• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景

    王键 孙丰月 李碧乐 王英德 李睿华

    王键, 孙丰月, 李碧乐, 王英德, 李睿华, 2016. 内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景. 地球科学, 41(5): 792-808. doi: 10.3799/dqkx.2016.067
    引用本文: 王键, 孙丰月, 李碧乐, 王英德, 李睿华, 2016. 内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景. 地球科学, 41(5): 792-808. doi: 10.3799/dqkx.2016.067
    Wang Jian, Sun Fengyue, Li Bile, Wang Yingde, Li Ruihua, 2016. Age, Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia. Earth Science, 41(5): 792-808. doi: 10.3799/dqkx.2016.067
    Citation: Wang Jian, Sun Fengyue, Li Bile, Wang Yingde, Li Ruihua, 2016. Age, Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia. Earth Science, 41(5): 792-808. doi: 10.3799/dqkx.2016.067

    内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景

    doi: 10.3799/dqkx.2016.067
    基金项目: 

    国家自然科学基金项目 41272093

    中国地质调查局项目 12120113098300

    详细信息
      作者简介:

      王键(1987-),男,博士研究生,主要从事岩石学、矿物学、矿床学方面的研究.E-mail: wjian118@hotmail.com

      通讯作者:

      孙丰月,E-mail: sunfy_66@126.com

    • 中图分类号: P597

    Age, Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia

    • 摘要: 为了对古亚洲洋的演化提供新的资料,对内蒙中部乌拉特中旗图古日格角闪石岩进行了角闪石电子探针分析、锆石LA-ICP-MS U-Pb年代学,锆石Hf同位素和岩石地球化学分析,以确定其岩石成因及其地球动力学背景.两件测年样品加权平均年龄分别为273.5±1.3 Ma(MSWD=0.48) 和274.4±4.3 Ma(MSWD=0.041),属于早二叠世晚期.角闪石岩贫SiO2、Na2O、K2O,富Al2O3、TFe2O3、MgO和CaO,Mg#值为46.95~63.53,M/F比值为0.87~1.72;稀土元素配分曲线为右倾型,和原始地幔相比明显富集大离子亲石元素(Rb、Ba、K),而高场强元素Nb、Ta和Ti相对亏损,Th、U同样显示出相对亏损.电子探针分析结果表明角闪石岩中角闪石属于钙质角闪石,具有幔源角闪石的特点.角闪石岩中锆石的ε Hf(t)值为-0.3~8.5,锆石Hf单阶段模式年龄(t DM1)为580~920 Ma.研究表明其源区主要为亏损地幔,上涌过程中与富集岩石圈地幔发生相互作用,形成具有富集地幔特征岩浆.结合区域地质演化,认为角闪石岩形成于古亚洲洋闭合后的伸展环境,可能与俯冲板片的断离有关.

       

    • 图  1  中亚造山带东部构造地质简图

      Xiao et al.(2009)

      Fig.  1.  Tectonic sketch of eastern Central Asian orogenic belt

      图  2  乌拉特中旗图古日格地区地质

      据核工业二〇八大队内部资料(2013) 改

      Fig.  2.  Detailed geological sketch of Tugurige, Urad Zhongqi

      图  3  图古日格早二叠世角闪石岩显微照片

      a,b.角闪石呈长柱状,粒状,边部可见少量绿帘石化(单偏光);c.角闪石两组斜交节理,Ⅱ级蓝干涉色(正交偏光);d.角闪石岩中的白云母化(正交偏光);Mg-Hs.镁铝钙闪石;Mag.磁铁矿;Chl.绿泥石;Ms.白云母

      Fig.  3.  Microphotographs of Early Permian hornblendite

      图  4  角闪石的成分变化与定名

      CaB.B位置Ca原子数;(Na+K)A.A位置Na与K原子数之和;TSi.T位置Si原子数;Al.C位置Al的原子数;Fe3+.C位置Fe3+的原子数;据Leake(1997)

      Fig.  4.  Classification of hornblendes

      图  5  图古日格角闪石岩部分锆石阴极发光图像

      Fig.  5.  Cathodoluminescence images of analyzed zircons from Tugurige hornblendite

      图  6  角闪石岩样品中锆石的U-Pb年龄谐和图和加权平均年龄

      a.样品1##中锆石U-Pb年龄谐和图;b.样品1##锆石年龄加权图;c.样品TG-3中锆石U-Pb年龄谐和图;d.样品TG-3锆石年龄加权图

      Fig.  6.  Zircons U-Pb concordia diagram and weighted average ages diagram for hornblendite

      图  7  图古日格角闪石岩稀土元素配分模式(a)和微量元素蛛网图(b)

      图a球粒陨石值据Boynton(1984); 图b原始地幔值据Sun and McDonough(1989)

      Fig.  7.  >Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns(b) for the Tugurige hornblendite

      图  8  角闪石Al-Si图解

      图据姜常义和安三元(1984)修改

      Fig.  8.  Al-Si Diagram of crystal-chemical genesis of horblende

      图  9  图古日格角闪石岩Th/Yb-Nb/Yb图解(a)、Ba/Th-Th/Nb图解(b)和Nb/Zr-Th/Zr图解(c)

      图a据Pearce(2008);图b据Hanyu et al.(2006);图c据Woodhead et al.(2001)

      Fig.  9.  Th/Yb-Nb/Yb, Ba/Th-Th/Nb and Nb/Zr-Th/Zr diagrams of Tugurige hornblendite

      图  10  图古日格角闪石岩锆石εHf(t)-t图解

      Yang et al.(2006)

