Early Paleozoic Subduction in Cathaysia (Ⅱ): New Evidence from the Dashuang High Magnesian-Magnesian Andesite
-
摘要: 早古生代加里东期造山运动(广西运动)的性质是华南大地构造演化长期争议的重大地质问题.桂东南岑溪大爽一带出露一套早古生代玄武安山岩-安山岩火山岩系.玄武安山岩-安山岩SiO2含量为47.8%~58.8%,Al2O3含量为13.35%~14.25%,CaO含量为3.79%~5.61%,TiO2含量为0.46%~0.56%,而MgO(4.39%~9.96%)、Ni(141×10-6~210×10-6)和Cr(427×10-6~750×10-6)的含量明显偏高,属钙碱性到过渡系列的高镁-镁质玄武安山岩-安山岩.轻稀土富集,轻重稀土分异明显, δEu弱负异常(0.73~0.92),(La/Yb)N为3.4~7.9,(La/Sm)N为3.15~4.95.大离子亲石元素Rb、Ba、Th、U、K、Pb明显富集,高场强元素Nb、Ta、Ti相对亏损,具较低Ti/V(14.7~21.8),表现为高镁-镁质玄武安山岩-安山岩(赞岐岩)的典型特征.镁质安山岩由LA-ICP-MS锆石U-Pb法获得的成岩年龄为443±4 Ma,表明这套火山岩系形成于晚奥陶世-早志留世.上述研究表明,大爽玄武安山岩-安山岩系为晚奥陶世-早志留世形成于洋壳俯冲岛弧弧前环境的高镁-镁质玄武安山岩-安山岩系,其发现为华南扬子与华夏之间存在早古生代洋壳俯冲作用提供了重要证据.Abstract: The nature of early Paleozoic Caledonian orogeny (Guangxi movement), as one of the key geolocial problems of tectonic evolution in South China, has been controversial for a long time. In this study we report a suite of early Paleozoic basaltic andesite-andesite volcanic rocks located at the Dashuang in the Cenxi area of southeastern Guangxi in South China. Petrogeochemical data of the basaltic andesite-andesite show the contents of SiO2=47.8%-58.8%, Al2O3=13.35%-14.25%, CaO=3.79%-5.61% and TiO2=0.46%-0.56%. It also shows high contents of MgO=4.39%-9.96%, Ni=141×10-6-210×10-6 and Cr=427×10-6-750×10-6, indicating that they belong to high magnesian (HM)-magnesian (M) basaltic andesite-andesite from calc-alkaline to transitional series. The volcanic rocks exhibit enriched-LREE, weak negative δEu abnormally (0.73-0.92), (La/Yb)N=3.4-7.9, (La/Sm)N=3.15-4.95. Basaltic andesite-andesite is characterized by pronounced enrichment of LILEs (e.g. Rb, Ba, Th, U, K, Pb), relative depletion of HFSEs (e.g. Nb, Ta, Ti), and low Ti/V=14.7-21.8. All these show typical characteristics of high magnesian (HM)-magnesian (M) basaltic andesite-andesite (sanukite). The LA-ICP-MS zircon U-Pb age of the magnesian andesite is 443±4 Ma, showing that the formation ages of the volcanic rock series should be between the Late Ordovician and Early Silurian epoch. In conclusion, we suggest that the Dashuang volcanic rocks are the suite of high magnesian (HM)-magnesian (M) basaltic andesite-andesite series formed in the forearc tectonic environment in Late Ordovician-Early Silurian epoch, which provides key evidence for Early Paleozoic oceanic crust subduction between Yangtze Craton and Cathaysia block along Qinzhou-Hangzhou tectonic suture belt in South China.
-
图 1 华夏地区晚奥陶世-志留纪大地构造简图
Fig. 1. Tectonic sketch of Cathayia region from Late Ordovician to Silurian
图 3 玄武安山岩-安山岩野外宏观和显微照片
a.含杏仁玄武安山岩野外特征; b.风化角砾状安山岩野外特征; c.玄武安山岩中橄榄石斑晶,基质为间隐结构、玻晶交织结构(正交镜); d.玄武安山岩中角闪石斑晶边缘铁质析出,基质为交织结构(正交镜); e.细粒安山岩斑状结构,基质为交织结构,后期方解石微细脉穿插(正交镜); f.细粒安山岩中棱角状、半自形长石、石英斑晶,基质为交织结构(正交镜); Pl.斜长石; Q.石英; Ol.橄榄石; Mag.磁铁矿; Cal.方解石
Fig. 3. Field and microstructural photomicrographs of the basaltic andesite-andesite
图 4 玄武安山岩-安山岩岩石化学分类判别
a.Nb/Y-Zr/Ti岩石化学分类(Floyd and Winchester, 1975; Pearce, 1996); b.Y-Zr岩石系列判别图(Ross and Bédard, 2009); c.高镁和镁质安山岩SiO2-MgO判别图(邓晋福等, 2010); d.高镁和镁质安山岩TFeO/MgO-SiO2判别图(邓晋福等, 2010).图c中PQ为HMA(高镁安山岩)和MA(镁质安山岩)分界线, RS为MA和非MA分界线; 图d中直线为CA(钙碱性系列)与Th(拉斑系列)分界线, 虚线为低Fe钙碱性与中Fe钙碱性系列分界线, LF-CA为低Fe钙碱性系列
Fig. 4. Geochemical classification and discriminant diagrams of the basaltic andesite-andesite
图 5 玄武安山岩-安山岩稀土元素球粒陨石标准化配分型式(a)和微量元素N-MORB标准化蛛网图(b)
图a, b标准化数值据Sun and McDonough(1989)
Fig. 5. Chondrite-normalized REE diagram (a) and N-MORB-normalized trace elements spider-diagram (b) of the basaltic andesite-andesite
图 7 玄武安山岩-安山岩赞岐岩、埃达克岩、玻安岩和巴哈岩分类判别
a.TiO2-MgO/(MgO+FeO*)判别图解;b.Sr/Y-Y判别图解;c.(La/Yb)N-YbN判别图解;d.N-MORB标准化的微量元素分布;据Kamei et al.(2004),张旗等(2004).图d标准化数值据Sun and McDonough(1989)
Fig. 7. Sanukitic, adakitic, boninite and bajaitic discriminant diagrams of the basaltic andesite-andesite
图 8 玄武安山岩V-Ti(a)和La/Nb-Y(b)构造环境判别
N-MORB.正常洋脊玄武岩.E-MORB.富集洋脊玄武岩; T-MORB.过渡型洋脊玄武岩; FAB.弧前玄武岩;BABB.弧后盆地玄武岩;CFB.大陆溢流玄武岩;OFB.大洋溢流玄武岩;IAB.岛弧玄武岩; IAT.岛弧拉斑玄武岩; ICA.岛弧钙碱性玄武岩; WPB.板内玄武岩; OIB.洋岛玄武岩; AB.弧玄武岩; FAB.弧前玄武岩;图a据Shervais(1982);图b据Floyd et al.(1991)
Fig. 8. Tectonic discriminant diagrams of V-Ti (a) and La/Nb-Y for the basaltic andesite (b)
表 1 玄武安山岩-安山岩主量元素(%)和微量元素(10-6)组成
Table 1. Major elements (%) and trace elements (10-6) composition of the basaltic andesite-andesite
