional Change of Majoritic Garnet in a MORB Composition from 7 to 17 GPa and 1 400 to 1 600 ℃.Physics of the Earth and Planetary Interiors, 96(2-3):171-179.doi: 10.1016/0031-9201(96)03149-4
      [47] Page, F.Z., Essene, E.J., Mukasa, S.B., 2003.Prograde and Retrograde History of Eclogites from the Eastern Blue Ridge, North Carolina, USA.Journal of Metamorphic Geology, 21(7):685-698.doi: 10.1046/j.1525-1314.2003.00479.x
      [48] Page, F.Z., Essene, E.J., Mukasa, S.B., 2005.Quartz Exsolution in Clinopyroxene Is Not Proof of Ultrahigh Pressures:Evidence from Eclogites from the Eastern Blue Ridge, Southern Appalachians, U.S.A.American Mineralogist, 90(7):1092-1099.doi: 10.2138/am.2005.1761
      [49] Papike, J.J., Ross, M., Clark, J.R., 1969.Crystal Chemical Characterization of Amphiboles based on Five New Structure Determinations.Mineralogical Society of America Special Paper, 2:117-136. http://www.sciencedirect.com/science/article/pii/0024493773900868
      [50] Prior, D.J., Boyle, A.P., Brenker, F., et al., 1999.The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks.American Mineralogist, 84(11-12):1741-1759. doi: 10.2138/am-1999-11-1204
      [51] Proyer, A., Habler, G., Abart, R., et al., 2013.TiO2 Exsolution from Garnet by Open-System Precipitation:Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions.Contributions to Mineralogy and Petrology, 166(1):211-234.doi: 10.1007/s00410-013-0872-7
      [52] Proyer, A., Krenn, K., Hoinkes, G., 2009.Oriented Precipitates of Quartz and Amphibole in Clinopyroxene of Metabasites from the Greek Rhodope:A Product of Open System Precipitation during Eclogite-Granulite-Amphibolite Transition.Journal of Metamorphic Geology, 27(9):639-654.doi: 10.1111/j.1525-1314.2009.00844.x
      [53] Proyer, A., McCammon, C., Dachs, E., 2004.Pitfalls in Geothermobarometry of Eclogites:Fe3+ and Changes in the Mineral Chemistry of Omphacite at Ultrahigh Pressures.Contributions to Mineralogy and Petrology, 147(3):305-318.doi: 10.1007/s00410-004-0554-6
      [54] Safonov, O.G., Perchuk, L.L., Litvin, Y.A., et al., 2005.Phase Relations in the CaMgSi2O6-KAlSi3O8 Join at 6 and 3.5 GPa as a Model for Formation of Some Potassium-Bearing Deep-Seated Mineral Assemblages.Contributions to Mineralogy and Petrology, 149(3):316-337.doi: 10.1007/s00410-005-0651-1
      [55] Shau, Y. H., Tsai, H. C., Liu, Y. H., et al., 2005.Transmission Electron Microscopic Study of Quartz Rods with Intergrown Amphibole within Omphacite in Eclogites from the Sulu Ultrahigh-Pressure Metamorphic Terrane, Eastern China.7th International Eclogite Conference, Leibnitz, 150:139.
      [56] Smith, D.C., 1984.Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics.Nature, 310(5979):641-644.doi: 10.1038/310641a0
      [57] Smith, D.C., 1988.A Review of the Peculiar Mineralogy of the "Norwegian Coesite-Eclogite Province", with Crystal-Chemical, Petrological, Geochemical and Geodynamical Notes and an Extensive Bibliography.In:Smith, D.C., ed., Eclogites and Eclogite-Facies Rocks, Developments in Petrology.Elsevier, Amsterdam.
      [58] Smith, D.C., 2006.The SHAND Quaternary System for Evaluating the Supersilicic or Subsilicic Crystal-Chemistry of Eclogite Minerals, and Potential New UHPM Pyroxene and Garnet End-Members.Mineralogy and Petrology, 88(1-2):87-122.doi: 10.1007/s00710-006-0151-7
      [59] Smith, D.C., Cheeney, R.F., 1980.Oriented Needles of Quartz in Clinopyroxene:Evidence for Exsolution of SiO2 from a Non-Stoichiometric Supersilicic "Clinopyroxene".26th International Geological Congress, Paris.