      Fig.  10.  εHf(t)-t diagram of Tugurige hornblendite

      图  11  图古日格角闪石岩Ti-Zr图解

      Fig.  11.  Ti-Zr diagram of Tugurige hornblendite

      图  12  图古日格角闪石岩形成构造模式

      Fig.  12.  Structure model diagram of Tugurige hornblendite

      表  1  图古日格角闪石岩中角闪石电子探针分析结果

      Table  1.   Results of electron microprobe analysis of Tugurige hornblendite

      样品TG3-1TG3-2TG3-3TG3-4TG3-5TG3-6TG4-1TG4-2TG4-3TG4-4TG4-5TG4-6
      SiO240.9641.7540.9143.3741.2740.5741.8441.1941.2942.0642.0941.58
      TiO22.472.342.411.912.642.391.062.103.192.562.412.28
      Al2O313.2812.6913.2110.8713.5812.9913.1712.7212.6312.3312.1912.86
      TFeO13.4014.5414.0715.4912.9016.1415.5312.8113.2813.0713.9712.52



      Cr2O30.020.000.000.000.010.010.140.000.000.010.000.02
      MnO0.180.200.170.240.170.220.210.140.140.150.200.18
      MgO11.8411.6011.5911.8212.2410.4911.2311.9112.3512.6512.0012.34
      CaO11.1311.0511.2510.8711.1911.0111.1011.3011.0811.4011.0511.33
      CoO0.010.060.070.040.010.000.070.040.070.030.020.04
      NiO0.010.030.020.000.020.020.000.000.000.000.010.04
      K2O0.961.080.900.880.800.970.740.920.850.911.000.79
      Na2O2.362.232.332.062.282.182.222.212.132.172.182.27
      Total96.6197.5696.9497.5597.1196.9997.3195.3496.9997.3497.1296.25
      TSi6.176.296.166.536.226.116.306.206.226.346.346.26
      Al1.831.711.841.471.781.891.701.801.781.661.661.74
      CAl0.520.540.500.460.620.410.640.460.460.520.500.54
      Ti0.250.230.240.190.260.240.110.210.320.260.240.23
      Cr0.000.000.000.000.000.000.020.000.000.000.000.00
      Fe3+1.471.581.531.651.331.531.691.041.421.351.521.40
      Mn0.020.030.020.030.020.030.030.020.020.020.030.02
      Mg2.672.622.622.672.772.372.542.692.792.862.712.79
      Fe2+0.060.000.080.000.000.420.000.580.000.000.000.01
      BCa1.801.781.821.751.811.781.791.821.791.841.781.83
      Na0.200.220.180.250.190.220.210.180.210.160.220.17
      ANa0.480.430.500.360.470.410.440.470.410.470.420.49
      K0.180.210.170.170.150.190.140.180.160.180.190.15
      Fe3++Fe2+1.531.581.611.651.331.951.691.621.421.351.521.42
      Mg/(Mg+Fe2+)0.981.000.971.001.000.851.000.821.001.001.001.00
      Si/(Si+Ti+Al)0.7030.7170.7050.7550.7000.7060.7210.7160.7090.7220.7250.714
      Ca/(Ca+Mg+Fe)0.300.300.300.290.310.290.300.300.300.300.300.30
      下载: 导出CSV