岩性 玄武安山岩 安山岩 样号 12DS01 14DS9-1 14DS9-2 12DS03 14DS10-1 14DS10-2 15DS10-3 15DS10-4 SiO2 49.28 47.60 47.80 52.74 57.40 57.50 55.70 58.81 TiO2 0.56 0.51 0.51 0.49 0.49 0.52 0.48 0.46 Al2O3 13.99 14.20 14.25 13.82 13.75 13.35 13.70 13.83 Fe2O3 10.06 9.62 9.70 4.89 4.42 4.31 4.27 5.01 FeO 2.10 2.20 2.18 4.15 3.10 2.74 3.31 2.58 MnO 0.14 0.15 0.15 0.17 0.09 0.09 0.12 0.10 MgO 9.65 9.95 9.96 7.38 5.88 5.35 5.16 4.39 CaO 4.23 4.62 4.64 5.61 3.79 4.53 4.90 4.06 Na2O 5.49 5.16 5.18 4.15 3.47 3.40 3.64 3.37 K2O 0.19 0.20 0.21 2.18 2.96 2.72 2.31 2.86 P2O5 0.06 0.05 0.05 0.10 0.11 0.13 0.09 0.12 LOI 3.88 4.65 4.73 3.63 3.74 4.51 5.42 3.84 Total 99.63 98.91 99.36 99.31 99.20 99.15 99.10 99.43 Mg# 61.00 62.00 62.00 61.00 60.00 59.00 56.00 53.00 Ba 70.50 93.00 90.90 420.00 656.00 710.00 730.00 486.00 Rb 4.30 5.50 5.70 77.30 124.00 116.00 149.00 111.00 Th 8.74 7.70 7.54 10.70 11.80 13.60 11.10 12.00 Pb 41.30 40.00 45.00 11.60 10.00 10.00 11.00 10.00 Nb 3.54 3.40 3.30 4.58 6.00 6.60 4.80 5.40 Sr 121.00 173.00 170.00 103.00 138.00 150.00 89.70 113.00 Zr 67.40 65.00 65.00 85.30 176.00 183.00 95.00 118.00 Y 15.30 14.80 14.90 17.30 16.90 17.70 15.30 13.80 Cr 750.00 557.00 536.00 659.00 427.00 427.00 481.00 430.00 V 205.00 208.00 203.00 204.00 159.00 148.00 132.00 127.00 Ni 248.00 201.00 204.00 194.00 162.00 141.00 198.00 154.00 Co 57.70 62.00 61.00 43.20 55.00 42.00 55.00 44.00 Cs 1.15 1.21 1.12 3.64 6.98 6.21 7.74 5.84 Ta 0.29 0.20 0.30 0.38 0.50 0.60 0.50 0.40 Hf 2.02 2.00 1.90 2.42 4.70 5.10 2.90 3.40 U 1.44 1.31 1.28 1.93 1.95 1.91 1.49 1.91 La 9.29 9.20 8.60 14.00 20.00 21.20 16.70 20.00 Ce 18.50 19.00 17.80 27.40 39.90 42.60 32.60 30.00 Pr 2.12 2.22 2.16 3.07 4.27 4.62 3.73 3.33 Nd 8.41 8.10 7.70 11.70 14.30 15.40 12.50 12.60 Sm 1.85 1.78 1.76 2.40 2.61 2.79 2.55 2.33 Eu 0.56 0.61 0.58 0.64 0.71 0.75 0.62 0.59 Gd 1.91 2.07 2.11 2.48 2.51 2.81 2.57 2.07 Tb 0.37 0.37 0.38 0.43 0.45 0.48 0.46 0.36 Dy 2.47 2.38 2.31 2.90 2.80 2.96 2.83 2.39 Ho 0.54 0.50 0.52 0.57 0.61 0.62 0.55 0.51 Er 1.73 1.51 1.55 1.79 1.73 1.99 1.65 1.53 Tm 0.28 0.23 0.23 0.26 0.26 0.28 0.25 0.23 Yb 1.94 1.45 1.52 1.84 1.85 1.92 1.54 1.75 Lu 0.30 0.24 0.22 0.28 0.27 0.29 0.23 0.27 表 2 镁质安山岩LA-ICP-UP锆石U-Pb测试结果
Table 2. Analyses results of LA-ICP-MS zircon U-Pb dating for the magnesian andesite
测点 Th
(10-6)U
(10-6)Th/U 同位素比值(±1σ) 年龄Ma(±1σ) 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 1 47.50 164 0.29 0.056 8±0.002 3 0.762 5±0.031 0 0.097 2±0.001 0 483±93 575±18 598±6 2 179.00 593 0.30 0.057 0±0.001 4 0.601 7±0.015 3 0.076 3±0.000 9 500±54 478±10 474±5 3 381.00 906 0.42 0.056 4±0.001 4 0.542 7±0.013 6 0.069 3±0.000 5 478±56 440±9 432±3 4 132.00 456 0.29 0.073 5±0.001 6 1.821 9±0.040 7 0.178 4±0.001 3 1 028±44 1 053±15 1 058±7 5 90.20 263 0.34 0.059 8±0.002 0 0.844 7±0.028 5 0.102 3±0.001 0 598±105 622±16 628±6 6 810.00 1 225 0.66 0.054 4±0.001 4 0.537 3±0.013 9 0.071 2±0.000 6 387±57 437±9 443±4 7 52.00 103 0.51 0.063 0±0.003 0 0.861 2±0.039 8 0.099 7±0.001 1 709±102 631±22 612±7 8 192.00 179 1.07 0.053 9±0.002 5 0.636 3±0.029 4 0.086 0±0.001 0 369±110 500±18 532±6 9 58.30 147 0.40 0.065 5±0.002 7 0.935 9±0.038 8 0.103 4±0.001 1 791±88 671±20 634±6 10 250.00 332 0.75 0.057 6±0.001 9 0.687 5±0.023 4 0.086 1±0.000 9 517±74 531±14 532±5 11 177.00 486 0.36 0.125 3±0.002 2 6.612 3±0.115 8 0.379 5±0.002 7 2 032±30 2 061±15 2 074±13 12 45.30 142 0.32 0.164 4±0.003 4 11.121 5±0.230 5 0.486 5±0.004 4 2 502±35 2 533±19 2 555±19 13 285.00 338 0.84 0.110 3±0.002 4 4.726 0±0.099 6 0.307 7±0.002 6 1 806±39 1 772±18 1 729±13 14 133.00 357 0.37 0.057 8±0.002 0 0.823 4±0.027 1 0.103 1±0.001 1 524±71 610±15 632±7 15 290.00 623 0.47 0.054 7±0.001 5 0.542 9±0.014 5 0.071 5±0.000 7 398±58 440±10 445±4 16 450.00 1 203 0.37 0.054 9±0.001 2 0.547 5±0.012 3 0.071 7±0.000 7 409±47 443±8 447±4 17 137.00 454 0.30 0.072 1±0.001 5 1.724 7±0.036 2 0.171 7±0.001 2 991±43 1018±14 1021±6 18 185.00 460 0.40 0.054 3±0.001 8 0.545 3±0.018 2 0.072 1±0.000 7 383±74 442±12 449±4 19 254.00 649 0.39 0.055 4±0.001 7 0.556 6±0.016 6 0.072 0±0.000 6 428±67 449±11 448±4 20 314.00 341 0.92 0.057 2±0.001 9 0.648 1±0.021 7 0.081 7±0.000 8 498±76 507±13 506±5 21 7.17 294 0.02 0.071 4±0.002 0 1.681 3±0.047 0 0.169 9±0.001 9 969±56 1001±18 1012±11 22 352.00 672 0.52 0.054 5±0.001 6 0.535 