• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀

    方旸 谢淑云 何治亮 刘银 鲍征宇 沃玉进 张殿伟

    方旸, 谢淑云, 何治亮, 刘银, 鲍征宇, 沃玉进, 张殿伟, 2016. 基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀. 地球科学, 41(5): 779-791. doi: 10.3799/dqkx.2016.066
    引用本文: 方旸, 谢淑云, 何治亮, 刘银, 鲍征宇, 沃玉进, 张殿伟, 2016. 基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀. 地球科学, 41(5): 779-791. doi: 10.3799/dqkx.2016.066
    Fang Yang, Xie Shuyun, He Zhiliang, Liu Yin, Bao Zhengyu, Wo Yujin, Zhang Dianwei, 2016. Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonates. Earth Science, 41(5): 779-791. doi: 10.3799/dqkx.2016.066
    Citation: Fang Yang, Xie Shuyun, He Zhiliang, Liu Yin, Bao Zhengyu, Wo Yujin, Zhang Dianwei, 2016. Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonates. Earth Science, 41(5): 779-791. doi: 10.3799/dqkx.2016.066

    基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀

    doi: 10.3799/dqkx.2016.066
    基金项目: 

    国家重大专项项目 2008ZX05005

    国家重点基础研究发展计划(973计划)项目 2012CB214802

    中国石油化工股份有限公司项目 P14038

    详细信息
      作者简介:

      方旸(1988-),男,硕士研究生,主要从事碳酸盐岩储层溶解动力学的研究工作.E-mail: fangy123jnby@gmail.com

      通讯作者:

      谢淑云,E-mail: tinaxie@cug.edu.cn

    • 中图分类号: P599

    Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonates

    • 摘要: 为了更好地认识鲕粒灰岩及鲕粒云岩的溶蚀机制,并指导油气勘探,通过岩石薄片溶蚀模拟实验,结合环境扫描观察和能谱分析进行原位微观形貌观察和分析,并采用分形与多重分形对能谱面扫描图像进行分析.实验结果显示,硫酸介质下鲕粒灰岩溶蚀从结构缺陷点(解理或裂隙)开始,钙含量高的点溶蚀速率快,而钙含量低的点和含硅部分溶蚀慢或不溶蚀,从而形成凹凸不平的溶蚀坑孔隙空间;而鲕粒云岩在硫酸介质中的溶蚀从白云石晶体间裂隙开始,这是因为颗粒及颗粒间有大量微裂隙.相同条件下,鲕粒云岩的溶蚀丢失质量比鲕粒灰岩多出约80%,这表明硫酸介质对白云岩具有更强的溶蚀能力.通过对溶蚀微观形貌的观察发现,硫酸对鲕粒白云岩结构的破坏作用而形成的颗粒状表面,更有利于溶蚀作用的深入进行,进而发育优质孔隙.此外,分形与多重分形分析结果表明,碳酸盐岩薄片表面的Ca、Mg、Si含量分布的非均质性的差异控制着溶蚀反应,成分差异大、元素含量非均质性强能促进溶解反应的进行.

       

    • 图  1  剖面位置及地质构造简图

      腾格尔(2006)略作修改

      Fig.  1.  The areal structure of the study area and section places

      图  2  薄片外观照片

      红色线为背部记号笔所划以便前后对比研究

      Fig.  2.  Photo of the thin-section

      图  3  成分分析对比样单偏光及背散射扫描电镜显微照片

      a.鲕粒灰岩样(RX-3) 单偏光照片;b.图a中对应区域扫面电镜照片;c.鲕粒云岩样(DP-1) 单偏光照片;d.图c中对应区域扫面电镜照片

      Fig.  3.  Plane-polarized lightimage and SEM image of contrast samples of component analysis

      图  4  鲕粒灰岩(RX-3) 溶蚀各阶段单偏光照片

      a.溶蚀前原貌;b.溶蚀1 h后;c.溶蚀2 h后表面覆盖沉淀物;d.超声清洗沉淀物后的照片

      Fig.  4.  Plane-polarized light images of oolitic limestone (RX-3) at different experiment procedures

      图  5  鲕粒云岩DP-1溶蚀各阶段单偏光照片

      a.溶蚀前原貌;b.溶蚀1 h后;c.溶蚀2 h后表面覆盖沉淀物;d.超声清洗沉淀物后的照片

      Fig.  5.  Plane-polarized light images of ooliticdolomite (DP-1) at different experiment procedures