      表  2  图古日格角闪石岩锆石LA-ICP-MS U-Pb同位素定年结果

      Table  2.   Results of LA-ICP-MS zircon U-Pb dating of Tugurige hornblendite

      测点号Pb(10-6)Th(10-6)U(10-6)Th/U207Pb/206Pb207Pb/235U206Pb/238U206Pb/238U
      比值1σ比值1σ比值1σ年龄(Ma)1σ
      1##-143.7177.2311.10.570.052 10.002 30.309 20.013 40.043 20.000 52733
      1##-234.6130.8258.10.510.051 80.002 10.310 50.012 70.043 30.000 42733
      1##-358.3246.1348.60.710.052 80.005 70.313 30.033 30.043 20.000 82735
      1##-447.4200.3302.00.660.049 60.001 90.297 30.011 10.043 80.000 52773
      1##-589.0345.4632.20.550.051 50.001 90.312 50.012 20.043 80.000 52763
      1##-650.1208.5363.40.570.047 40.001 90.281 70.011 50.043 00.000 42713
      1##-776.1330.6440.50.750.049 50.001 90.292 60.011 00.042 80.000 42702
      1##-8118.8510.9742.60.690.050 50.001 30.302 20.008 20.043 00.000 32722
      1##-926.4101.1179.60.560.051 70.003 50.310 10.021 60.043 30.000 72735
      1##-1072.0318.5488.00.650.050 00.002 70.299 20.015 50.043 30.000 62734
      1##-1155.3233.1358.60.650.053 10.004 10.318 10.024 10.043 80.000 72764
      1##-1229.9135.2249.80.540.049 20.004 90.299 50.031 00.043 50.000 82755
      1##-1338.7154.9285.90.540.050 90.002 20.304 90.013 00.043 60.000 52753
      1##-1466.0289.4398.80.730.050 20.001 80.299 40.010 60.043 10.000 42722
      1##-1539.3161.9265.10.610.050 40.002 30.303 70.013 80.043 50.000 52753
      1##-1652.8227.3357.50.640.050 50.002 80.303 60.015 60.043 70.000 62763
      1##-1749.0200.4353.80.570.053 00.001 70.316 70.010 40.043 10.000 42722
      1##-1855.5218.9365.30.600.051 10.001 90.307 20.011 00.043 50.000 42752
      1##-19190.4854.3746.01.150.050 70.001 40.306 80.008 20.043 70.000 32762
      1##-2025.3100.5170.50.590.052 70.003 20.307 80.017 30.043 50.000 62743
      TG-3-114.0200.3247.80.810.051 80.002 90.310 50.019 00.043 50.001 827411
      TG-3-231.1440.1569.00.770.052 00.001 90.311 40.013 90.043 50.001 727411
      TG-3-311.1121.8194.80.630.052 00.002 50.310 60.016 80.043 30.001 827311
      TG-3-455.7556.41 068.00.520.054 30.001 80.324 90.013 60.043 40.001 727411
      TG-3-595.61 012.12 146.90.470.051 20.001 60.306 40.012 50.043 40.001 727411
      TG-3-640.3761.4630.61.210.051 90.002 10.311 00.014 90.043 50.001 827411
      TG-3-729.9449.6536.70.840.054 20.002 60.319 80.017 10.042 80.001 827011
      TG-3-825.1398.3472.40.840.051 50.002 00.309 20.014 10.043 60.001 827511
      TG-3-973.81 344.41 332.01.010.051 70.001 70.308 50.013 00.043 30.001 727311
      TG-3-1088.31 763.91 250.11.410.051 50.002 90.309 30.018 60.043 60.001 827511
      TG-3-11165.93 119.52 847.91.100.052 00.001 70.310 00.013 00.043 30.001 727311
      TG-3-12120.61 872.82 096.70.890.051 10.001 60.307 10.012 50.043 60.001 827511
      TG-3-1375.81 936.61 132.41.710.051 80.001 80.310 90.013 30.043 50.001 827511
      TG-3-1429.0299.4504.70.590.051 60.002 50.308 60.016 80.043 40.001 827411
      TG-3-1594.2957.82 041.90.470.051 70.001 80.309 20.013 20.043 40.001 827411
      TG-3-1621.8133.7448.80.300.050 00.001 90.298 90.013 50.043 30.001 827411
      TG-3-1774.71 094.61 281.50.850.051 50.002 10.310 10.014 60.043 70.001 827611
      TG-3-1842.2397.3860.00.460.051 50.001 90.308 10.014 00.043 40.001 827411
      TG-3-1937.9744.2537.21.390.052 30.003 10.312 60.020 10.043 30.001 827311
      TG-3-2022.9184.4435.10.420.050 00.001 80.309 20.013 40.044 80.001 828311
      TG-3-2128.7225.1581.00.390.051 60.001 90.308 40.013 80.043 30.001 827411
      TG-3-22124.24 611.91 706.32.700.051 30.002 00.308 40.014 40.043 60.001 827511
      TG-3-2347.6555.1910.00.610.051 30.003 20.313 80.020 80.044 30.001 928012
      TG-3-24178.62 543.63 706.50.690.051 10.001 80.306 60.013 20.043 50.001 827511
      TG-3-2529.4257.3556.80.460.051 90.003 60.309 60.022 50.043 30.001 927311
      下载: 导出CSV

      表  3  图古日格角闪石岩中锆石Lu-Hf同位素组成

      Table  3.   Zircon Lu-Hf isotopic compositions of hornblendite in Tugurige

      点号年龄(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ(176Hf/177Hf)iεHf(0)εHf(t)tDM1(Ma)fLu/Hf
      1##-12730.028 1630.000 8480.282 6970.000 0130.282 692-2.73.2784-0.97
      1##-22730.027 5820.000 8350.282 6480.000 0110.282 644-4.41.5851-0.97
      1##-32730.062 8030.001 7630.282 8400.000 0130.282 8312.48.1596-0.95
      1##-42730.035 8750.001 0880.282 7190.000 0120.282 713-1.93.9757-0.97
      1##-52730.041 4980.001 2360.282 7310.000 0130.282 725-1.44.3743-0.96
      1##-62730.037 5760.001 1290.282 7170.000 0120.282 711-1.93.9760-0.97
      1##-72730.026 6630.000 8130.282 6810.000 0130.282 677-3.22.6805-0.98
      1##-82730.029 5530.000 9090.282 6750.000 0130.282 671-3.42.4815-0.97
      1##-92730.026 1140.000 8110.282 6620.000 0110.282 658-3.92.0831-0.98
      1##-102730.030 6340.000 9300.282 6840.000 0130.282 679-3.12.7803-0.97
      1##-112730.021 3230.000 6530.282 6500.000 0120.282 646-4.31.6845-0.98
      1##-122730.020 1510.000 6130.282 6560.000 0090.282 653-4.11.8835-0.98
      1##-132730.065 5820.001 8810.282 8520.000 0150.282 8422.88.5580-0.94
      1##-142730.029 5050.000 8800.282 6800.000 0120.282 676-3.22.6807-0.97
      1##-152730.023 3000.000 7010.282 5970.000 0120.282 593-6.2-0.3920-0.98
       注:εHf(0)=[(176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1]×104εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×104tDM1=1/λ×{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM)/(176Lu/177Hf)S-(176Lu/177Hf)DM]};fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;其中,(176Lu/177Hf)S和(176Hf/177Hf)S为样品测定值,(176Lu/177Hf)CHUR=0.032 200,(176Hf/177Hf)CHUR, 0=0.282 772;(176Lu/177Hf)DM=0.038 400,(176Hf/177Hf)DM=0.283 250;fCCfSfDM分别为大陆地壳、样品和亏损地幔的fLu/Hft为样品形成时间,λ=1.867×10-11 a-1.
      下载: 导出CSV

