Design of Impregnated Diamond Bit Based on Slipping Formation
-
摘要: 为了提高金刚石钻头在坚硬致密、弱研磨性地层的钻进效率, 将弱化胎体耐磨损性能理论与切削齿非光滑设计相结合, 制作钻头进行现场试验并对胎体进行扫描电镜分析.研究结果表明:在胎体中添加适当浓度的胎体弱化颗粒, 有利于提高钻头的钻速; 经胎体耐磨性弱化处理的钻头在钻进过程中, 弱化颗粒易于从胎体表面脱落, 使其表面形成微观非光滑形态, 提高了钻头唇面与岩石的单位面积压力, 增加了孔底岩粉的研磨能力, 促进了胎体中新颗粒金刚石的出刃; 弱化颗粒浓度存在一个较优的设计范围, 过高或过低都不利于提高钻头的钻进效率和使用寿命.Abstract: Weakening matrix theory was applied on design of the drilling bit in order to improve the drilling efficiency of impregnated diamond bit in hard compact rock formation in this study. The matrix was analyzed with SEM and EDS. The results show that it can help improve drilling rate by putting matrix weakening particle into matrix. Under the process of drilling, the weakening particle can drop easily from matrix developing non-smooth surface; the pressure between surface and rock is increased and the weakening particle participates in wearing matrix, increasing abrasive power of rock powder, promoting speed of diamond metabolism. There is an optimum range for matrix weaken ratio, designing too high or too low simply can not improve drilling rate and bit life.
-
表 1 钻头设计参数
Table 1. Design parameters of both bits
编号 金刚石粒度(μm) 金刚石浓度(%) 胎体硬度(HRC) 弱化颗粒浓度(%) 水口数(个) 切削齿型结构 1 355~450 88 20 - 8 同心环齿 2 355~450 80 20 10 8 同心环齿 3 355~450 72 20 20 8 同心环齿 4 355~450 64 20 30 8 同心环齿 表 2 钻头试验参数
Table 2. Experimental data of both bits
钻头编号 累计进尺(m) 回次数 平均钻速(m·h-1) 1 45.4 17 0.56 2 43.5 14 0.61 3 39.2 13 0.92 4 28.4 10 1.13 -
[1] de Oliveira L.J., Bobrovnitchii G.S., Filgueira M..2007.Processing and Characterization of Impregnated Diamond Cutting Tools Using a Ferrous Metal Matrix[J].International Journal of Refractory Metals and Hard Materials, 25(4):328-335.doi: 10.1016/j.ijrmhm.2006.08.006 [2] Gao C., Yuan J.T..2011.Efficient Drilling of Holes in Al2O3 Armor Ceramic Using Impregnated Diamond Bits[J].Journal of Materials Processing Technology, 211(11):1719-1728.doi: 10.1016/j.jmatprotec.2011.05.013 [3] Jiang Q.G., Zhang S.H..2012.Development of Impregnated Diamond Bit in Deep Drilling[J].West-China Exploration Engineering, 24(12):58-62(in Chinese). https://www.netl.doe.gov/File%20Library/Research/Oil-Gas/41657_Technology-Assessment.pdf [4] Liu T.L., Li L.X., Jiang G.S., et al.2015.A New Drilling Fluid for Drilling in Marine Gas Hydrate Bearing Sediments[J].Earth Science, 40(11):1913-1921(in Chinese with English abstract). https://www.researchgate.net/publication/288228583_A_new_drilling_fluid_for_drilling_in_marine_gas_hydrate_bearing_sediments [5] Lu H.Z., Liu X.Y..2004.Research on Impregnated Diamond Bit for Drilling Slipping Formation[J].West-China Exploration Engineering, (11):130-132(in Chinese with English abstract). https://www.researchgate.net/publication/240829570_Research_into_Bit_for_Extra-Hard_Rock [6] Polini W., Turchetta S..2004.Test Protocol for Microgeometric Wear of Sintered Diamond Tools[J].Wear, 257(3-4):246-256.doi: 10.1016/j.wear.2003.12.008 [7] Shen L.N., Ruan H.L..2011.Some Technical Development of Diamond Bit Both in China and Abroad[J].Exploration Engineering(Rock & Soil Drilling and Tunneling), 38(5):78-80(in Chinese with English abstract). http://electroiq.com/blog/2017/05/chinas-semiconductor-industry-and-win-win-growth/ [8] Song Y.Q., Gan C.Y., Xia Z.H., et al.1998.Study on the Weakening of the Diamond Tool Matrix Performance[J].Journal of Synthetic Crystals, 27(4):368-372 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-RGJT804.013.htm [9] Song Y.Q., Gan C.Y., Xia Z.H., et al.1997.Discussion