Pressure Evolution and Its Effect on Petroleum Accumulation in Nanpu Sag, Bohai Bay Basin
-
摘要: 渤海湾盆地南堡凹陷2 900 m以下超压现象较普遍,然而超压成因演化研究较为薄弱.基于数值模拟技术对南堡凹陷古超压的形成与演化进行了恢复,结合沉积速率演化、生烃演化及孔隙度演化研究了超压的成因演化特征,并进一步探讨了地层压力演化的成藏意义.研究表明,南堡凹陷地层压力演化经历了原始积累(东营组剥蚀期以前)、超压释放(东营组抬升剥蚀期)及超压重新积累(东营组末期至今)3个阶段;东营组剥蚀期以前超压成因以欠压实为主,超压幕式排放利于油气幕式排出,东营组剥蚀期发生超压卸载,超压卸载使得早期形成的油气藏进行一定程度的调整,东营组末期至今以生烃增压为主,生烃增压期与2次重要成藏期及油源断层活动增强期相耦合,一方面大量油气沿断裂及岩性通道运移形成源内成藏组合,另一方面在源储剩余压力差作用下,油气沿活化的油源断层运移形成源上成藏组合;油气有利聚集区与压力分布密切相关,在相应层段油层压力系数分布区间内,总体油层厚度与压力系数具有正相关关系,因此建议将勘探重点放在相应层段压力系数分布区间内的压力系数高值区.Abstract: This article aims to discuss the evolution of genetic mechanisms of overpressure, based on the numerical situation technique to recover the paleopressure formation and evolution, and combined with the evolution of sedimentation rate, hydrocarbon generation and porosity. And further study the accumulation significance of pressure evolution. The forward modeling indicates that the overpressure evolution in the sag is divided into three stages: original forming (before the erosion of Dongying Formation), release (during the erosion of Dongying Formation) and reform (since the end of Dongying Formation). Compaction disequilibrium is the main cause of overpressure before the erosion of Dongying Formation, which is beneficial to hydrocarbon emission. Overpressure release occurred during the erosion of Dongying Formation, which leads to the early reservoir adjustment to a certain extent. Hydrocarbon generation is the main cause of overpressure since the end of Dongying Formation, and coupling of the hydrocarbon generation, two hydrocarbon accumulation periods and fault activities played an active role in hydrocarbon accumulation. On one hand, a large quantity of hydrocarbon migrated along with fracture and sandstone to form inner-source plays. On the other hand, hydrocarbon migrated along with oil-source faults to form above-source plays under the high residual pressure difference between source rock and reservoir providing. The beneficial hydrocarbon accumulation regions are closely related to the stress distribution. Generally, the depth of oil reservoir and pressure coefficient is positive correlation under different plays of pressure coefficient distribution. The present study suggests that the future exploration would focus on higher value of pressure coefficient under different plays of pressure coefficient distribution.