      表  4  图古日格角闪石岩主量元素(%)、微量元素(10-6)和稀土元素(10-6)分析结果

      Table  4.   Major elements, trace elements and rare elements analyses of the Tugurige hornblendite

      样品1##-11##-21##-31##-41##-51##-6
      SiO243.4643.5445.3045.2946.3043.33
      Al2O316.1517.5715.8411.0210.8715.52
      TFe2O314.2214.0113.9113.9913.3415.14
      MgO7.596.267.4311.8911.737.93
      CaO9.349.449.9011.3511.1010.25
      Na2O2.102.292.431.881.862.20
      K2O2.362.111.370.990.971.73
      MnO0.210.190.210.200.200.21
      TiO21.521.491.471.891.851.67
      P2O50.440.500.390.050.050.36
      LOI2.562.541.721.421.671.62
      Total99.9599.9499.9799.9799.9499.96
      Mg#51.3946.9551.4162.7463.5350.92
      M/F1.040.871.041.661.721.02
      La20.018.319.712.513.721.4
      Ce58.852.252.034.836.556.1
      Pr8.917.748.045.745.808.90
      Nd37.434.638.129.528.542.2
      Sm7.576.938.707.517.409.41
      Eu1.801.832.131.851.842.46
      Gd7.066.327.827.106.588.47
      Tb1.151.051.271.161.141.42
      Dy5.875.326.396.136.016.89
      Ho1.121.051.141.101.001.24
      Er3.273.113.132.932.693.50
      Tm0.510.470.470.440.410.53
      Yb2.872.822.672.472.343.09
      Lu0.450.420.390.350.340.45
      REE156.33141.74151.56113.23113.91165.51
      LREE134.48121.60128.6791.9093.74140.37
      HREE21.8520.1422.8921.3320.1725.14
      δEu0.740.830.770.760.790.83
      LREE/HREE6.156.045.624.314.655.58
      (La/Yb)N4.704.384.973.413.954.67
      (La/Sm)N1.661.661.421.051.161.43
      (Gd/Lu)N1.951.872.492.522.412.34
      V317290289439480368
      Cr124.063.294.2272.0268.087.2
      Co37.830.738.556.053.946.1
      Ni21.318.815.835.335.115.9
      Ga33.033.323.617.617.224.8
      Rb93.5105.037.420.216.555.3
      Sr576882569295249573
      Y35.232.131.129.127.834.3
      Ba3035407101105239497
      Pb9.6413.006.144.474.706.64
      Th2.542.892.231.503.012.41
      U0.720.910.860.450.970.89
      Nb6.556.276.035.345.496.74
      Ta0.2840.2660.3200.3250.3650.320
      Zr116.0152.096.260.167.0115.0
      Hf3.644.203.492.672.933.89
      La/Sm2.642.642.261.661.852.27
      Sr/Nd15.4025.4914.9310.008.7413.58
      下载: 导出CSV
    • [1] All Members of the IMA-CNMMN Amphibole Professional Committee, 2001.Amphibole Nomenclature—International Association of Mineralogy New Mineral and Mineral Named Committee Hornblende Professional Committee's Report.Acta Petrologica et Mineralogica, 20(1):84-100(in Chinese). http://www.academia.edu/1050464/Nomenclature_of_amphiboles_report_of_the_subcommittee_on_amphiboles_of_the_International_Mineralogical_Association_Commission_on_New_Minerals_and_
      [2] Blichert-Toft, J., Catherine Chauvel, F., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260.doi: 10.1007/s004100050278
      [3] Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson, P., ed., Rare Earth Elements Geochemistry.Elsevier, Amsterdam, 63-144.doi:10.1016/B978-0-444-42148-7.50008-3
      [4] Chen, B., Zhao, G.C., Wilde, S., 2001.Subduction-and Collision-Related Granitoids from Southern Sonidzuoqi, Inner Mongolia:Isotopic Ages and Tectonic Implications.Geological Review, 47(4):361-364(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200104005.htm
      [5] Fisher, C.M., Vervoort, J.D., Hanchar, J.M., 2014.Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of These Data.Chemical Geology, 363:125-133.doi: 10.1016/j.chemgeo.2013.10.019
      [6] Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006.Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr:Constraints from Geochemistry.Geochemistry, Geophysics, Geosystems, 7(8):1-29. https://www.researchgate.net/publication/259474862_Contribution_of_slab_melting_and_slab_dehydration_to_magmatism_in_the_NE_Japan_arc_for_the_last_25_Myr_Constraints_from_geochemistry
      [7] Hong, D.W., Huang, H.Z., Xiao, Y.J., et al., 1994.The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance.Acta Geologica Sinica, 68(3):219-230 (in Chinese with English abstract). https://www.researchgate.net/publication/229810589_Permian_Alkaline_Granites_in_Central_Inner_Mongolia_and_Their_Geodynamic_Significance1
      [8] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008a.Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas.Journal of Analytical Atomic Spectrometry, 23(8):1093-1101. doi: 10.1039/b804760j
      [9] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2008b.A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry.Journal of Analytical Atomic Spectrometry, 23(9):1192-1203. doi: 10.1039/B803934H
      [10] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012a.A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis.Spectrochimica Acta Part B:Atomic Spectroscopy, 78:50-57.doi:10.1016/j. sab. 2012.09.007
      [11] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012b.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399.doi: 10.1039/C2JA30078H
