Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations
-
摘要: 四川省大渡河上某水电站目前正处于施工阶段,大坝基坑防渗墙已基本完成施工,但基坑涌水量较大,为评价防渗墙的防渗效果,在两防渗墙间开展了2组抽水试验.根据研究区边界条件,利用综合井函数法初步求取了基坑砂砾层的水文地质参数,并在此基础上采用数值法(groundwater modeling system, GMS)建立水流模型,进行参数的识别、验证,研究表明综合井函数法得到的砂砾含水层渗透系数为19.13~32.24 m/d,GMS拟合得到的渗透系数为26.00 m/d.此外,数值模拟拟合得到的主、副防渗墙渗透系数较小(0.01~0.02 m/d),说明两防渗墙防渗效果较好.Abstract: A hydropower station located on Dadu River of Sichuan Province is under construction now. The construction of its impervious walls have been completed basically, however, the discharge of water is still large in the foundation pit of hydropower station. In order to evaluate the performance of impervious walls, two pumping tests was conducted between the two impervious walls. According to the boundary conditions of this area, the comprehensive well function was used to obtain the hydrogeological parameters. On the basis, numerical model is established by using GMS (groundwater modeling system) software to obtain the aquifer parameters after identifying and verifying the model. The results indicate that the hydraulic conductivity of aquifer is between 19.13-32.24 m/d by analytical method, and 26.00 m/d by numerical simulation. In addition, the hydraulic conductivity of impervious walls is very small (0.01-0.02 m/d), it is found that the performance of impervious walls is good.
-
表 1 抽水试验基本情况
Table 1. The information of the pumping test
抽水次序 抽水井 观测井 抽水时间 抽水流量(m3/h) 1 #6 #3,#5,#6,#7 2013-06-28T11:09—2013-06-28T17:30 23.10 2 #5 #2,#4,#5,#6,#7,#10 2013-07-04T15:00—2013-07-04T16:43 4.63 2013-07-05T08:56—2013-07-05T20:17 24.11 2013-07-05T20:18—2013-07-06T10:26 4.63 表 2 解析法求参结果(砂砾层)
Table 2. The results of hydrogeological parameters obtained by analytical method (sandy gravel layer)
特定条件标准曲线对比法 试验次序 观测井 T(m2/d) a(m2/d) K(m/d) ue 第1次抽水试验 5号观测井 573.82 3.50×105 19.13 1.64×10-3 7号观测井 662.10 3.76×105 22.07 1.76×10-3 第2次抽水试验 6号观测井 944.44 4.28×105 31.48 2.21×10-3 7号观测井 967.47 5.14×105 32.24 1.88×10-3 表 3 分区说明
Table 3. The description for the partition
层数 厚度(m) 分区说明 Ⅰ区 Ⅱ区 Ⅲ区 第1层 5 混凝土灌浆 上游副防渗墙(混凝土防渗墙) 下游主防渗墙(混凝土防渗墙) 第2层 10~55 覆盖层(砂砾层) 上游副防渗墙(混凝土防渗墙) 下游主防渗墙(混凝土防渗墙) 第3层 10~12 弱风化带 上游副防渗墙(帷幕灌浆) \ 第4层 20~30 基岩带 上游副防渗墙(帷幕灌浆) \ 表 4 各岩层参数
Table 4. The parameters for each layer
层数 渗透系数(m/d) 给水度 弹性给水度(ue) Ⅰ区 Ⅱ区 Ⅲ区 Ⅰ区 Ⅱ区 Ⅲ区 Ⅰ区 Ⅱ区 Ⅲ区 第1层 0.01 0.011 0.023 0.01 0.04 0.04 \ \ \ 第2层 26.00 0.011 0.023 \ \ \ 0.006 3 0.003 0 0.003 0 第3层 0.50 0.040 \ \ \ \ 0.040 0 0.004 0 \ 第4层 0.01 0.008 \ \ \ \ 0.002 5 0.001 0 \ -
[1] Bai, L.P., Wang, J.S., 2004.The Application of GMS in Numerical Simulation of Groundwater in Linfen Basin.Shanxi Architecture, 30(16):78-79(in Chinese with English abstract). https://www.scientific.net/AMR.518-523.4047 [2] Chenaf, D., Chapuis, R.P., 2002.Methods to Determine Storativity of Infinite Confined Aquifer from a Recovery Test.Ground Water, 40(4):385-389.doi: 10.1111/j.1745-6584.2002.tb02517.x [3] Guo, J.Q., Zhou, H.F., Li, Y., 2008.Multi Straight Line Analytical Method for Estimating Aquifer Parameters from Recovery Test Data.Rock and Soil Mechanics, 29(12):3246-3250(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX200812018.htm [4] Hao, Q.C., Shao, J.L., Cui, Y.L., et al., 2014.Applicability of Artificial Recharge of Groundwater in the Yongding River Alluvial Fan in Beijing through Numerical Simulation.Journal of Earth Science, 25(3):575-586.doi: 10.1007/s12583-014-0442-6 [5] Hossein, B.J., Hamid, M.H., Mohammad, H.G., et al., 2014.Numerical Simulation of Groundwater Flow and Contamination Transport in Nahavand Plain Aquifer, West of Iran.Journal of Geological Society of India, 83:83-92.doi: 10.1007/s12594-014-0010-9 [6] Jin, W.Z., Luo, Z.Z., Chen, X.X., et al., 2014.Coupling Simulation of Groundwater Seepage and Land Subsidence.Earth Science, 39(5):611-619 (in Chinese with English abstract). [7] Li, G.R., Zhao, Z., Chen, Z.H., 2013.Application of Numerical Simulation to Inverting Hydrogeological Conditions in Mining Areas.Hydrogeology & Engineering Geology, 40(2):19-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201302006.htm [8] Li, P., Guo, H.R., Wu, K.J., et al., 