      图  6  沉淀物光学显微镜及扫描电镜能谱分析

      图a、b为单偏光照片,图c为背散射扫描电镜照片及能谱成分分析

      Fig.  6.  Optical micrograph and SEM-EDS image of the precipitation

      图  7  薄片溶蚀后扫描电镜照片

      a, b, c.鲕粒灰岩(RX-3) 照片,其中b为a中红色圆形区域放大,c为b中红色圆形区域放大;d, e, f.粒云岩(DP-1) 照片,其中e为d中红色方框区域放大,f为e中红色方框区域放大

      Fig.  7.  SEM images of thin sections after dissolution

      图  8  鲕粒灰岩(RX-3)(a)和鲕粒云岩(DP-1)(b)样品扫描电镜微观形貌照片及能谱面扫描图像

      Fig.  8.  SEM image and element X-ray mappings of ooliticlimestone(RX-3)(a) and ooliticdolomite (DP-1)(b) sample

      图  9  能谱面扫描元素分布多重分形频谱示意图

      Fig.  9.  Multifractal spectrum curves for different elements

      表  1  矿物成分分析结果

      Table  1.   Data of XRD analysis results

      样品编号 方解石(%) 白云石(%) 石英(%) 伊利石(%)
      RX-1 79.72 - 6.77 13.51
      DP-1 - 96.12 3.88 -
      下载: 导出CSV

      表  2  各阶段薄片质量(g)

      Table  2.   Mass (g) of thinsection at different experiment procedures

      样品 初始质量 浸泡1 h质量 浸泡3 h(含沉淀)质量 去除沉淀质量 沉淀质量 净溶蚀量
      RX-3-1 4.090 7 4.080 3 4.047 3 3.986 5 0.060 8 0.104 2
      DP-1-1 4.200 3 4.181 7 4.101 3 4.014 5 0.086 8 0.185 8
      下载: 导出CSV

      表  3  能谱面扫描元素分布分形参数

      Table  3.   Fractal parameters describing the distribution characteristics of element X-ray mappings

