Triaxial Rheological Experiments and Rheological Constitutive of Mudstone under Hydro-Mechanical Coupling State
-
摘要: 渗透压与应力耦合作用下泥岩的流变实验及其本构研究, 对岩土工程长期稳定性分析具有重要的意义.采用岩石温度-应力-渗流耦合三轴流变仪, 对泥岩进行了渗透压-应力耦合作用下、干燥状态下两种状态的三轴流变试验, 并对两种状态下流变破坏后泥岩断口进行了电镜扫描.研究结果表明:(1) 渗透压-应力耦合作用下泥岩应变与时间关系实测曲线中应变曲线出现突变现象的次数明显高于干燥状态下泥岩的流变曲线, 说明渗透压对泥岩具有较强的损伤效应; (2) 因渗透压的作用, 致使渗透压-应力耦合下泥岩在轴向应变、环向应变和体积应变总量上远大于干燥态流变岩样的应变总量, 渗透压-应力耦合下泥岩发生流变破坏的应力荷载为干燥状态泥岩荷载的66.7%, 渗透压对岩石强度有明显的减弱影响; (3) 两种状态下流变破坏后泥岩断口进行电镜扫描后, 细观破裂特性对比发现, 在渗透压-应力耦合作用下, 岩石强度加速降低; (4) 对两种状态下泥岩试验成果的流变模型进行了预测, 采用所提出的改进的西原本构模型来描述泥岩的流变变形行为, 拟合结果显示:改进的西原本构模型能够较好地模拟两种状态下泥岩的全过程流变变形行为, 并获得了流变变形特征的本构模型参数值, 为渗透压-应力耦合下岩土体长期变形研究奠定了重要基础.Abstract: Rheological experiments and the constitutive research on mudstone under hydro-mechanical coupling plays an important role in long-term stability analysis of geotechnical engineering. The rock's temperature, stress, seepage coupling triaxial rheological experiment device was used on mudstone under the hydro-mechanical coupling state and dry state respectively, and their ruptured sections were scanned by electron microscopy after rheological experiments. The results show the follows: (1) The number of mutations in the map of mudstone strain-time under hydro-mechanical coupling is significantly more than that under dry state, which means the osmotic pressure has strong damage effect on mudstone. (2) The axial strain, hoop strain and volume strain of mudstone under the hydro-mechanical coupling state are greater than those under dry state because of the action of osmotic pressure. The stress of mudstone under the hydro-mechanical coupling state when rheological damage occurs is 66.7% of that of dry state, and osmotic pressure has obvious weakening effect on rock strength. (3) The rock's strength reduces faster under the effect of hydro-mechanical coupling by comparison with mesoscopic fracture characteristics of mudstone. (4) The mudstone's rheological model is predicted by results of the test, the modified K-B model was adopted to describe the mudstone rheological deformation behavior, and the fitting results show that the modified K-B model can well simulate the whole process of the mudstone rheological deformation behavior under the two states, and the constitutive model parameter values of the rheological deformation were obtained, which lay solid foundation for long-term rock mass deformation research under the hydro-mechanical coupling.
