Classification of Seafloor Geological Types of Qianyu Seamount from Mid-Pacific Seamounts Using Multibeam Backscatter Intensity Data
-
摘要: 中、西太平洋海山区是富钴结壳的重要富集区,钙质远洋沉积、碳酸盐岩沉积及重力作用引起的滑塌沉积是海山山顶和斜坡的主要沉积类型,它们的空间分布规律对于富钴结壳的分布至关重要.在国内首次利用EM122多波束回波强度资料对中太平洋潜鱼海山进行了底质类型研究,对回波强度资料进行处理和统计分类,并与浅地层剖面和地质取样结果对比,分析得出了4种底质类型,即富钴结壳、钙质远洋沉积、碳酸盐岩基底及碎屑流沉积.这几种底质类型具有不同的回波强度特征,其中富钴结壳区表现为均一的回波强度高值特征;钙质远洋沉积区表现为均一的回波强度低值特征,二者回波强度值相差约20 dB.结果显示潜鱼海山山顶仅局部发育钙质远洋沉积,大部分为碳酸盐岩基底出露区,山顶边缘及侧翼山脊处为主要的富钴结壳分布区.此外,该海山存在3处较大规模的重力滑塌沉积区,主要为碎屑流沉积.Abstract: Cobalt-rich ferromanganese crusts are mainly distributed around the top brim and on the slope of Mid-Pacific seamounts and West Pacific seamounts. Calcium-pelagic sediment, carbonate rock and debris flow driven by gravity process are main seafloor sediment types of seamounts, which control the distribution of cobalt-rich ferromanganese crusts. In this paper, multibeam backscatter intensity data from EM122 multibeam system are first used in China to recognize seafloor geological types of Qianyu seamount on Mid-Pacific seamounts. Backscatter data are processed and classified statistically with verification of sub-bottom profile and ground-truthing data to identify four seafloor geological types including cobalt-rich crust, calcium-pelagic sediment, carbonate rock and debris flow. Different backscatter intensities are represented by different seafloor geological types, cobalt-rich crust area shows as uniform strong backscatter intensity representing, and calcium-pelagic sediment area shows as uniform weak backscatter, their backscatter difference is about 20 dB. The top of Qianyu seamount is mostly outcropped by carbonate rock, and locally covered by calcium-pelagic sediment, and cobalt-rich crust distribute around the top brim and southern and eastern slope ridges. Furthermore, three gravity slide areas are recognized on the Qianyu seamount, which are of debris flows.
-
图 5 海山浅钻样品
a.SD01:角砾岩,角砾为黑色结壳碎块,基质为钙质;b.SD02:凝灰岩,浅黄色,含火山碎屑;c.SD03:生物碎屑角砾岩,上层为风化结壳;d.SD04:生物碎屑礁灰岩,灰白色,含生物碎屑;e.SD05:生物碎屑礁灰岩,浅黄色,轻微磷酸盐化;f.SD06:生物碎屑礁灰岩,可见大量生物壳体;g.SD07:灰岩,白色致密,含少量黑色微结核颗粒;h.SD08:泥灰岩,灰白色,可见硅质条带;浅钻位置见图 1
Fig. 5. Shallow-drilling core sample of Qianyu seamount
图 6 回波强度与4 kHz浅地层剖面对比
剖面位置见图 1
Fig. 6. Synthetic profile compared backscatter intensity with 4 kHz sub bottom profile
表 1 不同回波强度特征类型及其地质解释
Table 1. Different types of backscatter intensity and their geological interpretation
类型 编号 位置 回波强度特征 地质解释 ① 山顶边缘 整体高、强度均一,-20 dB左右 富钴结壳 Ⅰ ② 斜坡底部 整体高、强度均一,-16 dB左右 滑塌岩崩体,落差为320 m ③ 隆起带 整体高值,-20 dB左右,局部低值,-35 dB左右 小海山,落差为400 m,局部发育沉积 ④ 山顶中部 整体低、强度均一,-40 dB左右 钙质远洋沉积 Ⅱ ⑤ 坡底海盆 整体低、强度均一,-38 dB左右 深海软泥沉积 ⑥ 斜坡山脊 整体高值,局部高、低值相间分布,-17~-35 dB 富钴结壳,局部少量沉积分布 Ⅲ ⑦ 山顶中部 整体较低,且高、低值相间分布,-25~-32 dB 碳酸盐岩基底出露,局部少量沉积分布 ⑧ 斜坡底部 高、低相间分布,高值区范围大小不一,-21~-34 dB 滑塌碎屑沉积,碎屑大小不一,局部为来自海山的钙质远洋沉积 -