      样品及元素未溶蚀 溶蚀后Δα后-前 ΔαL后-前 ΔαR后-前
      Δα Δf(α) ΔαL ΔαR Δα Δf(α) ΔαL ΔαR
      Ca DP-1 1.311 0 2.208 5 0.172 6 1.138 4 1.489 4 2.121 5 0.294 2 1.195 2 0.178 4 0.056 9 0.121 6
      RX-3 1.200 2 2.280 9 0.094 9 1.105 2 1.305 9 2.073 9 0.201 6 1.104 4 0.105 8 -0.000 9 0.106 6
      Mg DP-1 1.427 4 2.224 0 0.225 0 1.202 4 1.525 6 2.176 9 0.349 2 1.176 4 0.098 2 -0.026 0 0.124 2
      RX-3 1.239 1 1.470 1 0.386 5 0.852 7 1.049 9 1.192 0 0.340 6 0.709 3 -0.189 3 -0.143 4 -0.045 9
      Si DP-1 1.726 3 1.881 0 0.540 9 1.185 4 1.361 6 1.604 5 0.364 7 0.996 9 -0.364 7 -0.188 5 -0.176 2
      RX-3 1.483 2 1.913 8 0.417 3 1.065 9 1.251 2 1.435 1 0.404 5 0.846 8 -0.232 0 -0.219 1 -0.012 9
      注:Δα.分形谱线的宽度;Δf(α).分形谱线的高度;ΔαL, ΔαR.分形谱线左半部分与右半部分的宽度.
      下载: 导出CSV
    • [1] Brantley, S.L., Kubicki, J.D., White, A.F., 2008.Kinetics of Mineral Dissolution.Kinetics of Water-Rock Interaction.Springer, Berlin.
      [2] Bureau of Geology and Mineral Resources of Sichuan Province, 1991.Regional Geology of Sichuan Province.Geological Publishing House, Beijing, 70-92(in Chinese).
      [3] Busenberg, E., Plummer, L.N., 1982.The Kinetics of Dissolution of Dolomite in CO2-H2O Systems at 1.5-Degrees C to 65-Degrees C and O-atm to 1-atm p(CO2).American Journal of Science, 282(1):45-78.doi: 10.2475/ajs.282.1.45
      [4] Chen, J.S., Li, Z., Wang, Z.Y., et al., 2007.Paleokarstification and Reservoir Distribution of Ordovician Carbonates in Tarim Basin.Acta Sedimentologica Sinica, 25(6):858-868(in Chinese with English abstract). http://www.kjdb.org/EN/abstract/abstract11732.shtml
      [5] Cheng, Q., 2014.Generalized Binomial Multiplicative Cascade Processes and Asymmetrical Multifractal Distributions.Nonlinear Processes in Geophysics, 21(2):477-487.doi: 10.5194/npg-21-477-2014
      [6] Cross, M.M., Manning, D.A.C., Bottrell, S.H., et al., 2004.Thermochemical Sulphate Reduction (TSR):Experimental Determination of Reaction Kinetics and Implications of the Observed Reaction Rates for Petroleum Reservoirs.Organic Geochemistry, 35(4):393-404.doi: 10.1016/j.orggeochem.2004.01.005
      [7] Cui, Z.A, Bao, Z.Y., Zhang, T.F., et al., 2007.Experiment Study on Carbonate Rock Dissolution in Buried Condition.Journal of Oil and Gas Technology, 29(3):204-207 (in Chinese). https://www.researchgate.net/profile/Linda_Luquot/publication/222545906_Experimental_determination_of_porosity_and_permeability_changes_induced_by_injection_of_CO2_into_carbonate_rocks/links/0046352824155abb2f000000.pdf?disableCoverPage=true
      [8] Duguid, S.M.A., Kyser, T.K., James, N.P., et al., 2010.Microbes and Ooids.Journal of Sedimentary Research, 80(3):236-251.doi: 10.2110/jsr.2010.027
      [9] Fan, M., He, Z.L., Li, Z.M., et al., 2011.Dissolution Window of Carbonate Rocks and Its Geological Significance.Oil & Gas Geology, 32(4):499-505 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201104005.htm
      [10] Fan, M., Jiang, X.Q., Liu, W.X., et al., 2007.Dissolution of Carbonate Rocks in CO2 Solution under the Different Temperatures.Acta Sedimentologica Sinica, 25(6):825-830(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0883292715000761
      [11] Halsey, T.C., Jensen, M.H., Kadanoff, L.P., et al., 1986.Fractal Measures and Their Singularities:The Characterization of Strange Sets.Physical Review A, 33(2):1141-1151.doi: 10.1103/PhysRevA.33.1141
      [12] Huang, K.J., Wang, W., Bao, Z.Y., et al., 2011.Dissolution and Alteration of Feixianguan Formation in the Sichuan Basin by Organic Acid Fluids under Burial Condition:Kinetic Dissolution Experiments.Geochimica, 40(3):289-300 (in Chinese with English abstract).
      [13] Huang, S.J., Qing, H., Hu, Z.W., et al., 2007.Influence of Sulfate Reduction on Diagenesis of Feixianguan Carbonate in Triassic, NE Sichuan Basin of China.Acta Sedimentologica Sinica, 25(6):815-824(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200706001.htm