-
图 8 南堡凹陷主要油源断层不同时期断层活动速率
断层平面位置见图 1
Fig. 8. The activity rate of main oil-source fault at different periods, in Nanpu sag
表 1 南堡凹陷主要烃源岩特征
Table 1. The characteristic of main source rock in the Nanpu sag
烃源岩 暗色泥岩厚度(m) 干酪根类型 有机碳含量(%) 生油高峰时间(Ma) 开始生气时间(Ma) Es34+5 150~300 Ⅰ、Ⅱ1 2.5~5.0 26.0~23.3 9.0~4.0 Es1 200~300 Ⅰ、Ⅱ2 1.2~2.3 16.0~8.0 10.0 Ed3 100~300 Ⅱ1、Ⅱ2 1.5~2.6 13.0~10.0 - -
[1] Akrout, D., Ahmadi, R., Mercier, E., et al., 2011.Natural Hydrocarbon Accumulation Related to Formation Overpressured Interval:Study Case is the Saharan Platform (Southern Tunisia).Arabian Journal of Geosciences, 5(4):849-857.doi: 10.1007/s12517-011-0287-6 [2] Athy, L.F., 1930.Density, Porosity, and Compaction of Sedimentary Rocks.AAPG Bulletin, 14:1-24.doi: 10.1306/3d93289e-16b1-11d7-8645000102c1865d [3] Burnham, A.K., 1989.A Simple Kinetic Model of Petroleum Formation and Cracking(No.UCID-21665).Lawrence Livermore National Laboratory, California. [4] Cao, Q., Ye, J.R., Guo, F.F., et al., 2009.Pressure Evolution in the Moliqing Fault-Depression, Yitong Basin.Journal of Jilin University(Earth Science Edition), 39(4):642-649(in Chinese with English abstract). https://www.researchgate.net/publication/288967151_Pressure_evolution_in_the_Moliqing_fault-depression_Yitong_Basin [5] Ding, Z.Y., Wang, L.S., Hu, W.X., et al., 2008.Reconstruction of Cenozoic Thermal History of Bohai Bay Basin with a Transient Heat Flow Model.Acta Petrolei Sinica, 29(5):650-656(in Chinese with English abstract). https://www.researchgate.net/publication/283868105_Reconstruction_of_Cenozoic_thermal_history_of_Bohai_Bay_Basin_with_a_transient_heat_flow_model [6] Eaton, B.A., 1975.The Equation for Geopressure Prediction from Well Logs.Fall Meeting of the Society of Petroleum Engineers of AIME.Society of Petroleum Engineers, Houston. [7] Feng, Y., Chen, H.H., He, S., et al., 2010.Fluid Inclusion Evidence for a Coupling Response between Hydrocarbon Charging and Structural Movements in Yitong Basin, Northeast China.Journal of Geochemical Exploration, 106(1-3):84-89.doi: 10.1016/j.gexplo.2010.01.009 [8] Guo, J., Zeng, J.H., Song, G.Q., et al., 2014.Characteristics and Origin of Carbonate Cements of Shahejie Formation of Central Uplift Belt in Dongying Depression.Earth Science, 39(5):565-576(in Chinese with English abstract). https://www.researchgate.net/publication/286835446_Characteristics_and_origin_of_carbonate_cements_of_Shahejie_Formation_of_central_uplift_belt_in_Dongying_depression [9] Guo, X.W., He, S., Liu, K.Y., et al., 2010.Oil Generation as the Dominant Overpressure Mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China.AAPG Bulletin, 94(12):1859-1881.doi: 10.1306/05191009179 [10] Guo, X.W., He, S., Song, G.Q., et al., 2011.Evidences of Overpressure Caused by Oil Generation in Dongying Depression.Earth Science, 36(6):1085-1094(in Chinese with English abstract). https://www.researchgate.net/publication/227669302_Overpressure_and_petroleum_generation_and_accumulation_in_the_Dongying_Depression_of_the_Bohaiwan_Basin_China [11] Guo, Y.C., Pang, X.Q., Chen, D.X., et al., 2012.Evolution of Continental Formation Pressure in the Middle Part of the Western Sichuan Depression and Its Significance for Hydrocarbon