5±0.015 3 0.070 9±0.000 7 391±65 435±10 441±4 23 112.00 390 0.29 0.117 1±0.002 4 3.838 6±0.086 9 0.235 7±0.002 8 1 922±36 1 601±18 1 364±15 24 339.00 618 0.55 0.069 9±0.001 6 1.496 7±0.034 0 0.154 2±0.001 3 924±45 929±14 924±7 25 265.00 426 0.62 0.057 8±0.001 8 0.559 2±0.017 4 0.069 8±0.000 6 524±69 451±11 435±4 26 418.00 565 0.74 0.079 4±0.001 2 2.022 1±0.035 8 0.183 3±0.002 1 1 183±30 1 123±12 1 085±12 27 232.00 451 0.51 0.057 9±0.001 2 0.580 9±0.013 6 0.072 1±0.001 0 528±44 465±9 449±6 28 142.00 121 1.17 0.125 0±0.002 2 6.552 2±0.127 7 0.377 4±0.004 7 2 029±30 2 053±17 2 064±22 29 415.00 1 233 0.34 0.056 2±0.000 9 0.553 2±0.009 6 0.071 0±0.000 7 457±37 447±6 442±4 30 7.97 390 0.02 0.079 2±0.001 4 2.263 0±0.044 3 0.205 9±0.002 5 1 177±35 1 201±14 1 207±13 31 159.00 268 0.59 0.061 2±0.001 8 0.575 8±0.017 6 0.067 6±0.000 8 656±63 462±11 422±5 32 316.00 574 0.55 0.102 9±0.001 5 3.809 9±0.058 1 0.266 9±0.002 5 1 676±26 1 595±12 1 525±13 33 360.00 701 0.51 0.068 8±0.001 0 1.191 7±0.020 6 0.124 8±0.001 4 892±31 797±10 758±8 34 616.00 760 0.81 0.069 1±0.001 0 1.396 8±0.022 2 0.145 5±0.001 3 902±30 888±9 876±7 35 180.00 463 0.39 0.057 3±0.001 3 0.569 8±0.013 2 0.072 0±0.000 9 502±48 458±9 448±6 36 189.00 558 0.34 0.057 7±0.001 3 0.561 9±0.012 4 0.070 3±0.000 7 520±46 453±8 438±4 37 138.00 290 0.48 0.108 9±0.001 9 4.055 7±0.103 4 0.266 5±0.005 1 1 783±31 1 645±21 1 523±26 38 77.80 639 0.12 0.071 9±0.001 1 1.715 7±0.029 9 0.172 1±0.001 9 983±31 1 014±11 1 024±10 39 80.70 245 0.33 0.075 6±0.001 3 1.839 8±0.036 6 0.175 4±0.001 8 1 083±36 1 060±13 1 042±10 40 297.00 690 0.43 0.056 7±0.001 1 0.575 9±0.014 7 0.073 3±0.001 2 480±44 462±9 456±7 -
[1] Cawood, P.A., Wang, Y.J., Xu, Y.J., 2013.Locating South China in Rodinia and Gondwana:A Fragment of Greater India Lithosphere?Geology, 41(8):903-906.doi: 10.1130/G34395.1 [2] Charvet, J., 2013.The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block:An Overview.Journal of Asian Earth Sciences, 74:198-209.doi: 10.1016/j.jseaes.2013.02.015 [3] Charvet, J., Shu, L.S., Faure, M., et al., 2010.Structural Development of the Lower Paleozoic Belt of South China:Genesis of An Intracontinental Orogen.Journal of Asian Earth Sciences, 39(4):309-330.doi: 10.1016/j.jseaes.2010.03.006 [4] Chen, H.D., Hou, M.C., Xu, X.S., et al., 2006.Tectonic Evolution and Sequence Stratigraphic Framework in South China during Caledonian.Journal of Chengdu University of Technology (Science & Technology Edition), 33(1):1-8 (in Chinese with English abstract). https://www.researchgate.net/publication/283809291_Tectonic_evolution_and_sequence_stratigraphic_framework_in_South_China_during_Caledonian [5] Chen, X., Zhang, Y.D., Fan, J.X., et al., 2012.Onset of the Kwangsian Orogeny as Evidenced by Biofacies and Lithofacies.Science in China (Series D), 42(11):1617-1626 (in Chinese). doi: 10.1007/s11430-012-4490-4 [6] Chen, X.Y., Tong, L.X., Zhang, C.L., et al., 2015.Retrograde Garnet Amphibolite from Eclogite of the Zhejiang Longyou Area:New Evidence of the Caledonian Orogenic Event in the Cathaysia Block.Chinese Science Bulletin, 60(13):1207-1217 (in Chinese with English abstract). doi: 10.1360/N972015-00094 [7] Crawford, A.J., Falloon, T.J., Green, D.H., 1989.Classification, Petrogenesis and Tectonic Setting of Boninites.In:Crawford, A.J., ed., Boninites and Related Rocks.Unwin-Hyman, London, 1-49. https://www.researchgate.net/publication/301924354_Classification_Petrogenesis_and_Tectonic_Setting_of_Boninites [8] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665.doi: 10.1038/347662a0 [9] Deng, J.F., Feng, Y.F., Di, Y.J., et al., 2015.Magmatic Arc and Ocean-Continent Transition:Discussion.Geological Review, 61(3):473-483 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201503001.htm [10] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010.High Magnesian Andesitic/Dioritic Rocks (HMA) and Magnesian Andesitic/Dioritic Rocks (MA):Two Igneous Rock Types Related to Oceanic Subduction.Geology in China, 37(4):1112-1118 (in Chinese with English abstract). https://www.researchgate.net/publication/287004452_High_magnesian_andesiticdioritic_rocks_HMA_and_magnesian_andesitic_dioritic_rocks_MA_Two_igneous_rock_types_related_to_oceanic_subduction [11] Dong, B.L., 1983.The First Discovery