      [14] Huang, W.H., Wang, A.J., Wan, H., et al., 2012.Discussion on Characteristics of the Cambrian-Ordovician Carbonate Rocks Reservoirs and Origin of Dolostones in Tarim Basin.Journal of Palaeogeography, 14(2):197-208(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201202007.htm
      [15] Jia, C.Z., Li, B.L., Zhang, X.Y., et al., 2007.The Formation and Evolution of Marine Basin in China.Chinese Science Bulletin, 52(Suppl.1):1-8(in Chinese).
      [16] Jiang, X.Q., Wang, S.Y., Fan, M., et al., 2008.Study of Simulation Experiment for Carbonate Rocks Dissolution in Burial Diagenetic Environment.Petroleum Geology & Experiment, 30(6):643-646(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200806023.htm
      [17] Jin, S.A., Li, D.S., 2005.Geological Exploration and Research of China Marine Oil and Gas:Visit Desheng Li Academicians.Marine Origin Petoleum Geology, 10(2):1-8(in Chinese). http://www.sciencedirect.com/science/article/pii/S1876380411600517
      [18] Jin, Z.J., 2005.Particularity of Petroleum Exploration on Marine Carbonate Strata in China Sedimentary Basins.Earth Science Frontiers, 12(3):15-22(in Chinese with English abstract). https://www.researchgate.net/publication/284025232_Particularity_of_petroleum_exploration_on_marine_carbonate_strata_in_China_sedimentary_basins
      [19] Kang, Y.Z., 2007.Reservoir Rock Characteristics of Paleozoic Marine Facies Carbonate Rock in the Tarim Basin.Petroleum Geology & Experiment, 29(3):217-223(in Chinese with English abstract). https://www.researchgate.net/publication/285002973_Reservoir_rock_characteristics_of_Paleozoic_marine_facies_carbonate_rock_in_the_Tarim_Basin
      [20] Lasaga, A.C., Blum, A.E., 1986.Surface Chemistry, Etch Pits and Mineral-Water Reactions.Geochimica et Cosmochimica Acta, 50(10):2363-2379.doi: 10.1016/0016-7037(86)90088-8
      [21] Lu, Y.R., Zhang, F.E., 2007.Sulphate Rock Karst and Sulphate-Carbonate Rocks Compound Karst:Development Mechanism and Engineering Effect Research.Higher Education Press, Beijing, 142-151 (in Chinese).
      [22] Luo, P., Zhang, J., Liu, W., et al., 2008.Characteristics of Marine Carbonate Hydrocarbon Reservoirs in China.Earth Science Frontiers, 15(1):36-50(in Chinese with English abstract). https://www.researchgate.net/publication/285905634_Characteristics_of_marine_carbonate_hydrocarbon_reservoirs_in_China
      [23] Ma, Y.S., Guo, X.S., Guo, T.L., et al., 2005.Discovery of the Large-Scale Puguang Gas Field in the Sichuan Basin and Its Enlightenment for Hydrocarbon Prospecting.Geological Review, 51(4):477-480(in Chinese with English abstract). https://www.researchgate.net/publication/286682011_Discovery_of_the_large-scale_Puguang_Gas_Field_in_the_Sichuan_Basin_and_its_enlightenment_for_hydrocarbon_prospecting
      [24] Machel, H.G., 2001.Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights.Sedimentary Geology, 140(1-2):143-175.doi: 10.1016/s0037-0738(00)00176-7
      [25] Meshri, I.D., 1989.On Prediction of Reservoir Quality through Chemical Modeling:Abstract.AAPG Bulletin, 71(11):1436-1439.doi: 10.1306/703ca14e-1707-11d7-8645000102c1865d
      [26] Moore, C.H., 2001.Carbonate Reservoirs:Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework:Developments in Sedimentology.Elsevier Science.Sara Burgerhartstraat 25 P.O. Box211, 1000 AE Amsterdam, Netherlands.
      [27] Morse, J.W., Arvidson, R.S., 2002.The Dissolution Kinetics of Major Sedimentary Carbonate Minerals.Earth-Science Reviews, 58(1-2):51-84.doi: 10.1016/s0012-8252(01)00083-6
      [28] Nedkvitne, T., Karlsen, D.A., Bjørlykke, K., et al., 1993.Relationship between Reservoir Diagenetic Evolution and Petroleum Emplacement in the Ula Field, North Sea.Marine and Petroleum Geology, 10(3):255-270.doi: 10.1016/0264-8172(93)90108-5