      [60] Smith, P.P.K., 1977.An Electron Microscopic Study of Amphibole Lamellae in Augite.Contributions to Mineralogy and Petrology, 59(3):317-322.doi: 10.1007/BF00374560
      [61] Smyth, J.R., 1980.Cation Vacancies and the Crystal Chemistry of Breakdown Reactions in Kimberlitic Omphacite.American Mineralogist, 65(11-12):1185-1191. http://www.osti.gov/scitech/biblio/6636513
      [62] Sobolev, N.V., Kuznetsova, I.K., Zyuzin, N.I., 1968.The Petrology of Grospydite Xenoliths from Zagodochnaya Kimberlite Pipe in Yakutia.Journal of Petrology, 9(2):253-280.doi: 10.1093/petrology/9.2.253
      [63] Sobolev, N.V., Shatsky, V.S., 1990.Diamond Inclusions in Garnets from Metamorphic Rocks:A New Environment for Diamond Formation.Nature, 343(6260):742-746.doi: 10.1038/343742a0
      [64] Su, W., You, Z.D., Wang, R.C., et al., 2001.Quartz and Clinoenstatite Exsolutions in Clinopyroxene of Garnet-Pyroxenolite from the North Dabie Mountains, Eastern China.Chinese Science Bulletin, 46(10):850-853 (in Chinese). doi: 10.1007/BF02900437
      [65] Terry, M.P., Robinson, P., 2001.Evidence for Supersilicic Pyroxene in an UHP Kyanite Eclogite, Western Gneiss Region, Norway.Eleventh Annual V.M.Goldschmidt Conference, Hot Springs. https://www.researchgate.net/publication/216831880_Evidence_for_supersilicic_pyroxene_in_an_UHP_kyanite_eclogite_Western_Gneiss_Region_Norway
      [66] Tsai, C.H., Liou, J.G., 2000.Eclogite-Facies Relics and Inferred Ultrahigh-Pressure Metamorphism in the North Dabie Complex, Central-Eastern China.American Mineralogist, 85(1):1-8.doi: 10.2138/am-2000-0101
      [67] Tsai, H.C., 2005.Mineral Precipitates in Eclogites from Donghai in the Sulu Ultrahigh-Pressure Province, Eastern China (Dissertation).National Sun Yat-sen University, Gaoxiong:46-103 (in Chinese with English abstract). http://www.openthesis.org/documents/Mineral-precipitates-in-eclogites-from-232203.html
      [68] Vogel, D.E., 1966.Nature and Chemistry of the Formation of Clinopyroxene-Plagioclase Symplectite from Omphacite.Neues Jahrbuch für Mineralogie-Monatshefte, 6:185-189. doi: 10.1007/BF01829368
      [69] Wang, L., Jin, Z.M., He, M.C., 2003.Raman Spectrum Study on Quartz Exsolution in Omphacite from Eclogite and Its Tectonic Significances.Earth Science, 28(2):143-150 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zddy200302002&dbname=CJFD&dbcode=CJFQ
      [70] Wenk, H.R., Chen, K., Smith, R., 2011.Morphology and Microstructure of Magnetite and Ilmenite Inclusions in Plagioclase from Adirondack Anorthositic Gneiss.American Mineralogist, 96(8-9):1316-1324.doi: 10.2138/am.2011.3760
      [71] Wood, B.J., Henderson, C.M.B., 1978.Composition and Unit-Cell Parameters of Synthetic Non-Stoichiometric Tschermakitic Clinopyroxenes.American Mineralogist, 63(1-2):66-72. http://ammin.geoscienceworld.org/content/63/1-2/66
      [72] Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702006.htm
      [73] Xu, H.J., Zhang, J.F., Zong, K.Q., et al., 2015.Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China.Lithos, 226:17-30.doi: 10.1016/j.lithos.2015.02.010
      [74] Xu, S.T., Su, W., Liu, Y.C., et al., 1992.Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting.Science, 256(5053):80-82.doi: 10.1126/science.256.5053.80
      [75] Yamaguchi, Y., Akai, J., Tomita, K., 1978.Clinoamphibole Lamellae in Diopside of Garnet Lherzolite from Alpe Arami, Bellinzona, Switzerland.Contributions to Mineralogy and Petrology, 66(3):263-270.doi: 10.1007/BF00373410
      [76] You, Z.D., Zhong, Z.Q., Suo, S.T., 2007.The Mineralogical Criteria for Ultra-High Pressure Metamorphism.Geoscience, 21(2):195-202 (in Chinese with English abstract). https://en.wikipedia.org/wiki/Ultra-high-pressure_metamorphism