-
表 1 偏应力荷载等级
Table 1. The level of deviatoric stress load
岩样编号 偏应力(MPa) 第1级 第2级 第3级 第4级 第5级 第6级 N5 5 10 15 20 25 30 N6 10 20 30 35 40 45 表 2 泥岩应变量
Table 2. The mudstone's strain values
岩样
编号偏向应力
(MPa)围压
(MPa)渗透压
(MPa)应变量(10-6) ε1 ε3 εv N5 5 3 0.7 1 747.2 -864.0 19.2 10 3 0.7 1 808.3 -1 392.3 -976.4 15 3 0.7 1 708.8 -2 684.2 -3 659.6 20 3 0.7 1 528.0 -2 795.8 -4 063.6 25 3 0.7 1 003.7 -2 588.8 -4 173.8 30 3 0.7 6 540.8 -30 610.7 -54 680.5 累积应变量(10-6) 14 336.7 -40 935.7 -67 534.6 N6 10 3 0 1 230.6 -624.1 -17.6 20 3 0 1 778.3 -2 651.6 -3 525.0 30 3 0 1 861.0 -2 567.6 -3 274.1 35 3 0 785.0 -1 042.5 -1 300.0 40 3 0 568.6 -1 718.6 -2 868.6 45 3 0 2 309.4 -2 371.8 -2 434.3 累积应变量(10-6) 8 532.8 -10 976.2 -13 419.6 注:表中ε1、ε3、εv分别表示轴向应变、环向应变和体积应变;环向应变以向外膨胀为负. 表 3 常用流变模型的流变特性
Table 3. The rheological properties of common rheological model
模型 弹性应变 应变速率 黏性流动 应力松弛 弹性后效 Maxwell模型 有 不变 有 有 无 Kelvin模型 无 递减 无 无 有 H-K模型 有 递减 无 有 有 H/M模型 有 递减 无 有 有 Burgers模型 有 递减 有 有 有 黏塑性模型 无 不变 有 无 无 宾汉姆模型 有 不变 有 有 无 西原模型 有 递减 有 有 有 表 4 流变全过程本构模型参数
Table 4. The rheological constitutive model
编号 Σ
(MPa)E1
(MPa)E2
(MPa)η1
(MPa·h)η2
(MPa·h)R2 N5 5 0.005 6 8 843.91 2 092.96 0.81 10 0.017 4 5 773.35 6 305.14 0.98 15 0.052 6 9 469.39 18 475.60 0.95 20 0.103 4 14 649.88 5 084.86 0.95 25 0.167 5 16 395.85 24 523.58 0.83 30 0.253 2 38 359.04 199 643.70 0.98 35 0.322 3 154 593.60 524 987.50 51 579.35 0.98 N6 10 0.000 9 9 446.501 3 148.651 0.93 20 0.024 6 1 2150.50 2 335.064 0.92 30 0.089 6 1 7889.60 5 368.01 0.85 35 0.169 3 48 341.81 50 949.07 0.82 40 0.224 9 49 572.72 125 676.90 0.88 45 0.292 5 234 088.23 116 888.62 2.2 913E12 0.99 注:表中E1表示瞬时弹性模量,E2表示黏弹性模量,η1和η2表示黏弹性系数,R2为拟合曲线相关系数. -
[1] Chen W.Z., Wang Z.C., Wu G.J., et al.2007.Nonlinear Creep Damage Constitutive Model of Rock Salt and Its Application to Engineering[J].Chinese Journal of Rock Mechanics and Engineering, 26(3):467-472(in Chinese with English abstract). https://www.researchgate.net/publication/288663285_Nonlinear_creep_damage_constitutive_model_of_rock_salt_and_its_application_to_engineering [2] Conil N., Djeran-Maigre I., Cabrillac R., et al.2004.Poroplastic Damage Model for Claystones[J].Applied Clay Science, 26(1-4):473-487.doi: 10.1016/j.clay.2003.12.019 [3] Mclennan, D E..1990.Poroelastic Concepts Explain some of the Hydraulic Fracturing Mechanism.SPE, 152-162. http://www.sciencedirect.com/science/article/pii/B9780884154747500130 [4] Feng W.K., Huang R.Q., Xu Q..2009.The Enlightenment of Microstructure Characteristic and Mechanical Behavior of Rock[J].Research of Soil and Water Conservation, 16(6):26-29(in Chinese with English abstract). doi: 10.1007/s40789-017-0163-4 [5] Hu B., Jiang H.F., Hu X.L., et al.2012.Analysis of Shear Rheological Mechanical Properties of Fuchsia Mudstone[J].Chinese Journal of Rock Mechanics and Engineering, 31(Suppl.1):2796-2802(in Chinese with English abstract). https://www.researchgate.net/publication/289760051_Analysis_of_shear_rheological_mechanical_properties_of_fuchsia_mudstone [6] Huang S.L., Feng X.T., Zhou H., et al.2010.Study of Aging Failure Mechanics and Triaxial Compression Creep Experiments with Water Pressure Coupled Stress of Brittle Rock[J].Rock and Soil Mechanics, 31(11):3441-3446, 3451(in Chinese with English abstract). https://www.researchgate.net/publication/289464141_Study_of_creep_model_of_rock_salt_with_thermal_damage_considered [7] Jia S.P., Chen W.Z., Yu H.D., et al.2011.Study of