      [29] Plummer, L.N., Busenberg, E., 1982.The Solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90 ℃, and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O.Geochimica et Cosmochimica Acta, 46(6):1011-1040.doi: 10.1016/0016-7037(82)90056-4
      [30] Plummer, L.N., Wigley, T.M.L., Parkhurst, D.L., 1978.The Kinetics of Calcite Dissolution in CO2-Water Systems at 5 Degrees to 60 Degrees C and 0.0 to 1.0 atm CO2.American Journal of Science, 278(2):179-216.doi: 10.2475/ajs.278.2.179
      [31] Pokrovsky, O.S., Golubev, S.V., Schott, J., 2005.Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25 ℃ and 0 to 50 atm pCO2.Chemical Geology, 217(3-4):239-255.doi: 10.1016/j.chemgeo.2004.12.012
      [32] Qian, H.T., Sun, Q., Wang, S.J., 2014.Effects of Geo-Stress on Carbonate Dissolution and Karst Evolution.Earth Science, 39(7):896-904(in Chinese with English abstract).
      [33] Saigal, G.C., Bjorlykk, K., 1992.The Effects of Oil Emplacement on Diagenetic Processes:Examples from the Fulmar Reservoir Sandstones, Central North Sea:Geologic Note (1).AAPG Bulletin, 76(7):1024-1033.doi: 10.1306/bdff8966-1718-11d7-8645000102c1865d
      [34] Tenger, Gao, C.L., Hu, K., et al., 2006.High-Quality Source Rocks in the Lower Combination in Southeast Upper-Yangtze Area and Their Hydrocarbon Generating Potential.Petroleum Geology & Experiment, 28(4):359-365(in Chinese with English abstract). https://www.researchgate.net/publication/285820358_High_quality_source_rocks_of_lower_combination_in_the_northern_Upper-Yangtze_area_and_their_hydrocarbon_potential
      [35] Tribollet, A., Godinot, C., Atkinson, M., et al., 2009.Effects of Elevated pCO2 on Dissolution of Coral Carbonates by Microbial Euendoliths.Global Biogeochemical Cycles, 23(3):GB3008.doi: 10.1029/2008gb003286
      [36] Xiang, L.W., Zhu, Z.L., Li, S.J., et al., 1999.China Stratigraphic Canon:Cambrian System.Geological Publishing House, Beijing, 41-42 (in Chinese).
      [37] Xie, S.Y., Bao, Z.Y., 2004.Fractal and Multifractal Properties of Geochemical Fields.Mathematical Geology, 36(7):847-864.doi: 10.1023/b:matg.0000041182.70233.47
      [38] Xie, S.Y., Cheng, Q.M., Li, Z.H., et al., 2009.Assessing Microstructures of Ore-Minerals by Multifractal.Earth Science, 34(2):263-269(in Chinese with English abstract). https://www.researchgate.net/publication/46056394_Assessing_microstructures_of_pyrrhotites_in_basalts_by_multifractal_analysis
      [39] Yang, Y.K., Liu, B., Qin, S., et al., 2014.Re-Recognition of Deep Carbonate Dissolution Based on the Observation of In-Situ Simulation Experiment.Acta Scientiarum Naturalium Universitatis Pekinensis, 50(2):316-322(in Chinese with English abstract). https://www.researchgate.net/publication/287870686_Re-recognition_of_deep_carbonate_dissolution_based_on_the_observation_of_in-situ_simulation_experiment
      [40] Zhang, J.Y., Liu, W.H., Fan, M., et al., 2008.Whether TSR Products can Meliorate Reservoir Property of Carbonate Rock or Not:An Evidence from Experimental Geology.Marine Origin Petroleum Geology, 13(2):57-61(in Chinese with English abstract).
      [41] Zhang, T.F., Bao, Z.Y., Ma, M., et al., 2009.Dissolution Kinetic Characteristics and Morphology Evolution of Oolitic Limestone.Acta Sedimentologica Sinica, 27(6):1033-1042(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200906003.htm
      [42] Zhang, Z.R., Mao, H.H., Cheng, Q.M., 2001.Fractal Geometry of Element Distribution on Mineral Surfaces.Math.Geol., 33:217-228. doi: 10.1023/A:1007587318807
      [43] Zhao, S., Zhao, D.J., Liu, L., et al., 2015.Diagenetic Characteristics of Quaternary Reef-Carbonates from Well Xike-1, Xisha Islands, the South China Sea.Earth Science, 40(4):711-717(in Chinese with English abstract). https://www.researchgate.net/publication/282299548_Diagenetic_characteristics_of_Quaternary_reef-carbonates_from_well_Xike-1_Xisha_Islands_the_South_China_Sea