of Early Paleozoic Spilite-Keratophyre, Southeastern Guangxi Province.Regional Geology of China, 5:135-137 (in Chinese). https://www.researchgate.net/publication/249549433_Early_Mesozoic_orogeny_in_Fujian_southeast_China [12] Du, Y.S., Xu, Y.J., 2012.A Preliminary Study on Caledonian Event in South China.Geological Science and Technology Information, 31(5):43-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205007.htm [13] Faure, M., Shu, L.S., Wang, B., et al.2009.Intracontinental Subduction:A Possible Mechanism for the Early Palaeozoic Orogen of SE China.Terra Nova, 21(5):360-368.doi: 10.1111/j.1365-3121.2009.00888.x [14] Floyd, P.A., Kelling, S.L., Gökçen, S.L., et al., 1991.Geochemistry and Tectonic Environment of Basaltic Rocks from the Misis Ophiolitic Mélange, South Turkey.Chemical Geology, 89(3-4):263-280.doi: 10.1016/0009-2541(91)90020-R [15] Floyd, P.A., Winchester, J.A., 1975.Magma Type and Tectonic Setting Discrimination Using Immobile Elements.Earth & Planetary Science Letters, 27(2):211-218.doi: 10.1016/0012-821X(75)90031-X [16] Guo, L.Z., Shi, Y.S., Lu, H.F., et al., 1989.The Pre-Devonian Tectonic Patterns and Evolution of South China.Journal of Asian Earth Sciences, 3(89):87-93.doi: 10.1016/0743-9547(89)90012-3 [17] Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006.Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr:Constraints from Geochemistry.Geochemistry, Geophysics, Geosystems, 7(8):1-29.doi: 10.1029/2005GC001220 [18] He, W.H., Zhang, K.X., Wu, S.B., et al., 2015.End-Permian Faunas from Yangtze Basin and Its Marginal Region:Implications for Palaeogeographical and Tectonic Environments.Earth Science, 40(2):275-289 (in Chinese with English abstract). https://www.researchgate.net/publication/282196826_End-permian_faunas_from_Yangtze_basin_and_its_marginal_region_Implications_for_palaeogeographical_and_tectonic_environments [19] Hirose, K., 1997.Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts.Geology, 25(1):42-44.doi: 10.1130/0091-7613(1997) [20] Hsü, K.J., Li, J.L., Chen, H.H., et al., 1990.Tectonics of South China:Key to Understanding West Pacific Geology.Tectonophysics, 183(1-4):9-39.doi: 10.1016/0040-1951(90)90186-C [21] Kamei, A., Owada, M., Nagao, T., et al., 2004.High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc:Evidence from Clinopyroxene and Whole Rock Compositions.Lithos, 75(3-4):359-371.doi: 10.1016/j.lithos.2004.03.006 [22] Kay, R., W., 1978.Aleutian Magnesian Andesites:Melts from Subducted Pacific Ocean Crust.Journal of Volcanology and Geothermal Research, 4(1-2):117-132.doi: 10.1016/0377-0273(78)90032-X [23] Li, J.L., 2004.Basic Characteristics of Accretion-Type Orogens.Geological Bulletin of China, 23(9-10):947-951 (in Chinese with English abstract). https://www.researchgate.net/publication/227609449_Characteristics_of_collisional_orogens_with_low_topographic_build-up_An_example_from_the_Carpathians [24] Li, Y.J., Kuang, G.D., Wu, H.R., et al., 1993.Qinzhou Foreland Basin-New Understandings about the Qinzhou Residual Trough.Guangxi Geology, 6(4):13-18 (in Chinese with English abstract). doi: 10.1007/BF02883385 [25] Li, Z.X., 1998.Tectonic History of the Major East Asian Lithospheric Blocks since the Mid-Proterozoic:A Synthesis.Conference on Mantle Dynamics and Plate Interactions in East Asia, San Francisco. [26] Li, Z.X., Li, X.H., Wartho, J.A., et al., 2010.Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China:New Age Constraints and Pressure-Temperature Conditions.Geological Society of America Bulletin, 122(5-6):772-793.doi: 10.1130/B30021.1 [27] Lin, M.S., Peng, S.B., Jiang, X.F., et al., 2015.Geochemistry, Petrogenesis and Tectonic Setting of Neoproterozoic Mafic-Ultramafic Rocks from the Western Jiangnan Orogen, South China.Gondwana Research, in Press.doi:10.1016/j.gr.2015.05.015 [28] Lin, W., Faure, M., Lepvrier, C., et al., 2011.The Early Mesozoic Thrust and Folds Sheet Structure along the Southern Margin of South China Block Its Geodynamic.Chinese Journal of Geology, 46(1):134-145 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX201101012.htm [29] Liu, B.J., Xu, X.S., Pan, X.N., et al., 1993.Paleocontinental Sediments, Crust Evolution and Ore Deposits of South China.Science Press, Beijing, 120-134 (in