      [12] Jian, P., Liu, D.Y., Kröner, A., et al., 2010.Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia.Lithos, 118(1-2):169-190.doi: 10.1016/j.lithos.2010.04.014
      [13] Jiang, C.Y., An, S.Y., 1984.On Chemical Characteristics of Calcic Amphiboles from Igneous Rock and Their Petrogenesis Significance.Journal of Mineralogy and Petrology, 4(3):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS198403000.htm
      [14] Langmuir, C.H., Bender, J.F., Bence, A.E., et al., 1977.Petrogenesis of Basalts from the FAMOUS Area:Mid-Atlantic Ridge.Earth and Planetary Science Letters, 36(1):133-156.doi: 10.1016/0012-821X(77)90194-7
      [15] Leake, B.E., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.Mineralogical Magazine, 61(405):295-321. doi: 10.1180/claymin
      [16] Li, B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science, 41(1):1-16 (in Chinese with English abstract). https://www.researchgate.net/publication/290480034_Zircon_U-Pb-Hf_isotopes_bulk-rock_geochemistry_and_petrogenesis_of_Middle_to_Late_Triassic_I-type_granitoids_in_the_Xing%27an_Block_northeast_China_Implications_for_early_Mesozoic_tectonic_evolution_of_
      [17] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007.Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates.Acta Petrologica Sinica, 23(3):565-582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200703006.htm
      [18] Li, P.W., Zhang, S.H., Gao, R., et al., 2012.New Upper Carboniferous-Lower Permian Paleomagnetic Results from the Central Inner Mongolia and Their Geological Implications.Journal of Jilin University(Earth Science Edition), 42(Suppl.1):423-434, 440(in Chinese with English abstract). https://www.researchgate.net/publication/279624901_New_Upper_Carboniferous-lower_Permian_paleomagnetic_results_from_the_central_Inner_Mongolia_and_their_geological_implications
      [19] Li, Y.L., Zhou, H.W., Xiao, W.J., et al., 2012.Superposition of Paleo-Asian and West-Pacific Tectonic Domains in the Eastern Section of the Solonker Suture Zone:Insights from Petrology, Geochemistry and Geochronology of Deformed Diorite in Xar Moron Fault Zone, Inner Mongolia.Earth Science, 37(3):433-450 (in Chinese with English abstract).
      [20] Liegéois, J.P., 1998.Some Words on the Post-Collisional Magmatism.Lithos, 45:15-17. http://www.researchgate.net/profile/J-P_Liegeois/publication/259369329_Some_words_on_the_post-collisional_magmatism/links/00b4952b40900f0929000000.pdf
      [21] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://www.researchgate.net/profile/Keqing_Zong2/publication/268411794_Continental_and_Oceanic_Crust_Recycling-induced_MeltPeridotite_Interactions_in_the_Trans-North_China_Orogen_UPb_Dating_Hf_Isotopes_and_Trace_Elements_in_Zircons_from_Mantle_Xenoliths/links/551434ad0cf2eda0df306881.pdf?disableCoverPage=true
      [22] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, 4:70. http://searchworks.stanford.edu/view/6739593
      [23] Luo, H.L., Wu, T.R., Li, Y., 2007.Geochemistry and SHRIMP Dating of the Kebu Massif from Wulatezhongqi, Inner Mongolia:Evidence for the Early Permian Under Palting Beneath the North China Craton.Acta Petrologica Sinica, 23(4):755-766(in Chinese with English abstract).
      [24] Luo, H.L., Wu, T.R., Zhao, L., 2009.Zicron SHRIMP U-Pb Dating of Wuliangsitai A-Type Granite on the Northern Margin of the North China Plate and Tectonic Significance.Acta Petrologica Sinica, 25(3):515-526(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200903005.htm
      [25] Luo, H.L., Wu, T.R., Zhao, L., et al., 2013.Geochemical Characteristics of Bayinzhurihe Pluton and Its Tectonic Significance, Bayan Obo, Inner Mongolia.Geological Journal of China Universities, 19(1):123-132 (in Chinese with English abstract). https://www.researchgate.net/publication/304714661_Geochemical_characteristics_of_Bayinzhurihe_pluton_and_its_tectonic_significance_Bayan_Obo_Inner_Mongolia
      [26] Miao, L.C., Fan, W.M., Liu, D.Y., et al., 2008.Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex:Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China.Journal of Asian Earth Sciences, 32(5-6):348-370.doi:10.1016/j.jseaes. 2007.11.005
      [27] Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1-4):14-48.doi:10.1016/j. lithos. 2007.06.016
      [28] Rudnick, R.L., 1995.Making Continental Crust.Nature, 378(7):571-578. https://community.dur.ac.uk/yaoling.niu/MyReprints-pdf/YoshiTatsumi-MakingCC.pdf
      [29] Rudnick, R.L., Gao, S., Ling, W.L., et al., 2004.Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton.Lithos, 77(1-4):609-637.doi: 10.1016/j.lithos.2004.03.033
      [30] Shao, J.A., 1991.Crustal Evolution of the Central-Northern Margin of the Sino-Korean Plate.Peking University Press, Beijing(in Chinese).