[1] Anderson, J.T., 2007.Acoustic Seabed Classification of Marine Physical and Biological Landscapes.ICES Cooperative Research Report, 286:1-6. [2] Anderson, J.T., Holliday, D.V., Kloser, R., et al., 2008.Acoustic Seabed Classification:Current Practice and Future Directions.ICES Journal of Marine Science, 65:1004-1011. doi: 10.1093/icesjms/fsn061 [3] Aplin, A.C., Cronan, D.S., 1985.Ferromanganese Oxide Deposits from the Central Pacific Ocean-Ⅰ.Encrustsations from the Line Island Archipelago.Geochimica et Cosmochimica Acta, 49:427-436. doi: 10.1016/0016-7037(85)90034-1 [4] Chakraborty, B., Kodagali, V., 2004.Characterizing Indian Ocean Manganese Nodule-Bearing Seafloor Using Multi-Beam Angular Backscatter.Geo-Marine Letters, 24:8-13. doi: 10.1007/s00367-003-0153-y [5] Clouard, V., Bonneville, A., 2005.Ages of Seamounts, Islands and Plateaus on the Pacific Plate.In:Foulger, G.R., Natland, J.H., Presnall, D., et al., eds., Plates, Plumes and Paradigms (Special Paper).Geological Society of America.CRC Press, Boulder, 338:71-90. [6] Craig, J.D., Andrews, J.E., Meylan, M.A., 1982.Ferromanganese Deposits in the Hawaiian Archipelago.Marine Geology, 45:127-157. doi: 10.1016/0025-3227(82)90183-9 [7] Edwards, B.D., Dartnel, P., Chezar, H., 2003.Characterizing Benthic Substrates of Santa Monica Bay with Seafloor Photography and Multibeam Sonar Imagery.Marine Environmental Research, 56:47-66. doi: 10.1016/S0141-1136(02)00324-0 [8] Ellingsen, K.E., Gray, J.S., Bjombom, E., 2002.Acoustic Classification of Seabed Habitats Using the QTC VIEW System.Journal of Marine Science, 59:825-835. http://cat.inist.fr/?aModele=afficheN&cpsidt=21627570 [9] Goff, J.A., Olson, H.C., Duncan, C.S., 2000.Correlation of Side-Scan Backscatter Intensity with Grain-Size Distribution of Shelf Sediments, New Jersey Margin.Geo-Marine Letters, 20:43-49. doi: 10.1007/s003670000032 [10] He, G.W., Liang, D.H., Song, C.B., et al., 2004.Determining the Distribution Boundary of Cobalt-Rich Crusts of Guyot by Synchronous Application of Sub-Bottom Profiling and Deep-Sea Video Recording.Earth Science, 30(4):509-512(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200504019.htm [11] Hein, J.R., Koschinsky, A., Bau, M., et al., 2000.Cobalt-Rich Ferromanganese Crusts in the Pacific.In:Cronan, D.S., ed., Handbook of Marine Mineral Deposits.CRC Press, Boca Raton, 239-279. [12] Kloser, R., 2007.Seabed Backscatter, Data Collection, and Quality Overview.Cooperative Research Report, 286:45-60. [13] Kodama, T., Maeda, K., 1996.Interpretation of a Backscattering Image for the Prospecting of Cobalt-Rich Manganese Crust.The Journal of the Acoustical Society of America, 100(4):2667. doi: 10.1121/1.417493 [14] Lee, S.H., Kim, K., 2004.Side-Scan Sonar Characteristics and Manganese Nodule Abundance in the Clarion-Clipperton Fracture Zones, NE Equatorial Pacific.Marine Georesources & Geotechnology, 22:100-114. doi: 10.1080/10641190490473434?src=recsys&journalCode=umgt20 [15] Lee, T.G., Hein, J.R., Lee, K., et al., 2005.Sub-Seafloor Acoustic Characterization of Seamounts near the Ogasawara Fracture Zone in the Western Pacific Using Chirp (3-7 kHz) Sub-Bottom Profiles.Deep-Sea Research Ⅰ, 52:1932-1956. doi: 10.1016/j.dsr.2005.04.009 [16] Lee, T.G., Lee, K., Hein, J.R., et al., 2009.Geophysical