Chinese). [30] Liu, Y.L., Zhou, X.J., Liao, Z.T., et al., 2009.Relative Blocks and Convergence Process during the Caledonian Movement in South China.Petroleum Geology & Experiment, 31(1):19-25 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912011003178 [31] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 [32] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546.doi: 10.1007/s11434-010-0052-3 [33] Lu, J.P., Kang, Y.J., 1999.Geological Feature of Devonian and Silurian System in Cenxi Guangxi And Its Significance.Guangxi Geology, 12(1):9-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDZ901.001.htm [34] Lu, Y.F., 2004.GeoKit:A Geochemical Toolkit for Microsoft Excel.Geochimica, 33(5):459-464 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200405003.htm [35] Ludden, J., Gélinas, L., Trudel, P., 1982.Archean Metavolcanics from the Rouyn-Noranda District, Abitibi Greenstone Belt, Quebec.2.Mobility of Trace Elements and Petrogenetic Constraints.Canadian Journal of Earth Sciences, 19(12):2276-2287.doi: 10.1139/e82-200 [36] Ludwing, K.R., 2003.Users Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley, 35:1-39. https://www.researchgate.net/publication/284696948_User's_manual_for_a_geochronological_toolkit_for_Microsoft_Excel_IsoplotEx_version_30 [37] Ma, R.S., 2006.New Thought about the Tectonic Evolution of the South China:With Discussion on Several Problems of the Cathaysian Old Land.Geological Journal of China Universities, 12(4):448-456 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200604005.htm [38] Martin, H., Smithies, R.H., Rapp, R., et al, 2005.An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution.Lithos, 79(1-2):1-24.doi: 10.1016/j.lithos.2004.04.048 [39] Murphy, J.B., Hynes, A.J., 1986.Contrasting Secondary Mobility of Ti, P, Zr, Nb, and Y in Two Metabasaltic Suites in the Appalachians.Canadian Journal of Earth Sciences, 23(8):1138-1144.doi: 10.1139/e86-112 [40] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2008.Definition, Classification, Characteristics and Diagnostic Indications of Tectonic Facies.Geological Bulletin of China, 27(10):1613-1637 (in Chinese with English abstract). https://www.researchgate.net/publication/285732732_Definition_classification_characteristics_and_diagnostic_indications_of_tectonic_facies [41] Pan, G.T., Xiao, Q.H., Yin, F.G., et al., 2015.The Late Qrdovican-Silurian Tectonic Map of China (1:10 000 000).Geological Publishing House, Beijing (in Chinese). [42] Pearce, J.A., 1996.A User's Guide to Basalt Discrimination Diagrams.Element Geochemistry of Volcanic Rocks Applications for Massive Sulphide Exploration.Geological Association of Canada, Newfoundland. http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1849677 [43] Pearce, J.A., Hastie, A.R., Leat, P.T., et al., 2014.Composition and Evolution of the Ancestral South Sandwich Arc:Implications for the Flow of Deep Ocean Water and Mantle through the Drake Passage Gateway.Global and Planetary Change, 123:298-322.doi: 10.1016/j.gloplacha.2014.08.017 [44] Pearce, J.A., van, der Laan, S.R., Arculus, R.J., et al., 1992.Boninite and Harzburgite from Leg 125 (Bonin-Mariana forearc):A Case Study of Magma Genesis during the Initial Stages of Subduction.Proceedings of the Ocean Drilling Program, Scientific Results, 125:623-659.http://dx.doi.org/10.2973/odp.proc.sr.125.172.1992" target=_blank> http://dx.doi.org/10.2973/odp.proc.sr.125.172.1992 [45] Peng, S.B., Jin, Z.M., Fu, J.M., et al., 2006.Petrochemistry, Chronology and Tectonic Setting of Strong Peraluminous Anatectic Granitoids in Yunkai Orogenic Belt, Western Guangdong Province, China.Earth Science, 31(1):110-120 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1002070506600010 [46] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016.Early Paleozoic Subduction in Cathaysia (Ⅰ):New Evidence from the Nuodong Ophiolite.Earth Science, 41(5):765-778 (in Chinese with English abstract). https://www.researchgate.net/publication/305144667_Early_paleozoic_subduction_in_Cathaysia_I_New_evidence_from_Nuodong_Ophiolite [47] Polat, A., Hofmann, A.W., 2003.Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland.Precambrian Research, 126(3-4):197-218.doi: 10.1016/S0301-9268(03)00095-0 [48] Qin, X.F., Wang, Z.Q., Hu, G.A., et al., 2013.Geochronology and Geochemistry of Hudong Gneissic Composite Pluton in the Junction of Guangdong and Guangxi Provinces:Implications for Early Paleozoic Tectono-Magmatism along the Northern Margin of Yunkai Massif.Acta Petrologica Sinica, 29(9):3115-3130 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201309013.htm [49] Qin, X.F., Wang, Z.Q., Wang, T., et al., 2015.The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi:Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt.Acta Geoscientica Sinica, 36(3):283-292 (in Chinese with English abstract). https://www.researchgate.net/publication/282071585_The_reconfirmation_of_age_and_tectonic_setting_of_the_volcanic_rocks_of_Yingyangguan_group_in_the_eastern_Guangxi_Constraints_on_the_structural_pattern_of_the_southwestern_segment_of_Qinzhou-Hangzhou_ [50] Qiu, Y.X., Liang, X.Q., 2006.Evolution of Basin-Range Coupling in the Yunkai Dashan-Shiwan Dashan Area, Guangdong and Guangxi:with a Discussion of Several Tectonic Problems of South China.Geological Bulletin of China, 25(3):340-347 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200603004.htm [51] Ross, P.S., Bédard, J.H., 2009.Magmatic Affinity of Modern and Ancient Subalkaline Volcanic Rocks Determined from Trace-Element Discriminant Diagrams.Canadian Journal of Earth Sciences, 46(11):823-839.doi: 10.1139/E09-054 [52] Shervais, J.W., 1982.Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas.Earth and Planetary Science Letters, 59(1):101-118.doi: 10.1016/0012-821X(82)90120-0 [53] Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998.Setouchi High-Mg Andesites Revisited:Geochemical Evidence for Melting of Subducting Sediments.Earth and Planetary Science Letters, 160(3-4):479-492.doi: 10.1016/S0012-821X(98)00105-8 [54] Shirey, S.B., Hanson, G.N., 1984.Mantle-Derived Archaean Monozodiorites and Trachyandesites.Nature, 310:222-224.doi: 10.1038/310222a0 [55] Shu, L.S., 2006.Predevonian Tectonic Evolution of South China:From Cathaysian Block to Caledonian Period Folded Orogenic Belt.Geological Journal of China Universities, 12(4):418-431 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200604002.htm [56] Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block.Geological Bulletin of China, 31(7):1035-1053 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201207004.htm [57] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society London Special Publications, 42(1):313-345.doi: 10.1144/GSL.SP.1989.042.01.19 [58] Tang, G.J., Wang, Q., 2010.High-Mg Andesites and Their Geodynamic Implications.Acta Petrologica Sinica, 26(8):2495-2512 (in Chinese with English abstract). http://www.oalib.com/paper/1476282 [59] Tatsumi, Y., 1982.Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, Ⅱ.Melting Phase Relations at High Pressures.Earth and Planetary Science Letters, 60(2):305-317.doi: 10.1016/0012-821X(82)90009-7 [60] Tatsumi, Y., 1989.Migration of Fluid Phases and Genesis of Basalt Magmas in Subduction Zones.Journal of Geophysical Research:Solid Earth, 94(B4):4697-4707. doi: 10.1029/JB094iB04p04697 [61] Tatsumi, Y., 2001.Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction:Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan.Geology, 29(4):323-326.doi: 10.1130/0091-7613(2001) [62] Tatsumi, Y., Hanyu, T., 2003.Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere:Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan.Geochemistry, Geophysics, Geosystems, 4(9):1-19.doi: 10.1029/2003GC000530 [63] Wang, J., Li, Z.X., 2003.History of Neoproterozoic Rift Basins in South China:Implications for Rodinia Break-Up.Precambrian Research, 122(1-4):141-158.doi: 10.1016/S0301-9268(02)00209-7 [64] Wang, Y.J., Fan, W.M., Zhao, G.C., et al., 2007.Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block.Lithos, 12(4):404-416.doi: 10.1016/j.gr.2006.10.003 [65] Wu, H.R., 2000.A Discussion on the Tectonic Palaeogeography Related to the Caledonian Movement in Guangxi.Journal of Palaeogeography, 2(1):70-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200001008.htm [66] Xu, X.S., Liu, W., Men, Y.P, et al., 2012.Probe into the Tectonic Nature of Neoproterozoic Southern Hunan-Northern Guangxi Marine Basin.Acta Geologica Sinica, 86(12):1890-1904 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201212004.htm [67] Yi, L.W., Ma, C.Q., Wang, L.X., et al., 2014.Discovery of Late Ordovician Subvolcanic Rocks in South China:Existence of Subduction-Related Dacite from Early Paleozoic?Earth Science, 39(6):637-653 (in Chinese with English abstract). https://www.researchgate.net/publication/286484139_Discovery_of_Late_Ordovician_subvolcanic_rocks_in_South_China_existence_of_subduction-related_dacite_from_Early_Paleozoic [68] Yin, F.G., Xu, X.S., Wan, F., et al., 2001.The Sedimentary Response to the Evolutionary Process of Caledonian Foreland Basin System in South China.Acta Geoscientica Sinica, 22(5):425-428 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB200105008.htm [69] Yin, H.F., Wu, S.B., Du, Y.S., et al., 1999.South China Defined as Part of Tethyan Archipelagic Ocean System.Earth Science, 24(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX901.000.htm [70] Yogodzinski, G.M., Volynets, O.N., Koloskov, A.V., et al., 1994.Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, Far Western Aleutians.Journal of Petrology, 35(1):163-204.doi: 10.1093/petrology/35.1.163 [71] Yu, J.H., Lou, F.S., Wang, L.J., et al., 2014.The Geological Significance of a Paleozoic Mafic Granulite Found in the Yiyang Area of Northeastern Jiangxi Province.Chinese Science Bulletin, 59(35):3508-3516 (in Chinese with English abstract). doi: 10.1360/N972014-00395 [72] Zhang, B.Y., Zhang, H.Y., Zhao, Z.H., et al., 2003.Permian-Island are Basalt in West Guangdong and East Guangxi Tectonic Belt, South China:Implication for the Paleotethys.Journal of Nanjing University (Natural Science), 39(1):46-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ200301006.htm [73] Zhang, B.Y., Zhao, Z.H., Shi, M.Q., et al., 1997.First Identification of PermianIsland-Arc Basalts in Cenxi:Important Evidence of the Paleo-Tethyan Orogenic Belt on Guangdong-Guangxi Border Region.Chinese Science Bulletin, 43(4):413-416 (in Chinese). http://www.sciencedirect.com/science/article/pii/S0169136808000735 [74] Zhang, C.L., Santosh, M., Zhu, Q.B., et al., 2015.The Gondwana Connection of South China:Evidence from Monazite and Zircon Geochronology in the Cathaysia Block.Gondwana Research, 28(3):1137-1151.doi: 10.1016/j.gr.2014.09.007 [75] Zhang, F.R., Shu, L.S., Wang, D.Z., et al., 2009.Discussions on the Tectonic Setting of Caledonian Granitoids in the Eastern Segment of South China.Earth Science Frontiers, 16(1):248-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901034.htm [76] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013.Tectonics of South China Continent and Its Implications.Science in China (Series D), 43(10):1553-1582 (in Chinese). doi: 10.1007/s11430-013-4679-1 [77] Zhang, Q., Jiang, Y.H., Wang, G.C., et al., 2015.Origin of Silurian Gabbros and Ⅰ-Type Granites in Central Fujian, SE China:Implications for the Evolution of the Early Paleozoic Orogen of South China.Lithos, 216-217:285-297.doi: 10.1016/j.lithos.2015.01.002 [78] Zhang, Q., Wang, Y., Qian, Q., et al., 2004.Sanukite of Late Archaean and Early Earth Evolution.Acta Petrologica Sinica, 20(6):1355-1362 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200406004.htm [79] Zhao, G.C., Cawood, P.A., 2012.Precambrian Geology of China.Precambrian Research, 222-223:13-54.doi: 10.1016/j.precamres.2012.09.017 [80] Zheng, Y.F., Cheng, Y.X., Dai, L.Q., et al., 2015.Development of the Theory of Plate Tectonics:From Oceanic Crust Subduction Zone to Collisional Orogenic Belt.Science in China (Series D), 45(6):711-735(in Chinese). doi: 10.1007/s11430-015-5097-3 [81] 陈洪德, 侯明才, 许效松, 等, 2006.加里东期华南的盆地演化与层序格架.成都理工大学学报(自然科学版), 33(1): 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200601000.htm [82] 陈旭, 张元动, 樊隽轩, 等, 2012.广西运动的进程:来自生物相和岩相带的证据.中国科学(D辑), 42(11): 1617-1626. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201211002.htm [83] 陈相艳, 仝来喜, 张传林, 等, 2015.浙江龙游石榴石角闪岩(退变榴辉岩):华夏加里东期碰撞造山事件的新证据.科学通报, 60(13): 1207-1217. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201513008.htm [84] 邓晋福, 冯艳芳, 狄永军, 等, 2015.岩浆弧火成岩构造组合与洋陆转换.地质评论, 61(3): 473-483. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503001.htm [85] 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4): 1112-1118. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004027.htm [86] 董宝林, 1983.