      [77] Zhang, J.F., Xu, H.J., Liu, Q., et al., 2011a.Pyroxene Exsolution Topotaxy in Majoritic Garnet from 250 to 300 km Depth.Journal of Metamorphic Geology, 29(7):741-751.doi: 10.1111/j.1525-1314.2011.00939.x
      [78] Zhang, Z.M., Shen, K., Liou, J.G., et al., 2011b.Fluid-Rock Interactions during UHP Metamorphism:A Review of the Dabie-Sulu Orogen, East-Central China.Journal of Asian Earth Sciences, 42(3):316-329.doi: 10.1016/j.jseaes.2011.02.002
      [79] Zhang, L.F., Ellis, D.J., Jiang, W.B., 2002.Ultrahigh-Pressure Metamorphism in Western Tianshan, China:Part Ⅰ.Evidence from Inclusions of Coesite Pseudomorphs in Garnet and from Quartz Exsolution Lamellae in Omphacite in Eclogites.American Mineralogist, 87(7):853-860.doi: 10.2138/am-2002-0707
      [80] Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005.Relict Coesite Exsolution in Omphacite from Western Tianshan Eclogites, China.American Mineralogist, 90(1):181-186.doi: 10.2138/am.2005.1587
      [81] Zhang, R.Y., Liou, J.G., 1999.Exolution Lamellae in Minerals from Ultrahigh-Pressure Rocks.International Geology Review, 41:981-993.doi: 10.1080/00206819909465184
      [82] Zhang, Z.M., Shen, K., Liou, J.G., et al., 2007.Fluid Inclusions Associated with Exsolved Quartz Needles in Omphacite of UHP Eclogites, Chinese Continental Scientific Drilling Main Drill Hole.International Geology Review, 49(5):479-486.doi: 10.2747/0020-6814.49.5.479
      [83] Zhao, S.T, Nee, P., Green, H.W., et al., 2011.Ca-Eskola Component in Clinopyroxene:Experimental Studies at High Pressures and High Temperatures in Multianvil Apparatus.Earth and Planetary Science Letters, 307(3-4):517-524.doi: 10.1016/j.epsl.2011.05.026
      [84] Zharikov, V.A., Ishbulatov, R.A., Chudinovskikh, L.T., 1984.High Pressure Clinopyroxenes and the Eclogite Barrier.Soviet Geology and Geophysics, 25:53-61. https://www.mindat.org/min-7630.html
      [85] Zheng, Y.F., Zhang, L.L., Liu, L., et al., 2013.Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):135-158 (in Chinese with English abstract). http://www.eurekalert.org/pub_releases/2013-09/scp-scp091113.php
      [86] Zhu, Y.F., Ogasawara, Y., 2002.Phlogopite and Coesite Exsolution from Super-Silicic Clinopyroxene.International Geology Review, 44(9):831-836.doi: 10.2747/0020-6814.44.9.831
      [87] 梁金龙, 孙晓明, 徐莉, 等, 2006.CCSD超高压变质岩绿辉石中的石英出溶体及其大陆动力学意义.地质学报, 80(12): 1904-1910. doi: 10.3321/j.issn:0001-5717.2006.12.013
      [88] 刘良, 杨家喜, 章军锋, 等, 2009.超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战.科学通报, 54(10): 1387-1400. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200910011.htm
      [89] 刘祥文, 金振民, 2008.饶拔寨榴辉岩绿辉石中镁铁闪石及单斜钠长石出溶体.矿物岩石地球化学通报, 27: 379-380. doi: 10.3969/j.issn.1007-2802.2008.z1.203
      [90] 刘贻灿, 古晓锋, 陈振宇, 2009.北大别罗田榴辉岩的减压出溶结构与超高压变质作用.地质科学, 44(1): 202-212. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013178601.htm
      [91] 苏文, 游振东, 王汝成, 等, 2001.大别山北部石榴辉石岩透辉石中石英和单斜顽火辉石的出溶.科学通报, 46(10): 850-853. doi: 10.3321/j.issn:0023-074X.2001.10.015
      [92] 蔡宪璋, 2005. 中国苏鲁超高压变质带东海地区榴辉岩之矿物析出物研究(硕士学位论文). 高雄: 国立中山大学, 46-103.
      [93] 王璐, 金振民, 何谋春, 2003.榴辉岩中石英出溶体的拉曼光谱学研究及其构造意义.地球科学, 28(2): 143-150. http://earth-science.net/WebPage/Article.aspx?id=1227
      [94] 徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2): 213-225. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702006.htm
      [95] 游振东, 钟増球, 索书田, 2007.论超高压变质的矿物学标志.现代地质, 21(2): 195-202. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702004.htm
      [96] 郑永飞, 张立飞, 刘良, 等, 2013.大陆深俯冲与超高压变质研究进展.矿物岩石地球化学通报, 32(2): 135-158. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201302001.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  5194
    • HTML全文浏览量:  1820
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-01-25
    • 刊出日期:  2016-06-15

    目录

      /

      返回文章
      返回