Accumulation.Petroleum Exploration and Development, 39(4):426-433(in Chinese with English abstract). https://www.researchgate.net/publication/257709997_Evolution_of_continental_formation_pressure_in_the_middle_part_of_the_Western_Sichuan_Depression_and_its_significance_on_hydrocarbon_accumulation [12] Guo, J.G., Dong, Y.X., Pang, X.Q., et al., 2015.Accumulation Conditions of Tight Sand Gas in the 3rd Member of the Shahejie Formation in Nanpu Sag, Bohai Bay Basin.Oil & Gas Geology, 36(1):23-34(in Chinese with English abstract). https://www.researchgate.net/publication/287638638_Accumulation_condition_analysis_and_distribution_prediction_of_source-contacting_gas_in_third_member_of_Shahejie_Formation_eastern_sag_of_Liaohe_depression [13] Hao, F., Dong, W.L., 2001.Evolution of Fluid Flow and Petroleum Accumulation in Overpressured Systems in Sedimentary Basins.Advance in Earth Sciences, 16(1):79-85(in Chinese with English abstract). doi: 10.1111/j.1755-6724.2004.tb00223.x/abstract [14] Hao, F., Zhou, X.H., Zhu, Y.M., et al., 2009.Charging of the Neogene Penglai 19-3 Field, Bohai Bay Basin, China:Oil Accumulation in a Young Trap in an Active Fault Zone.AAPG Bulletin, 93(2):155-179.doi: 10.1306/09080808092 [15] Hao, F., Zou, H.Y., Jin, Z.J., et al., 2005.Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressured Basins.Science Press, Beijing(in Chinese). [16] Hao, F., Zou, H.Y., Gong, Z.S., et al., 2007.Hierarchies of Overpressure Retardation of Organic Matter Maturation:Case Studies from Petroleum Basins in China.AAPG Bulletin, 91(10):1467-1498.doi: 10.1306/05210705161 [17] Hao, F., Zou, H.Y., Wang, M.F., et al., 2002.Research Advances and Frontier Areas of Mechanisms of Petroleum Accumulation.Geological Science and Technology Information, 21(4):7-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200204002.htm [18] He, S., Song, G.Q., Wang, Y.S., et al., 2012.Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression.Earth Science, 37(5):1029-1042(in Chinese with English abstract). https://www.researchgate.net/publication/286806050_Distribution_and_major_control_factors_of_the_present-day_large-scale_overpressured_system_in_Dongying_depression [19] Herron, M.M., Rd, O.Q., 1987.Estimating the Intrinsic Permeability of Clastic Sediments from Geochemical Data.SPWLA 28th Annual Logging Symposium.Society of Petrophysicists and Well-Log Analysts, Houston. [20] Hunt, J.M., 1990.Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments.AAPG Bulletin, 74(1):1-12. https://www.researchgate.net/publication/246302806_Generation_and_migration_of_petroleum_from_abnormally_pressured_fluid_compartments [21] Li, J., Zha, M., 2010.Determination of Oil Accumulation Period and Building up of Paleopressure of Wumishan Formation in Renqiu Oilfield by Using Fluid Inclusion.Journal of China University of Petroleum(Edition of Natural Science), 34(4):38-43(in Chinese with English abstract). https://www.researchgate.net/publication/289757387_Determination_of_oil_accumulation_period_and_building_up_of_paleopressure_of_Wumishan_formation_in_Renqiu_Oilfield_by_using_fluid_inclusion [22] Li, P.L., 2003.Petroleum Geology and Exploration of Continental Fault Basin (Vol.3):Petroleum Generation and Resources