Investigation of Seamounts near the Ogasawara Fracture Zone, Western Pacific.Earth Planets and Space, 61:319-331. doi: 10.1186/BF03352914 [17] Manheim, F.T., 1986.Marine Cobalt Resources.Science, 232(4750):600-608. doi: 10.1126/science.232.4750.600 [18] Masson, D.G., Canals, M., Alonso, B., et al., 1998.The Canary Debris Flow:Source Area Morphology and Failure Mechanisms.Sedimentology, 45:411-432. doi: 10.1046/j.1365-3091.1998.0165f.x [19] Masson, D.G., Watts, A.B., Gee, M.J.R., et al., 2002.Slope Failures on the Flanks of the Western Canary Islands.Earth-Science Reviews, 57:1-35. doi: 10.1016/S0012-8252(01)00069-1 [20] Pearson, P.N., 1995.Planktonic Foraminifer Biostratigraphy and the Development of Pelagic Caps on Guyots in the Marshall Islands Group.Proceedings of the Ocean Drilling Program(Scientific Results), 144:21-59. http://cat.inist.fr/?aModele=afficheN&cpsidt=3152808 [21] Simard, Y., Stepnowski, A., 2007.Classification Methods and Criteria.ICES Cooperative Research Report, 286:61-72. [22] Tao, C.H., Jin, X.L., Xu, F., et al., 2004.The Prospect of Seabed Classification Technology.Donghai Marine Science, 22(3):28-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY200403004.htm [23] Thomas, K., 2012.Developing a Strategy for the Exploration of Vast Seafloor Areas for Prospective Magnganese Nodule Fields.In:Zhou, H.Y., Morgan, C.L., eds., Marine Minerals:Finding the Right Balance of Sustainable Development and Environmental Protection.41st Conference of Underwater Mining Institute, Shanghai. [24] Usui, A., Okamoto, N., 2010.Geophysical and Geological Exploration of Cobalt-Rich Ferromanganese Crusts:An Attempt of Small-Scale Mapping on a Micronesian Seamount.Marine Georesources & Geotechnology, 28(3):192-206. [25] Wessel, P., Sandwell, D.T., Kim, S.S., 2010.The Global Seamount Census.Oceanography, 23(1):24-33. doi: 10.5670/oceanog [26] Winterer, E.L., Metzler, C.V., 1984.Origin and Subsidence of Guyots in Mid-Pacific Mountains.Journal of Geophysical Research, 89(B12):9969-9979. doi: 10.1029/JB089iB12p09969 [27] Winterer, E.L., Waasbergen, R.V., Mammerickx, J., et al., 1995.Karst Morphology and Diagenesis of the Top of Albian Limestone Platforms, Mid-Pacific Mountanins.Proceedings of the Ocean Drilling Program(Scientific Results), 143:433-470. http://www-odp.tamu.edu/publications/143_SR/VOLUME/CHAPTERS/sr143_29.pdf [28] Zhang, G.Y., Tao, C.H., Li, H.M., et al., 2012.Seafloor Classification in Hydrothermal Field Using Multi-Beam Sonar.Marine Geology Frontiers, 28(7):59-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201207010.htm [29] 何高文, 梁东红, 宋成兵, 等, 2005.浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线.地球科学, 30(4):509-512. http://earth-science.net/WebPage/Article.aspx?id=1408 [30] 陶春辉, 金翔龙, 许枫, 等, 2004.海底声学底质分类技术的研究现状与前景.东海海洋, 22(3):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DHHY200403004.htm [31] 张国堙, 陶春辉, 李怀明, 等, 2012.多波束声参数在海底热液区底质分类中的应用——以东太平洋海隆"宝石山"热液区为例.海洋地质前沿, 28(7):59-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201207010.htm