      [31] Shao, J.A., Tang, K.D., He, G.Q., 2014.Early Permian Tectono-Palaeogeographic Reconstruction of Inner Mongolia, China.Acta Petrologica Sinica, 30(7):1858-1866(in Chinese with English abstract). https://www.researchgate.net/publication/293238364_Early_Permian_tectono-palaeogeographic_reconstruction_of_Inner_Mongolia_China
      [32] Shao, J.A., Tian, W., Zhang, J.H., 2015.Early Permian Cumulates in Northern Margin of North China Craton and Their Tectonic Significances.Earth Science, 40(9):1441-1457 (in Chinese with English abstract). https://www.researchgate.net/publication/284920190_Early_permian_cumulates_in_northern_margin_of_north_China_Craton_and_their_tectonic_significances
      [33] Shen, S.Z., Zhang, H., Shang, Q.H., et al., 2006.Permian Stratigraphy and Correlation of Northeast China:A Review.Journal of Asian Earth Sciences, 26(3-4):304-326.doi: 10.1016/j.jseaes.2005.07.007
      [34] Shi, G.H., Miao, L.C., Zhang, F.Q., et al., 2004.Emplacement Age and Tectonic Implications of the Xilinhot A-Type Granite in Inner Mongolia, China.Chinese Science Bulletin, 49(7):723-729. doi: 10.1007/BF03184272
      [35] Sun, L.X., Zhao, F.Q., Wang, H.C., et al., 2013.Zircon U-Pb Geochronology of Metabase Rocks from the Baoyintu Block in the Langshan Area, Inner Mongolia, and Its Tectonic Significance.Acta Geologica Sinica, 87(2):197-207 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.02.005
      [36] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [37] Tang, K.D., 1990.Tectonic Development of Paleozoic Foldbelts at the North Margin of the Sino-Korean Craton.Tectonics, 9(2):249-260. doi: 10.1029/TC009i002p00249
      [38] Tang, K.D., 1992.Evolution of Fold Belt Tectonic and Metallogenic Regularities in North Sino-Korean Plate.Peking University Press, Beijing, 112-243(in Chinese).
      [39] Tang, Y.J., Zhang, H.F., Ying, J.F., 2014.Genetic Significance of Triassic Alkali-Rich Intrusive Rocks in the Yinshan and Neighboring Areas.Acta Petrologica Sinica, 30(7):2031-2040(in Chinese with English abstract). https://www.researchgate.net/publication/298832031_Genetic_significance_of_Triassic_alkali-rich_intrusive_rocks_in_the_Yinshan_and_neighboring_areas
      [40] Tang, Y.J., Zhang, H.F., Ying, J.F., 2006.Asthenosphere-Lithospheric Mantle Interaction in an Extensional Regime:Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton.Chemical Geology, 233(3-4):309-327. doi: 10.1016/j.chemgeo.2006.03.013
      [41] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, Oxford.
      [42] Tong, Y., Hong, D.W., Wang, T., et al., 2010.Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications.Acta Geoscientica Sinica, 31(3):395-412(in Chinese with English abstract). https://www.researchgate.net/publication/281037103_Spatial_and_Temporal_Distribution_of_Granitoids_in_the_Middle_Segment_of_the_Sino-Mongolian_Border_and_its_Tectonic_and_Metallogenic_Implications
      [43] Vervoort, J.D., Patchett, P.J., 1996.Behavior of Hafnium and Neodymium Isotopes in the Crust:Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta, 60(19):3717-3733. doi: 10.1016/0016-7037(96)00201-3
      [44] Wang, Q., 2010.Petrogenesis and Magma Source of Wengen A Magic-Ultramafic Intrusion, Inner Mongolia, China (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract).
      [45] Wang, Q., Liu, X.Y., Li, J.Y., 1991.Plate Tectonics between Cathaysia and Angaraland in China.Peking University Press, Beijing (in Chinese with English abstract).
      [46] Wang, W.Q., Liu, Z.H., Wang, X.A., et al., 2012.SHRIMP U-Pb Dating of the Zircon from the Hercynian Biotite Monzonitic Granites in Urad Zhongqi, Inner Mongolia, and Its Geological Significance.Journal of Jilin University(Earth Science Edition), 42(6):1771-1782(in Chinese with English abstract). https://www.researchgate.net/publication/282223394_SHRIMP_U-Pb_dating_of_the_zircon_from_the_Hercynian_biotite_monzonitic_granites_in_Urad_Zhongqi_Inner_Mongolia_and_its_geological_significance
      [47] Wang, W.Q., Xu, Z.Y., Liu, Z.H., et al., 2013.Early-Middle Permian Tectonic Evolution of the Central-Northern Margin of the North China Craton:Constraints from Zircon U-Pb Ages and Geochemistry of the Granitoids.Acta Petrologica Sinica, 29(9):2987-3003(in Chinese with English abstract). https://www.researchgate.net/publication/282931715_Early_Carboniferous_tectonic_attribute_of_the_central-northern_margin_of_north_China_Craton_Constraints_from_geochemistry_of_highly_fractionated_I-type_granites_in_Cahayouhouqi_area
      [48] Wang, X.L., Zhang, C., Liu, S.W., et al., 2007.Electron Microprobe Dating of Monazite in Granite from Kanbao Area, Hebei Province.Acta Petrologica Sinica, 23(4):817-822(in Chinese with English abstract). https://www.researchgate.net/publication/281359485_Electron_microprobe_dating_of_monazite_in_granite_from_Kanbao_area_Hebei_province