Evaluation.Petroleum Industry Press, Beijing(in Chinese). [23] Li, S.M., Jiang, Z.X., Dong, Y.X., et al., 2008.Genetic Type and Distribution of the Oils in the Nanpu Depression, Bohai Bay Basin.Geoscience, 22(5):817-823(in Chinese with English abstract). doi: 10.1190/ice2015-2211035 [24] Li, S.M., Pang, X.Q., Wan, Z.H., 2011.Mixed Oil Distribution and Source Rock Discrimination of the Nanpu Depression, Bohaibay Basin.Earth Science, 36(6):1064-1072(in Chinese with English abstract). https://www.researchgate.net/publication/289390884_Mixed_oil_distribution_and_source_rock_discrimination_of_the_Napu_depression_Bohaibay_Basin [25] Liu, F.N., 1994.An Approach to Reconstruction of Paleo-Sedimentary Thickness and Paleo-Formation Pressure in Abnormal High Pressure Region.Oil & Gas Geology, 15(2):180-185(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT402.010.htm [26] Mei, L., Zhang, Z.H., Wang, X.D., et al., 2008.Geochemical Characteristics of Crude Oil and Oil-Source Correlation in Nanpu Sag, Bohai Bay Basin.Journal of China University of Petroleum(Edition of Natural Science), 32(6):40-46(in Chinese with English abstract). https://www.researchgate.net/publication/285696311_Geochemical_characteristics_of_crude_oil_and_oil-source_correlation_in_Nanpu_sag_Bohai_Bay_Basin [27] Mi, J.K., Xiao, X.M., Liu, D.H., et al., 2003.Ancient Pressure of Gas Accumulation Simulated by the PVT Characteristics of Reservoir Fluid Inclusions:Taking Deep Basin Gas of the Upper Proterozoic in Ordos Basin for Example.Science in China (Series D), 33(7):679-685(in Chinese). [28] Peng, Q.H., Zhou, J.Y., Jie, Y.X., 2013.An Application of the Vitrinite Reflectance Trend Method to the Restoration of Erosional Thickness in the Dongying Formation, Nanpu Depression.Sedimentary Geology and Tethyan Geology, 33(2):89-94(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201302013.htm [29] Sekiguchi, K., 1984.A Method for Determining Terrestrial Heat Flow in Oil Basinal Areas.Tectonophysics, 103(1-4):67-79.doi: 10.1016/0040-1951(84)90075-1 [30] Shi, B.Q., Wu, Z.P., Wang, J.X., et al., 1999.A Study on the Geological Characteristics and Geodynamic Origin of Dongying Movement, Bohai Bay Basin.Experimental Petroleum Geology, 21(3):196-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199903001.htm [31] Sun, M.L., Liu, G.D., Dong, Y.X., 2010.Characteristics of Abnormal Pressure and Its Relationship with Hydrocarbon Accumulation in Nanpu Sag, Bohai Bay Basin.Geoscience, 24(6):1126-1131(in Chinese with English abstract). https://www.researchgate.net/publication/286682892_Characteristics_of_Deep_Abnormal_High_Pressure_and_its_Controlling_on_Hydrocarbon_Accumulation_in_Zhanhua_Sag [32] Tan, L.J., Tian, S.C., 2000.Characteristics of Hydrocarbon Migration and Kinetic System Classification of Pool-Forming in Nanpu Sag.Petroleum Exploration and Development, 27(5):16-18 (in Chinese with English abstract). https://www.researchgate.net/publication/285684151_Characteristics_of_hydrocarbon_migration_and_kinetic_system_classification_of_pool_forming_in_Nanpu_sag [33] Wan, Z.H., Li, S.M., Wang, Z.J., et al., 2015.Characterization of Crude Oils from Nanpu Depression by High Resolution Mass Spectrometry and Its Geochemical