• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    解析法与数值法在水电站防渗墙效果评价中的运用

    陈晓恋 文章 胡金山 闵勇章 梁杏 孙蓉琳 李润超

    陈晓恋, 文章, 胡金山, 闵勇章, 梁杏, 孙蓉琳, 李润超, 2016. 解析法与数值法在水电站防渗墙效果评价中的运用. 地球科学, 41(4): 701-710. doi: 10.3799/dqkx.2016.059
    引用本文: 陈晓恋, 文章, 胡金山, 闵勇章, 梁杏, 孙蓉琳, 李润超, 2016. 解析法与数值法在水电站防渗墙效果评价中的运用. 地球科学, 41(4): 701-710. doi: 10.3799/dqkx.2016.059
    Chen Xiaolian, Wen Zhang, Hu Jinshan, Min Yongzhang, Liang Xing, Sun Ronglin, Li Runchao, 2016. Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations. Earth Science, 41(4): 701-710. doi: 10.3799/dqkx.2016.059
    Citation: Chen Xiaolian, Wen Zhang, Hu Jinshan, Min Yongzhang, Liang Xing, Sun Ronglin, Li Runchao, 2016. Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations. Earth Science, 41(4): 701-710. doi: 10.3799/dqkx.2016.059

    解析法与数值法在水电站防渗墙效果评价中的运用

    doi: 10.3799/dqkx.2016.059
    基金项目: 

    国家自然科学基金项目 41372253

    中央高校基本科研业务费专项基金项目 CUG140503

    详细信息
      作者简介:

      陈晓恋(1989-),女,硕士研究生,主要从事地下水数值模拟工作.E-mail:chenxiaolian105@126.com

      通讯作者:

      文章,E-mail:wenz@cug.edu.cn

    • 中图分类号: P64

    Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations

    • 摘要: 四川省大渡河上某水电站目前正处于施工阶段,大坝基坑防渗墙已基本完成施工,但基坑涌水量较大,为评价防渗墙的防渗效果,在两防渗墙间开展了2组抽水试验.根据研究区边界条件,利用综合井函数法初步求取了基坑砂砾层的水文地质参数,并在此基础上采用数值法(groundwater modeling system, GMS)建立水流模型,进行参数的识别、验证,研究表明综合井函数法得到的砂砾含水层渗透系数为19.13~32.24 m/d,GMS拟合得到的渗透系数为26.00 m/d.此外,数值模拟拟合得到的主、副防渗墙渗透系数较小(0.01~0.02 m/d),说明两防渗墙防渗效果较好.

       

    • 图  1  研究区平面图

      Fig.  1.  The plan view of the study area

      图  2  研究区示意

      Fig.  2.  The schematic of the study area

      图  3  第1次抽水试验抽水井映射结果

      Fig.  3.  The mapping results for the imaginary pumping wells of the first pumping test

      图  4  第1次抽水试验#5观测井曲线匹配

      Fig.  4.  Fitting curve for the observation well #5 in first pumping test

      图  5  第1次抽水试验#7观测井曲线匹配

      Fig.  5.  Fitting curve for the observation well #7 in first pumping test

      图  6  第2次抽水试验抽水井映射结果

      Fig.  6.  The mapping results for the imaginary pumping wells of the second pumping test

      图  7  水电站基坑施工期三维模型

      Fig.  7.  The three-dimensional model for foundation pit of hydropower station during construction

      图  8  沿大渡河流向剖面

      Fig.  8.  A sectional view along the Dadu river

      图  9  数值模型边界示意

      Fig.  9.  The schematic diagram of the boundaries for the mathematical model

      图  10  基坑网格剖分

      Fig.  10.  The picture of mesh discretization in foundation pit of hydropower station

      图  11  各层分区

      Fig.  11.  The partition for each layer

      图  12  水位观测值与计算值拟合曲线

      Fig.  12.  Fitting curve for the hydraulic heads in the observation wells

      图  13  水位观测值与计算值拟合曲线

      Fig.  13.  Fitting curve for the hydraulic heads in the observation wells

      图  14  水位观测值与计算值拟合曲线

      Fig.  14.  Fitting curve for the hydraulic heads in the observation wells

      图  15  水位观测值与计算值拟合曲线

      Fig.  15.  Fitting curve for the hydraulic heads in the observation wells

      表  1  抽水试验基本情况

      Table  1.   The information of the pumping test

      抽水次序 抽水井 观测井 抽水时间 抽水流量(m3/h)
      1 #6 #3,#5,#6,#7 2013-06-28T11:09—2013-06-28T17:30 23.10
      2 #5 #2,#4,#5,#6,#7,#10 2013-07-04T15:00—2013-07-04T16:43 4.63
      2013-07-05T08:56—2013-07-05T20:17 24.11
      2013-07-05T20:18—2013-07-06T10:26 4.63
      下载: 导出CSV

      表  2  解析法求参结果(砂砾层)

      Table  2.   The results of hydrogeological parameters obtained by analytical method (sandy gravel layer)

      特定条件标准曲线对比法
      试验次序 观测井 T(m2/d) a(m2/d) K(m/d) ue
      第1次抽水试验 5号观测井 573.82 3.50×105 19.13 1.64×10-3
      7号观测井 662.10 3.76×105 22.07 1.76×10-3
      第2次抽水试验 6号观测井 944.44 4.28×105 31.48 2.21×10-3
      7号观测井 967.47 5.14×105 32.24 1.88×10-3
      下载: 导出CSV