桂东南首次发现早古生代细碧-角斑岩.中国区域地质, 5: 135-137. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198303015.htm [87] 杜远生, 徐亚军, 2012.华南加里东运动初探.地质科技情报.31(5): 43-49. http://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201211012.htm [88] 何卫红, 张克信, 吴顺宝, 等, 2015.二叠纪末扬子海盆及其周缘动物群的特征和古地理、古构造启示.地球科学, 40(2): 275-289. http://earth-science.net/WebPage/Article.aspx?id=3046 [89] 李继亮, 2004.增生型造山带的基本特征.地质通报, 23(9-10): 947-951. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2017.htm [90] 李曰俊, 邝国敦, 吴浩若, 等, 1993.钦州前陆盆地——关于钦州残余海槽的新认识.广西地质, 6(4): 13-18. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199304001.htm [91] 林伟, Faure, M., Lepvrier, C., 等, 2011.华南板块南缘早中生代的逆冲推覆构造及其相关的动力学背景.地质科学, 46(1): 134-145. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101012.htm [92] 刘宝珺, 许效松, 潘杏南, 等, 1993.中国南方古大陆沉积地壳演化与成矿.北京:科学出版社, 120-134. [93] 刘运黎, 周小进, 廖宗庭, 等, 2009.华南加里东期相关地块及其汇聚过程探讨.石油实验地质, 31(1): 19-25. doi: 10.11781/sysydz200901019 [94] 陆济璞, 康云骥, 1999.广西岑溪地区泥盆系志留系地质特征及其意义.广西地质, 12(1): 9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ901.001.htm [95] 路远发, 2004.GeoKit:一个用VBA构建的地球化学工具软件包.地球化学, 33(5): 459-464. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm [96] 马瑞士, 2006.华南构造演化新思考——兼论"华夏古陆"说中的几个问题.高校地质学报, 12(4): 448-456. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604005.htm [97] 潘桂棠, 肖庆辉, 陆松年, 等, 2008.大地构造相的定义、划分、特征及其鉴别标志.地质通报, 27(10): 1613-1637. doi: 10.3969/j.issn.1671-2552.2008.10.004 [98] 潘桂棠, 肖庆辉, 尹福光, 等, 2015.中国晚奥陶世-志留纪大地构造图(1:10 000 000).北京:地质出版社. [99] 彭松柏, 金振民, 付建明, 等, 2006.云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景.地球科学, 31(1): 110-120. http://earth-science.net/WebPage/Article.aspx?id=1543 [100] 彭松柏, 刘松峰, 林木森, 等, 2016.华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩新证据.地球科学, 41(5): 765-778. doi: 10.11764/j.issn.1672-1926.2016.05.765 [101] 覃小锋, 王宗起, 胡贵昂, 等, 2013.两广交界地区壶垌片麻状复式岩体的年代学和地球化学:对云开地块北缘早古生代构造-岩浆作用的启示.岩石学报, 29(9): 3115-3130. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309013.htm [102] 覃小锋, 王宗起, 王涛, 等, 2015.桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约.地球学报, 36(3): 283-292. doi: 10.3975/cagsb.2015.03.03 [103] 丘元禧, 梁新权, 2006.两广云开大山—十万大山地区盆山耦合构造演化——兼论华南若干区域构造问题.地质通报, 25(3): 340-347. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200603004.htm [104] 舒良树, 2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带.高校地质学报, 12(4): 418-431. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604002.htm [105] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7): 1035-1053. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm [106] 唐功建, 王强, 2010.高镁安山岩及其地球动力学意义.岩石学报, 26(8): 2495-2512. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008022.htm [107] 吴浩若, 2000.广西加里东运动构造古地理问题.古地理学报, 2(1): 70-76. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200001008.htm [108] 许效松, 刘伟, 门玉澎, 等, 2012.对新元古代湘桂海盆及邻区构造属性的探讨.地质学报, 86(12): 1890-1904. doi: 10.3969/j.issn.0001-5717.2012.12.003 [109] 易立文, 马昌前, 王连训, 等, 2014.华南晚奥陶世次火山岩的发现:早古生代与俯冲有关的英安岩?地球科学, 39(6): 637-653. http://earth-science.net/WebPage/Article.aspx?id=2872 [110] 尹福光, 许效松, 万方, 等, 2001.华南地区加里东期前陆盆地演化过程中的沉积响应.地球学报, 22(5): 425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200105008.htm [111] 殷鸿福, 吴顺宝, 杜远生, 等, 1999.华南是特提斯多岛洋体系的一部分.地球科学, 24(1):1-12. http://earth-science.net/WebPage/Article.aspx?id=749 [112] 于津海, 楼法生, 王丽娟, 等, 2014.赣东北弋阳早古生代麻粒岩的发现及其地质意义.科学通报, 59(35): 3508-3516. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201435010.htm [113] 张伯友, 张海样, 赵振华, 等, 2003.两广交界处岑溪二叠纪岛弧型玄武岩及其古特提斯性质的讨论.南京大学学报(自然科学版), 39(1): 46-54. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200301006.htm [114] 张伯友, 赵振华, 石满全, 等, 1997.岑溪二叠纪岛弧型玄武岩的首次厘定及大地构造意义——两广交界古特提斯构造带的重要证据.科学通报, 42(4): 413-416. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199704023.htm [115] 张芳荣, 舒良树, 王德滋, 等, 2009.华南东段加里东期花岗岩类形成构造背景探讨.地学前缘, 16(1): 248-260. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901034.htm [116] 张国伟, 郭安林, 王岳军, 等, 2013.中国华南大陆构造与问题.中国科学(D辑), 43(10): 1553-1582. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm [117] 张旗, 王焰, 钱青, 等, 2004.晚太古代Sanukite(赞岐岩)与地球早期演化, 岩石学报, 20(6): 1355-1362. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406004.htm [118] 郑永飞, 陈伊翔, 戴立群, 等, 2015.发展板块构造理论:从洋壳俯冲带到碰撞造山带.中国科学(D辑), 45(6): 711-735. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201506001.htm