      [49] Wang, Y.D., Sun, F.Y., Li, L., et al., 2015.Geochronology, Geochemistry, and Geological Implications of Late Carboniferous-Early Permian Mafic and Felsic Intrusive Rocks from Urad Zhongqi, Western Inner Mongolia.Geological Magazine, 152(6):1057-1072. doi: 10.1017/S0016756815000138
      [50] Wang, Y.W., Wang, J.B., Wang, L.J., 2000.The Petrologic Characteristics of Hornblendite in Danailingou, Inner Mongolia.Geological Review, 46(3):301-306(in Chinese with English abstract). https://www.researchgate.net/publication/290021708_Petrological_and_geochemical_characteristics_of_the_Wanganzhen_complex_and_discussion_on_its_genesis
      [51] Windley, B., 1993.Proterozoic Anorogenic Magmatism and Its Orogenic Connections.Journal of the Geological Society, 150:39-50.doi: 10.1144/gsjgs.150.1.0039
      [52] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346.doi: 10.1016/j.chemgeo.2004.04.026
      [53] Woodhead, J., Hergt, J., Shelley, M., et al., 2004.Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation.Chemical Geology, 209(1-2):121-135.doi: 10.1016/j.chemgeo.2004.04.026
      [54] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). https://www.researchgate.net/publication/279910636_Lu-Hf_isotopic_systematics_and_their_application_in_petrology
      [55] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):288-308. https://www.researchgate.net/publication/228469753_Accretion_leading_to_collision_and_the_Permian_Solonker_suture_Inner_Mongolia_China_Termination_of_the_Central_Asian_Orogenic_Belt
      [56] Xiao, W.J., Windley, B.F., Huang, B.C., et al., 2009.End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids:Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia.International Journal of Earth Sciences, 98(6):1189-1217. doi: 10.1007/s00531-008-0407-z
      [57] Xu, B., Charvet, J., Chen, Y., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt.Gondwana Research, 23(4):1342-1364.doi: 10.1016/j.gr.2012.05.015
      [58] Xu, B., Chen, B., 1997.Structure and Evolution of the Paleozoic Orogenic Belt between North China Plate and Siberian Plate in the North Inner Mongolia.Science in China(Series D), 27(3):227-232(in Chinese).
      [59] Yang, J., Wu, F., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. doi: 10.1016/j.epsl.2006.04.029
      [60] Yuan, H.L., Gao, S., Liu X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3
      [61] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003.Laser Probe Zircon U-Pb and REE Composition Analysis of Cenozoic Intrusive in Northeast China.Chinese Science Bulletin, 48(14):1511-1520(in Chinese).
      [62] Zhang, Q.W., Liu, Z.H., Chai, S.L., et al., 2011.Zircon U-Pb Dating of the Garnet-Bearing Granite from Wulan Area of Urad Zhongqi in Inner Mongolia and Its Geological Significance.Journal of Jilin University(Earth Science Edition), 41(3):745-752(in Chinese with English abstract).
      [63] Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2008.Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, North China:Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt.Chemical Geology, 249(3-4):262-281. doi: 10.1016/j.chemgeo.2008.01.005
      [64] Zhang, Z.Q., Yuan, Z.X., Tang, S.H., et al., 2003.Age and Geochemistry of the Bayan Obo Ore Deposit.Geological Publishing House, Beijing (in Chinese).
      [65] Zhao, L., Wu, T.R., Luo, H.L., 2011.SHRIMP U-Pb Dating, Geochemistry and Tectonic Implications of the Beiqigetao Gabbros in Urad Zhongqi Area, Inner Mongolia.Acta Petrologica Sinica, 27(10):3071-3082(in Chinese with English abstract). doi: 10.1080/00206814.2015.1039087?scroll=top
      [66] Zhao, L., Wu, T.R., Luo, H.L., et al., 2008.Petrology, Geochemistry and Tectonic Implications of the Wengeng Gabbros in Wulatezhongqi Area, Inner Mongolia.Acta Scientianum Naturalium Universitatis Pekinensis, 44(2):201-211(in Chinese with English abstract). doi: 10.1080/00206814.2015.1039087?scroll=top
      [67] Zhao, P., Chen, Y., Xu, B., et al., 2013.Did the Paleo-Asian Ocean between North China Block and Mongolia Block Exist during the Late Paleozoic? First Paleomagnetic Evidence from Central-Eastern Inner Mongolia, China.Journal of Geophysical Research:Solid Earth, 118(5):1873-1894. doi: 10.1002/jgrb.50198
      [68] Zhao, Q.Y., Liu, Z.H., Wu, X.W., et al., 2007.Characteristics and Origin of Halaheshao Pluton in Daqingshan Region, Inner-Mongolia.Journal of Mineral.Petrol., 27(1):46-51(in Chinese with English abstract). https://www.researchgate.net/publication/287690451_Characteristics_and_origin_of_the_Shadegai_pluton_in_the_Daqingshan_Area_Inner-Mongolia