Significance.Earth Science, 40(11):1834-1845(in Chinese with English abstract). https://www.researchgate.net/publication/288228659_Characterization_of_crude_oils_from_Nanpu_depression_by_high_resolution_mass_spectrometry_and_its_geochemical_significance [34] Wang, J.H., Wang, H., Wang, G.F., 2001.Capping of Thick Mudstones and Its Relationship with Oil and Gas in the Nanpu Depression.Petroleum Geology & Experiment, 23(4):418-423(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD200104012.htm [35] Wang, Z.C., Zheng, H.J., Xu, A.N., et al., 2008.Oil-Gas Exploration Potential for Above-Source Plays in Nanpu Sag.Petroleum Exploration and Development, 35(1):11-16(in Chinese with English abstract). doi: 10.1016/S1876-3804(08)60003-8 [36] Webster, M., O'Connor, S., Pindar, B., et al., 2011.Overpressures in the Taranaki Basin:Distribution, Causes, and Implications for Exploration.AAPG Bulletin, 95(3):339-370.doi: 10.1306/06301009149 [37] Xia, X.Y., Song, Y., 2001.Temperature Effects on Geopressure during Deposition and Erosion.Petroleum Exploration and Development, 28(3):8-11(in Chinese with English abstract). https://www.researchgate.net/publication/295188710_Temperature_effects_on_geopressure_during_deposition_and_erosion [38] Xiao, J., Wang, H., Guo, Q.J., et al., 2003.Application of Basin 2 to the Studies on Temperature Field, Pressure Field and Fluid Potential in Nanpu Depression.Geological Science and Technology Information, 22(1):67-74(in Chinese with English abstract). https://www.researchgate.net/publication/294753706_Application_of_Basin2_to_the_studies_on_temperature_field_pressure_field_and_fluid_potential_in_Nanpu_Depression [39] Xie, X.N., Jiao, J.J., Tang, Z.H., et al., 2003.Evolution of Abnormally Low Pressure and Its Implication for the Hydrocarbon System in the Southeast Uplift Zone of Songliao Basin, China.AAPG Bulletin, 87(1):99-119. http://www.academia.edu/20459606/Evolution_of_abnormally_low_pressure_and_its_implications_for_the_hydrocarbon_system_in_the_southeast_uplift_zone_of_Songliao_basin_China [40] Xie, Y.H., Liu, P., Huang, Z.L., 2012.Geological Condition and Pooling Process of High-Temperature and Overpressure Natural Gas Reservoirs in the Yinggehai Basin.Natural Gas Industry, 34(4):19-23 (in Chinese with English abstract). https://www.researchgate.net/publication/288393586_Geological_conditions_and_pooling_process_of_high-temperature_and_overpressure_natural_gas_reservoirs_in_the_Yinggehai_Basin [41] Zhang, W.C., Li, H., Li, H.J., et al., 2008.Genesis and Distribution of Secondary Porosity in the Deep Horizon of Gaoliu Area, Nanpu Sag.Petroleum Exploration and Development, 35(3):308-312(in Chinese with English abstract). doi: 10.1016/S1876-3804(08)60077-4 [42] Zou, H.F., 2000.The Characteristics and Evolution of Paleo-Fluid and Paleo-Temperature-Pressure of Pre-Tetiary in Dagang Exploration Area (Dissertation).Jilin University, Changchun (in Chinese with English abstract). [43] 曹强, 叶加仁, 郭飞飞, 等, 2009.伊通盆地莫里青断陷地层压力演化与油气运聚.吉林大学学报:地球科学版, 39(4):642-649. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904006.htm [44] 丁增勇, 王良书, 胡文碹, 等, 2008.利用岩石圈瞬态热流模型重建渤海湾盆地新生代热历史.石油学报, 29(5):650-656. doi: 10.7623/syxb200805004 [45] 郭继刚, 董月霞, 庞雄奇, 等, 2015.