      [44] Zhu, G.Y., Zhang, S.C., Liang, Y.B., et al., 2006.Dissolution and Alteration of the Deep Carbonate Reservoirs by TSR:An Important Type of Deep-Buried High-Quality Carbonate Reservoirs in Sichuan Basin.Acta Petrologica Sinica, 22(8):2182-2194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200608007.htm
      [45] 陈景山, 李忠, 王振宇, 等, 2007.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布.沉积学报, 25(6):858-868. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200706007.htm
      [46] 崔振昂, 鲍征宇, 张天付, 等, 2007.埋藏条件下碳酸盐岩溶解动力学实验研究.石油天然气学报, 29(3):204-207. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200703059.htm
      [47] 范明, 何治亮, 李志明, 等, 2011.碳酸盐岩溶蚀窗的形成及地质意义.石油与天然气地质, 32(4):499-505. doi: 10.11743/ogg20110402
      [48] 范明, 蒋小琼, 刘伟新, 等, 2007.不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用.沉积学报, 25(6):825-830.
      [49] 黄康俊, 王炜, 鲍征宇, 等, 2011.埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用:溶解动力学实验研究.地球化学, 40(3):289-300. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201103009.htm
      [50] 黄思静, Hairuo, Qing, 胡作维, 等, 2007.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响.沉积学报, 25(6):815-824. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200706001.htm
      [51] 黄文辉, 王安甲, 万欢, 等, 2012.塔里木盆地寒武-奥陶系碳酸盐岩储集特征与白云岩成因探讨.古地理学报, 14(2):197-208. doi: 10.7605/gdlxb.2012.02.006
      [52] 贾承造, 李本亮, 张兴阳, 等, 2007.中国海相盆地的形成与演化.科学通报, 52(S1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1001.htm
      [53] 蒋小琼, 王恕一, 范明, 等, 2008.埋藏成岩环境碳酸盐岩溶蚀作用模拟实验研究.石油实验地质, 30(6):643-646. doi: 10.11781/sysydz200806643
      [54] 金顺爱, 李德生, 2005.中国海相油气地质勘探与研究——访李德生院士.海相油气地质, 10(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200502001.htm
      [55] 金之均, 2005.中国海相碳酸盐岩层系油气勘探特殊性问题.地学前缘, 12(3):15-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503002.htm
      [56] 康玉柱, 2007.塔里木盆地古生代海相碳酸盐岩储集岩特征.石油实验地质, 29(3):217-223. doi: 10.11781/sysydz200703217
      [57] 卢耀如, 张凤娥, 2007.硫酸盐岩岩溶及硫酸盐岩与碳酸盐岩符合岩溶:发育机理与工程效应研究.北京:高等教育出版社, 142-151.
      [58] 罗平, 张静, 刘伟, 等, 2008.中国海相碳酸盐岩油气储层基本特征.地学前缘, 15(1):36-50. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801005.htm
      [59] 马永生, 郭旭升, 郭彤楼, 等, 2005.四川盆地普光大型气田的发现与勘探启示.地质论评, 51(4):477-480. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200504020.htm
      [60] 钱海涛, 孙强, 王思敬, 2014.地应力对碳酸盐岩溶解和岩溶发育的影响.地球科学, 39(7):896-904. http://www.earth-science.net/WebPage/Article.aspx?id=2890
      [61] 四川省地质矿产局, 1991.四川省区域地质志:寒武系.北京:地质出版社, 70-92.
      [62] 腾格尔, 高长林, 胡凯, 等, 2006.上扬子东南缘下组合优质烃源岩发育及生烃潜力.石油实验地质, 28(4):359-365. doi: 10.11781/sysydz200604359
      [63] 项礼文, 朱兆玲, 李善姬, 等, 1999.中国地层典:寒武系.北京:地质出版社, 41-42.
      [64] 谢淑云, 成秋明, 李增华, 等, 2009.矿物微观结构的多重分形.地球科学, 34(2):263-269. http://www.earth-science.net/WebPage/Article.aspx?id=1823
      [65] 杨云坤, 刘波, 秦善, 等, 2014.基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识.北京大学学报:自然科学版, 50(2):316-322. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201402015.htm
      [66] 张建勇, 刘文汇, 范明, 等, 2008.TSR产物对碳酸盐岩储层是否具有改良作用——实验地质学的依据.海相油气地质, 13(2):57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200802008.htm
      [67] 张天付, 鲍征宇, 马明, 等, 2009.鲕粒灰岩的溶解动力学特征和微观形貌的发育演化.沉积学报, 27(6):1033-1042. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906003.htm
      [68] 赵爽, 张道军, 刘立, 等, 2015.南海西沙海域西科1井第四系生物礁-碳酸盐岩成岩作用特征.地球科学, 40(4):711-717. http://www.earth-science.net/WebPage/Article.aspx?id=3077
      [69] 朱光有, 张水昌, 梁英波, 等, 2006.TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式.岩石学报, 22(8):2182-2194. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608007.htm
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  4060
    • HTML全文浏览量:  1731
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-11-12
    • 刊出日期:  2016-05-15

    目录

      /

      返回文章
      返回