      [69] Zhou, Z.G., Gu, Y.C., Liu, C.F., et al., 2010.Discovery of Early-Middle Permian Cathaysian Flora in Manduhubaolage Area, Dong Ujimqin Qi, Inner Mongolia, China and Its Geological Significance.Geological Bulletin of China, 28(12):21-25(in Chinese with English abstract).
      [70] IMA-CNMMN角闪石专业委员会全体成员, 2001.角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告.岩石矿物学杂志, 20(1):84-100. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200101011.htm
      [71] 陈斌, 赵国春, Wilde, S., 2001.内蒙古苏尼特左旗南两类花岗岩同位素年代学及构造意义.地质评论, 47(4):361-364. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200104005.htm
      [72] 洪大卫, 黄怀曾, 肖宜君, 等, 1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报, 68(3):219-230. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199403002.htm
      [73] 姜常义, 安三元, 1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义.矿物岩石, 4(3):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198403000.htm
      [74] 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16. doi: 10.11764/j.issn.1672-1926.2016.01.0001
      [75] 李锦轶, 高立明, 孙桂华, 等, 2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报, 23(3):565-582. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
      [76] 李朋武, 张世红, 高锐, 等, 2012.内蒙古中部晚石炭世-早二叠世古地磁新数据及其地质意义.吉林大学学报(地球科学版), 42(增刊1) :423-434, 440. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1051.htm
      [77] 李益龙, 周汉文, 肖文交, 等, 2012.古亚洲构造域和西太平洋构造域在索伦缝合带东段的叠加:来自内蒙古林西县西拉木伦断裂带内变形闪长岩的岩石学、地球化学和年代学证据.地球科学, 37(3):433-450. http://www.earth-science.net/WebPage/Article.aspx?id=2248
      [78] 罗红玲, 吴泰然, 李毅, 2007.乌拉特中旗克布岩体的地球化学特征及SHRIMP定年:早二叠世华北克拉通底侵作用的证据.岩石学报, 23(4):755-766. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704008.htm
      [79] 罗红玲, 吴泰然, 赵磊, 2009.华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义.岩石学报, 25(3):515-526. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903005.htm
      [80] 罗红玲, 吴泰然, 赵磊, 等, 2013.白云鄂博中二叠世巴音珠日和岩体地球化学特征及构造意义.高校地质学报, 19(1):123-132. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301015.htm
      [81] 邵济安, 1991.中朝板块北缘中段地壳演化.北京:北京大学出版社.
      [82] 邵济安, 唐克东, 何国琦, 2014.内蒙古早二叠世构造古地理的再造.岩石学报, 30(7):1858-1866. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407002.htm
      [83] 邵济安, 田伟, 张吉衡, 2015.华北克拉通北缘早二叠世堆晶岩及其构造意义.地球科学, 40(9):1441-1457. http://www.earth-science.net/WebPage/Article.aspx?id=3150
      [84] 孙立新, 赵凤清, 王惠初, 等, 2013.内蒙古狼山地区宝音图地块变质基底的锆石U-Pb年龄及构造意义.地质学报, 87(2):197-207. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302007.htm
      [85] 唐克东, 1992.中朝板块北侧褶皱带构造演化及成矿规律.北京:北京大学出版社, 112-243.
      [86] 汤艳杰, 张宏福, 英基丰, 2014.阴山及邻区三叠纪富碱侵入岩的成因意义.岩石学报, 30(7):2031-2040. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407016.htm
      [87] 童英, 洪大卫, 王涛, 等, 2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报, 31(3):395-412. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm
      [88] 王倩, 2010. 内蒙古乌拉特中旗温根A区镁铁-超镁铁质岩体成因及岩浆源区讨论(硕士学位论文). 北京: 中国地质大学.
      [89] 王荃, 刘雪亚, 李锦轶, 1991.中国华夏与安加拉古陆间的板块构造.北京:北京大学出版社.
      [90] 王挽琼, 刘正宏, 王兴安, 等, 2012.内蒙古乌拉特中旗海西期黑云母二长花岗岩锆石SHRIMP U-Pb年龄及其地质意义.吉林大学学报(地球科学版), 42(6):1771-1782. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206021.htm
      [91] 王挽琼, 徐仲元, 刘正宏, 等, 2013.华北板块北缘中段早中二叠世的构造属性:来自花岗岩类锆石U-Pb年代学及地球化学的制约.岩石学报, 29(9):2987-3003. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309003.htm
      [92] 王鑫琳, 张臣, 刘树文, 等, 2007.河北康保地区花岗岩独居石电子探针定年.岩石学报, 23(4):817-822. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704013.htm
      [93] 王玉往, 王京彬, 王莉娟, 2000.内蒙古大乃林沟角闪石岩岩石学特征.地质论评, 46(3):301-306. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200003013.htm
      [94] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [95] 徐备, 陈斌, 1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化.中国科学:D辑:地球科学, 27(3):227-232. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703005.htm
      [96] 袁洪林, 吴福元, 高山, 等, 2003.东北地区新生代侵入体的锆石激光探针U-Pb与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
      [97] 张青伟, 刘正宏, 柴社立, 等, 2011.内蒙古乌拉特中旗乌兰地区含石榴石花岗岩锆石U-Pb年龄及地质意义.吉林大学学报(地球科学版), 41(3):745-752. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103016.htm
      [98] 张宗清, 袁忠信, 唐索寒, 等, 2003.白云鄂博矿床年龄和地球化学.北京:地质出版社.
      [99] 赵磊, 吴泰然, 罗红玲. 2011. 内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义. 27(10): 3071-3082.
      [100] 赵磊, 吴泰然, 罗红玲, 等, 2008.内蒙古乌拉特中旗温更辉长岩类的岩石学、地球化学特征及其构造意义.北京大学学报(自然科学版), 44(2):201-211. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200802008.htm
      [101] 赵庆英, 刘正宏, 吴新伟, 等, 2007.内蒙古大青山地区哈拉合少岩体特征及成因.矿物岩石, 27(1):46-51. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200701008.htm
      [102] 周志广, 谷永昌, 柳长峰, 等, 2010.内蒙古东乌珠穆沁旗满都胡宝拉格地区早-中二叠世华夏植物群的发现及地质意义.地质通报, 29 (1):21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201001003.htm
    • 加载中
    图(12) / 表(4)
    计量
    • 文章访问数:  5110
    • HTML全文浏览量:  1846
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-02-26
    • 刊出日期:  2016-05-15

    目录

      /

      返回文章
      返回