南堡凹陷沙三段致密砂岩气成藏条件.石油与天然气地质, 36(1):23-34. doi: 10.11743/ogg20150104 [46] 郭佳, 曾溅辉, 宋国奇, 等, 2014.东营凹陷中央隆起带沙河街组碳酸盐胶结物发育特征及其形成机制.地球科学, 39(5):565-576. http://www.earth-science.net/WebPage/Article.aspx?id=2865 [47] 郭小文, 何生, 宋国奇, 等, 2011.东营凹陷生油增压成因证据.地球科学, 36(6):1085-1094. http://www.earth-science.net/WebPage/Article.aspx?id=2184 [48] 郭迎春, 庞雄奇, 陈冬霞, 等, 2012.川西坳陷中段陆相地层压力演化及其成藏意义.石油勘探与开发, 39(4):426-433. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZSYH201109001015.htm [49] 郝芳, 董伟良, 2001.沉积盆地超压系统演化、流体流动与成藏机理.地球科学进展, 16(1):79-85. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200101016.htm [50] 郝芳, 邹华耀, 金之钧, 等, 2005.超压盆地生烃动力学与油气成藏机理.北京:科学出版社. [51] 郝芳, 邹华耀, 王敏芳, 等.2002.油气成藏机理研究进展和前沿研究领域.地质科技情报, 21(4):7-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200204002.htm [52] 何生, 宋国奇, 王永诗, 等, 2012.东营凹陷现今大规模超压系统整体分布特征及主控因素.地球科学, 37(5):1029-1042. http://www.earth-science.net/WebPage/Article.aspx?id=2307 [53] 李静, 查明, 2010.基于流体包裹体的任丘油田雾迷山组成藏期次确定与古压力恢复.中国石油大学学报:自然科学版, 34(4):38-43. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201004007.htm [54] 李丕龙, 2003.陆相断陷盆地油气地质与勘探(卷三):陆相断陷盆地油气生成与资源评价.北京:石油工业出版社. [55] 李素梅, 姜振学, 董月霞, 等, 2008.渤海湾盆地南堡凹陷原油成因类型及其分布规律.现代地质, 22(5):817-823. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200805018.htm [56] 李素梅, 庞雄奇, 万中华, 2011.南堡凹陷混源油分布与主力烃源岩识别.地球科学, 36(6):1064-1072. http://www.earth-science.net/WebPage/Article.aspx?id=2182 [57] 刘福宁, 1994.异常高压区的古沉积厚度和古地层压力恢复方法探讨.石油与天然气地质, 15 (2):180-185. doi: 10.11743/ogg19940211 [58] 梅玲, 张枝焕, 王旭东, 等, 2008.渤海湾盆地南堡凹陷原油地球化学特征及油源对比.中国石油大学学报(自然科学版), 32(6):40-46. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200806010.htm [59] 米敬奎, 肖贤明, 刘德汉, 等, 2003.利用储层流体包裹体的PVT特征模拟计算天然气藏形成的古压力:以鄂尔多斯盆地上古生界深盆气藏为例.中国科学(D辑), 33(7):679-685. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307009.htm [60] 彭清华, 周江羽, 揭异新, 2013.镜质体反射率法在南堡凹陷东营组剥蚀厚度恢复中的应用.沉积与特提斯地质, 33(2):89-94. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201302013.htm [61] 史卜庆, 吴智平, 王纪祥, 等, 1999.渤海湾盆地东营运动的特征及成因分析.石油实验地质, 21(3):196-200. doi: 10.11781/sysydz199903196 [62] 孙明亮, 柳广弟, 董月霞, 2010.南堡凹陷异常压力分布与油气聚集.现代地质, 24(6):1126-1131. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201006015.htm [63] 谭丽娟, 田世澄, 2000.南堡凹陷油气运移特征及成藏动力学系统划分.石油勘探与开发, 27(5):16-18. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200005004.htm [64] 万中华, 李素梅, 王政军, 等, 2015.南堡凹陷原油高分辨质谱特征及其地球化学意义.地球科学, 40(11):1834-1845. http://www.earth-science.net/WebPage/Article.aspx?id=3190 [65] 汪泽成, 郑红菊, 徐安娜, 等, 2008.南堡凹陷源上成藏组合油气勘探潜力.石油勘探与开发, 35(1):11-16, 39. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200801006.htm [66] 王家豪, 王华, 王根发, 2001.南堡凹陷厚层泥岩的封盖作用及期与油气的关系.石油实验地质, 23(4):418-423. doi: 10.11781/sysydz200104418 [67] 夏新宇, 宋岩, 2001.沉降及抬升过程中温度对流体压力的影响.石油勘探与开发, 28(3):8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200103002.htm [68] 肖军, 王华, 郭齐军, 等, 2003.南堡凹陷温度场、压力场及流体势模拟研究——基于Basin2盆地模拟软件.地质科技情报, 22(1):67-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200301017.htm [69] 谢玉洪, 刘平, 黄志龙, 2012.莺歌海盆地高温超压天然气成藏地质条件及成藏过程.地质勘探, 34(4):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204007.htm [70] 张文才, 李贺, 李会军, 等, 2008.南堡凹陷高柳地区深层次生孔隙成因及分布特征.石油勘探与开发, 35(3):308-312. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200803009.htm [71] 邹海峰, 2000. 大港探区前第三系古流体和古温压特征及演化(博士学位论文). 长春: 吉林大学.