Hydro-Mechanical-Damage Coupled Creep Constitutive Model of Mudstone, Part Ⅰ:Theoretical Model[J].Rock and Soil Mechanics, 32(9):2596-2602(in Chinese with English abstract). https://www.hindawi.com/journals/mpe/2017/6431607/ [8] Liu T.Y., Cao P., Fan X., et al.2012.Splitting Failure Properties of Fractured Rock under High Water Pressure[J].Journal of Central South University(Natural Science Edition), 43(6):2281-2287(in Chinese with English abstract). https://www.researchgate.net/publication/289291385_Splitting_failure_properties_of_fractured_rock_under_high_water_pressure [9] Luo Y., He S.M., He J.C..2014.Effect of Rainfall Patterns on Stability of Shallow Landslide[J].Earth Science, 39(9):1357-1363(in Chinese with English abstract). https://www.researchgate.net/publication/288575551_Effect_of_rainfall_patterns_on_stability_of_shallow_landslide [10] Qi Y.J., Jiang Q.H., Wang Z.J., et al.2012.3D Creep Constitutive Equation of Modified Nishihara Model and Its Parameters Identification[J].Chinese Journal of Rock Mechanics and Engineering, 31(2):347-355(in Chinese with English abstract). https://www.researchgate.net/publication/248131947_Recognition_of_creep_model_of_layer_composite_rock_mass_and_its_application [11] Sun J..1999. Rheological Behavior of Geomaterials and Its Engineering Applications.China Architecture and Building Press, Beijing (in Chinese). [12] Tao B., Wu F.Q., Guo G.M., et al.2005.Flexibility of Visco-Elastoplastic Model to Rheological Characteristics of Rock and Solution of Rheological Parameter[J].Chinese Journal of Rock Mechanics and Engineering, 24(17):3165-3171(in Chinese with English abstract). https://www.researchgate.net/publication/289582457_Calculation_method_for_creep_deformation_of_axisymmetric_round_well_with_changing_support_force [13] Vandamme L.M., Roegiers J.C..1990.Poroelasticity in Hydraulic Fracturing Simulators[J].Journal of Petroleum Technology, 42(9):1199-1203.doi:10.2118/16911-pa [14] Wang R.B., Xu W.Y., Wang W., et al.2010.Experimental Investigation on Creep Behaviors of Hard Rock in Dam Foundation and Its Seepage Laws during Complete Process of Rock Creep[J].Chinese Journal of Rock Mechanics and Engineering, 29(5):960-969(in Chinese with English abstract). https://www.researchgate.net/publication/288052366_Experimental_investigation_on_creep_behaviors_of_hard_rock_in_dam_foundation_and_its_seepage_laws_during_complete_process_of_rock_creep [15] Wang Z.Y., Li Y.P..2008.Rock Rheological Theory and Numerical Simulation.Science Press, Beijing, 39 (in Chinese). [16] Wang Z.J., Yin K.L., Jian W.X., et al.2008.Experimental Study on Rheological Behaviors of Wanzhou Red Sandstone in Three Gorges Reservoir Area[J].Chinese Journal of Rock Mechanics and Engineering, 27(4):840-847(in Chinese with English abstract). https://www.researchgate.net/publication/279743641_Rheological_mechanical_properties_of_altered-rock [17] Yan Y., Wang E.Z., Wang S.J..2010.Numerical Simulation of Rheological Properties of Rocks in Seepage Field[J].Rock and Soil Mechanics, 31(6):1943-1949(in Chinese with English abstract). https://www.researchgate.net/publication/283599630_Numerical_simulation_of_rheological_properties_of_rocks_in_seepage_field [18] Yang S.Q., Xu W.Y., Xie S.Y., et al.2006.Studies on Triaxial Rheological Deformation and Failure Mechanism of Hard Rock in Saturated State[J].Chinese Journal of Geotechnical Engineering, 28(8):962-969(in Chinese with