on Weakening of the Diamond Tool Matrix Performance[J].Diamond & Abrasives Engineering, 17(5):2-5 (in Chinese with English abstract). http://asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/ajmnbt/936155/jmnm_005_03_031007.pdf&resultclick=1 [10] Tan S.C., Fang X.H., Yang K.H., et al.2014.A New Composite Impregnated Diamond Bit for Extra-Hard, Compact, and Nonabrasive Rock Formation[J].International Journal of Refractory Metals and Hard Materials, 121(43):186-192.doi: 10.1016/j.ijrmhm.2013.11.001 [11] Wang C.L., Sun Y.H., Liu B.C., et al.2011.Experiment and Rock Fragmentation Mechanism of Bionic Coupling Impregnated Diamond Bit[J].Journal of Central South University (Science and Technology), 42(5):1321-1325(in Chinese with English abstract). https://www.researchgate.net/publication/282935809_Experiment_and_rock_fragmentation_mechanism_of_impregnated_diamond_bit_with_weakening_matrix [12] Xu L., Sun Y.H., Gao K..2008.Efficient Rock Fragmentation Mechanism Analysis of Impregnated Diamond Bionics Bit[J].Journal of Jilin University(Earth Science Edition), 38(6):1015-1019 (in Chinese with English abstract). https://www.researchgate.net/publication/282935809_Experiment_and_rock_fragmentation_mechanism_of_impregnated_diamond_bit_with_weakening_matrix [13] Zhang L., Yang K.H..2003.Progress of the Research on Diamond Drilling Bits for Extra-Hard, Compact and Weak-Abrasion Rock Formation[J].Diamond & Abrasives Engineering, 133(1):30-32(in Chinese with English abstract). http://www.academia.edu/15789875/MASTERS_THESIS_CFD_Modeling_of_Mud_Flow_around_Drill_Bit [14] Zhang S.H., Wang T..2004.Research on Concentrical Segmented Diamond Bit[J].Diamond & Abrasives Engineering, (5):59-62(in Chinese with English abstract). http://research.ijcaonline.org/volume35/number4/pxc3976092.pdf [15] Zhang Q.H., Zhang J.H., Sun D.M., et al.2002.Study on the Diamond Tool Drilling of Engineering Ceramics[J].Journal of Materials Processing Technology, 122(2-3):232-236.doi: 10.1016/S0924-0136(02)00016-X [16] Zhou H., Shan H.Y., Tong X., et al.2006.The Adhesion of Bionic Non-Smooth Characteristics on Sample Surfaces against Parts[J].Materials Science and Engineering:A, 417(1-2):190-196.doi: 10.1016/j.msea.2005.10.049 [17] 蒋青光, 张绍和.2012.深部岩芯钻探孕镶金刚石钻头参数设计机理探讨.西部探矿工程, 24(12):58-62. doi: 10.3969/j.issn.1004-5716.2012.12.021 [18] 刘天乐, 李丽霞, 蒋国胜, 等.2015.一种海洋水合物地层钻井用新型钻井液.地球科学, 40(11):1913-1921. http://www.earth-science.net/WebPage/Article.aspx?id=3198 [19] 陆洪志, 刘晓阳.2004.钻进打滑地层用孕镶金刚石钻设计探讨.西部探矿工程, (11):130-132. doi: 10.3969/j.issn.1004-5716.2004.11.066 [20] 沈立娜, 阮海龙.2011.国内外金刚石钻头的部分技术进展.探矿工程-岩土钻掘工程, 38(5):78-80. http://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201105031.htm [21] 宋月清, 甘长炎, 夏志华, 等.1998.金刚石工具胎体性能的弱化问题研究.人工晶体学报, 27(4):368-372. http://www.cnki.com.cn/Article/CJFDTOTAL-RGJT804.013.htm [22] 宋月清, 甘长炎, 夏志华, 等.1997.金刚石工具胎体材料的性能"弱化"问题初探.金刚石与磨料磨具工程, 17(5):2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-JGSM199705000.htm [23] 王传留, 孙友宏, 刘宝昌, 等.2011.仿生耦合孕镶金刚石钻头的试验及碎岩机理分析.中南大学学报(自然科学版), 42(5):1321-1325. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201105025.htm [24] 徐良, 孙友宏, 高科.2008.仿生孕镶金刚石钻头高效碎岩机理.吉林大学学报(地球科学版), 38(6):1015-1019. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201105025.htm [25] 张丽, 杨凯华.2003.金刚石钻头钻进坚硬致密弱研磨性岩层的研究现状与进展.金刚石与磨料磨具工程, 133(1):30-32. http://www.cnki.com.cn/Article/CJFDTOTAL-JGSM200301006.htm [26] 张绍和, 王涛.2004.自形成同心径向环齿金刚石钻头设计与制造.金刚石与磨料磨具工程, 143 (5):59-62. http://www.cnki.com.cn/Article/CJFDTOTAL-JGSM200405015.htm