2011.Numerical Simulation and Forecast of Mine Discharge in Wanghe Coal Mine.Earth Science, 36(4):755-760(in Chinese with English abstract). [9] Li, W., Zhao, Y.R., Zhu, X.F., et al., 2013.Study on Optimization Path Method of Solving Hydrogeologic Parameters by Automatic Curve-Fitting Method.Exploration Science Technology, (2):6-10(in Chinese with English abstract). https://www.scientific.net/AMM.624.567 [10] Liu, H.J., Hsu, N.S., Lee, T.H., 2009.Simultaneous Identification of Parameter, Initial Condition, and Boundary Condition in Groundwater Modeling.Hydrol.Process, 23:2358-2367.doi: 10.1002/hyp.7344 [11] Liu, Y., Shao, J.L., Chen, J.X., 2015.Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer.Earth Science, 40(5):925-932 (in Chinese with English abstract). [12] Samani, N., Pasandi, M., 2003.A Single Recovery Type Curve from Theis' Exact Solution.Ground Water, 41(5):602-607.doi: 10.1111/j.1745-6584.2003.tb02398.x [13] Tan, W.Q., Sun, C., Hu, J.M., et al., 2008.Application of GMS in Simulation of Pollutants Migration for Groundwater.Water Resources & Hydropower of Northeast China, 26(5):54-56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBSL200805022.htm [14] Wu, X.M., Chen, C.X., Shi, S.S., et al., 2003.Three-Dimensional Numerical Simulation of Groundwater System in Ejina Basin, Heihe River, Northwestern China.Earth Science, 28(5):527-532(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200305009.htm [15] Xiao, M.G., Chen, X.J., Liu, B.C., 2003.Hydrogeology Parameter Calculation in Water Gushing Test of Constant Drawdown Yield in Infinite Confined Aquifer Where Gushing in the Main Hole is Observed from Several Other Holes.Earth Science, 28(5):575-578(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200305017.htm [16] Xue, Y.Q., Zhu, X.Y., 1979.Groundwater Dynamic.Geological Publishing House, Beijing, 66-72(in Chinese). [17] Yu, Q., Xie, X.J., Ma, R., et al., 2013.Impact of Groundwater Flow on Arsenic Transport:A Field Observation and Simulation in Datong Basin.Earth Science, 38(4):877-886(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201304022.htm [18] Zhao, B.F., Kang, W.D., Zhutian, D.W., et al., 2009.Aquifer Parameter Recognition Based on Numerical Simulation.Journal of Earth Sciences and Environment, 31(4):409-412(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200904013.htm [19] Zhao, K.R., 1982.The Discussion about Arithmetic Parameters of Steady Flow Wiring Method.Engineering Survey, 1:63-67(in Chinese). [20] 白利平, 王金生, 2004.GMS在临汾盆地地下水数值模拟中的应用.山西建筑, 30(16):78-79. doi: 10.3969/j.issn.1009-6825.2004.16.047 [21] 郭建青, 周宏飞, 李彦, 2008.分析含水层水位恢复数据的多次直线解析法.岩土力学, 29(12):3246-3250. doi: 10.3969/j.issn.1000-7598.2008.12.012 [22] 金玮泽, 骆祖江, 陈兴贤, 等, 2014.地下水渗流与地面沉降耦合模拟.地球科学, 39(5):611-619. http://earth-science.net/WebPage/Article.aspx?id=2869 [23] 李贵仁, 赵珍, 陈植华, 2013.数值模拟在反演矿区水文地质条件中的应用.水文地质工程地质, 40(2):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201302006.htm [24] 李平, 郭会荣, 吴孔军, 等, 2011.王河煤矿矿井涌水量数值模拟及预测.地球科学, 36(4):755-760. http://earth-science.net/WebPage/Article.aspx?id=2143 [25] 李伟, 赵燕容, 朱旭芬, 等, 2013.自动配线法求水文地质参数的优化路径法研究.勘察科学技术, 2:6-10. doi: 10.3969/j.issn.1001-3946.2013.02.002 [26] 刘颖, 邵景力, 陈家洵, 2015.基于微水试验倾斜承压含水层水文地质参数的推估.地球科学, 40(5):925-932. http://earth-science.net/WebPage/Article.aspx?id=3084 [27] 谭文清, 孙春, 胡婧敏, 等, 2008.GMS在地下水污染质运移数值模拟预测中的应用.东北水利水电, 26(5):54-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DBSL200805022.htm [28] 武选民, 陈崇希, 史生胜, 等, 2003.西北黑河额济纳盆地水资源管理研究——三维地下水流数值模拟.地球科学, 28(5):527-532. http://earth-science.net/WebPage/Article.aspx?id=1289 [29] 肖明贵, 陈学军, 刘宝臣, 2003.无限承压含水层中主孔涌水多孔观测定降深井流试验水文地质参数计算.地球科学, 28(5):575-578. http://earth-science.net/WebPage/Article.aspx?id=1297 [30] 薛禹群, 朱学愚, 1979.地下水动力学.北京:地质出版社, 66-72. [31] 余倩, 谢先军, 马瑞, 等, 2013.地下水流动对砷迁移的影响:大同盆地试验场的观测与模拟.地球科学, 38(4):877-886. http://earth-science.net/WebPage/Article.aspx?id=2763 [32] 赵宝峰, 康卫东, 祝田多娃, 等, 2009.基于数值模拟的含水层参数识别.地球科学与环境学报, 31(4):409-412. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200904013.htm [33] 赵凯荣, 1982.稳定流配线法计算参数探讨.工程勘察, 1:63-67. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198201018.htm