English abstract). https://www.researchgate.net/publication/279900492_Studies_on_triaxial_rheological_deformation_and_failure_mechanism_of_hard_rock_in_saturated_state [19] Yu J., Li H., Chen X., et al.2013.Triaxial Experimental Study of Associated Permeability-Deformation of Sandstone under Hydro-Mechanical Coupling[J].Chinese Journal of Rock Mechanics and Engineering, 32(6):1203-1213(in Chinese with English abstract). https://www.researchgate.net/publication/286287522_Experimental_investigation_on_permeability_evolution_of_sandstone_from_fractured_zone_under_coupling_action_of_hydro-mechanical-creep [20] Zhang Q.Y., Yang W.D., Chen F., et al.2011.Long-Term Strength and Microscopic Failure Mechanism of Hard Brittle Rocks[J].Chinese Journal of Geotechnical Engineering, 33(12):1910-1918 (in Chinese with English abstract). https://www.researchgate.net/publication/288846913_Long-term_strength_and_microscopic_failure_mechanism_of_hard_brittle_rocks [21] Zhu H.H., Ye B..2002.Experimental Study on Mechanical Properties of Rock Creep in Saturation[J].Chinese Journal of Rock Mechanics and Engineering, 21(12):1791-1796(in Chinese with English abstract). https://www.researchgate.net/publication/283158841_Experimental_study_on_mechanical_properties_of_rock_creep_in_saturation [22] 陈卫忠, 王者超, 伍国军, 等.2007.盐岩非线性蠕变损伤本构模型及其工程应用.岩石力学与工程学报, 26(3):467-472. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703003.htm [23] 冯文凯, 黄润秋, 许强.2009.岩石的微观结构特征与其力学行为启示.水土保持研究, 16(6):26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY200906007.htm [24] 胡斌, 蒋海飞, 胡新丽, 等.2012.紫红色泥岩剪切流变力学特性分析.岩石力学与工程学报, 31(增刊1):2796-2802. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1025.htm [25] 黄书岭, 冯夏庭, 周辉, 等.2010.水压和应力耦合下脆性岩石蠕变与破坏时效机制研究.岩土力学, 31(11):3441-3446.3451. doi: 10.3969/j.issn.1000-7598.2010.11.014 [26] 贾善坡, 陈卫忠, 于洪丹, 等.2011.泥岩渗流-应力耦合蠕变损伤模型研究(Ⅰ):理论模型.岩土力学, 32(9):2596-2602. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110048.htm [27] 刘涛影, 曹平, 范祥, 等. 2012. 高渗压条件下裂隙岩体的劈裂破坏特性. 中南大学学报(自然科学版), 43(6): 2281-2287. [28] 罗渝, 何思明, 何尽川.2014.降雨类型对浅层滑坡稳定性的影响.地球科学, 39(9):1357-1363. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409012.htm [29] 齐亚静, 姜清辉, 王志俭, 等.2012.改进西原模型的三维蠕变本构方程及其参数辨识.岩石力学与工程学报, 31(2):347-355. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201202017.htm [30] 孙钧.1999.岩土材料流变及其工程应用.北京:中国建筑工业出版社. [31] 陶波, 伍法权, 郭改梅, 等.2005.西原模型对岩石流变特性的适应性及其参数确定.岩石力学与工程学报, 24(17):3165-3171. doi: 10.3321/j.issn:1000-6915.2005.17.026 [32] 王如宾, 徐卫亚, 王伟, 等.2010.坝基硬岩蠕变特性试验及其蠕变全过程中的渗流规律.岩石力学与工程学报, 29(5):960-969. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005015.htm [33] 王芝银, 李云鹏.2008.岩体流变理论及其数值模拟.北京:科学出版社, 39. [34] 王志俭, 殷坤龙, 简文星, 等.2008.三峡库区万州红层砂岩流变特性试验研究.岩石力学与工程学报, 27(4):840-847. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804028.htm [35] 阎岩, 王恩志, 王思敬.2010.渗流场中岩石流变特性的数值模拟.岩土力学, 31(6):1943-1949. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201006045.htm [36] 杨圣奇, 徐卫亚, 谢守益, 等.2006.饱和状态下硬岩三轴流变变形与破裂机制研究.岩土工程学报, 28(8):962-969. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200608006.htm [37] 俞缙, 李宏, 陈旭, 等.2013.渗透压-应力耦合作用下砂岩渗透率与变形关联性三轴试验研究.岩石力学与工程学报, 32(6):1203-1213. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201306015.htm [38] 张强勇, 杨文东, 陈芳, 等.2011.硬脆性岩石的流变长期强度及细观破裂机制分析研究.岩土工程学报, 33(12):1910-1918. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112016.htm [39] 朱合华, 叶斌.2002.饱水状态下隧道围岩蠕变力学性质的试验研究.岩石力学与工程学报, 21(12):1791-1796. doi: 10.3321/j.issn:1000-6915.2002.12.009