      表  3  分区说明

      Table  3.   The description for the partition

      层数 厚度(m) 分区说明
      Ⅰ区 Ⅱ区 Ⅲ区
      第1层 5 混凝土灌浆 上游副防渗墙(混凝土防渗墙) 下游主防渗墙(混凝土防渗墙)
      第2层 10~55 覆盖层(砂砾层) 上游副防渗墙(混凝土防渗墙) 下游主防渗墙(混凝土防渗墙)
      第3层 10~12 弱风化带 上游副防渗墙(帷幕灌浆) \
      第4层 20~30 基岩带 上游副防渗墙(帷幕灌浆) \
      下载: 导出CSV

      表  4  各岩层参数

      Table  4.   The parameters for each layer

      层数 渗透系数(m/d) 给水度 弹性给水度(ue)
      Ⅰ区 Ⅱ区 Ⅲ区 Ⅰ区 Ⅱ区 Ⅲ区 Ⅰ区 Ⅱ区 Ⅲ区
      第1层 0.01 0.011 0.023 0.01 0.04 0.04 \ \ \
      第2层 26.00 0.011 0.023 \ \ \ 0.006 3 0.003 0 0.003 0
      第3层 0.50 0.040 \ \ \ \ 0.040 0 0.004 0 \
      第4层 0.01 0.008 \ \ \ \ 0.002 5 0.001 0 \
      下载: 导出CSV
    • [1] Bai, L.P., Wang, J.S., 2004.The Application of GMS in Numerical Simulation of Groundwater in Linfen Basin.Shanxi Architecture, 30(16):78-79(in Chinese with English abstract). https://www.scientific.net/AMR.518-523.4047
      [2] Chenaf, D., Chapuis, R.P., 2002.Methods to Determine Storativity of Infinite Confined Aquifer from a Recovery Test.Ground Water, 40(4):385-389.doi: 10.1111/j.1745-6584.2002.tb02517.x
      [3] Guo, J.Q., Zhou, H.F., Li, Y., 2008.Multi Straight Line Analytical Method for Estimating Aquifer Parameters from Recovery Test Data.Rock and Soil Mechanics, 29(12):3246-3250(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX200812018.htm
      [4] Hao, Q.C., Shao, J.L., Cui, Y.L., et al., 2014.Applicability of Artificial Recharge of Groundwater in the Yongding River Alluvial Fan in Beijing through Numerical Simulation.Journal of Earth Science, 25(3):575-586.doi: 10.1007/s12583-014-0442-6
      [5] Hossein, B.J., Hamid, M.H., Mohammad, H.G., et al., 2014.Numerical Simulation of Groundwater Flow and Contamination Transport in Nahavand Plain Aquifer, West of Iran.Journal of Geological Society of India, 83:83-92.doi: 10.1007/s12594-014-0010-9
      [6] Jin, W.Z., Luo, Z.Z., Chen, X.X., et al., 2014.Coupling Simulation of Groundwater Seepage and Land Subsidence.Earth Science, 39(5):611-619 (in Chinese with English abstract).
      [7] Li, G.R., Zhao, Z., Chen, Z.H., 2013.Application of Numerical Simulation to Inverting Hydrogeological Conditions in Mining Areas.Hydrogeology & Engineering Geology, 40(2):19-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201302006.htm
      [8] Li, P., Guo, H.R., Wu, K.J., et al., 2011.Numerical Simulation and Forecast of Mine Discharge in Wanghe Coal Mine.Earth Science, 36(4):755-760(in Chinese with English abstract).
      [9] Li, W., Zhao, Y.R., Zhu, X.F., et al., 2013.Study on Optimization Path Method of Solving Hydrogeologic Parameters by Automatic Curve-Fitting Method.Exploration Science Technology, (2):6-10(in Chinese with English abstract). https://www.scientific.net/AMM.624.567
      [10] Liu, H.J., Hsu, N.S., Lee, T.H., 2009.Simultaneous Identification of Parameter, Initial Condition, and Boundary Condition in Groundwater Modeling.Hydrol.Process, 23:2358-2367.doi: 10.1002/hyp.7344
      [11] Liu, Y., Shao, J.L., Chen, J.X., 2015.Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer.Earth Science, 40(5):925-932 (in Chinese with English abstract).
      [12] Samani, N., Pasandi, M., 2003.A Single Recovery Type Curve from Theis' Exact Solution.Ground Water, 41(5):602-607.doi: 10.1111/j.1745-6584.2003.tb02398.x
      [13] Tan, W.Q., Sun, C., Hu, J.M., et al., 2008.Application of GMS in Simulation of Pollutants Migration for Groundwater.Water Resources & Hydropower of Northeast China, 26(5):54-56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBSL200805022.htm
      [14] Wu, X.M., Chen, C.X., Shi, S.S., et al., 2003.Three-Dimensional Numerical Simulation of Groundwater System in Ejina Basin, Heihe River, Northwestern China.Earth Science, 28(5):527-532(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200305009.htm
      [15] Xiao, M.G., Chen, X.J., Liu, B.C., 2003.Hydrogeology Parameter Calculation in Water Gushing Test of Constant Drawdown Yield in Infinite Confined Aquifer Where Gushing in the Main Hole is Observed from Several Other Holes.Earth Science, 28(5):575-578(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200305017.htm
      [16] Xue, Y.Q., Zhu, X.Y., 1979.Groundwater Dynamic.Geological Publishing House, Beijing, 66-72(in Chinese).
      [17] Yu, Q., Xie, X.J., Ma, R., et al., 2013.Impact of Groundwater Flow on Arsenic Transport:A Field Observation and Simulation in Datong Basin.Earth Science, 38(4):877-886(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201304022.htm
      [18] Zhao, B.F., Kang, W.D., Zhutian, D.W., et al., 2009.Aquifer Parameter Recognition Based on Numerical Simulation.Journal of Earth Sciences and Environment, 31(4):409-412(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200904013.htm
      [19] Zhao, K.R., 1982.The Discussion about Arithmetic Parameters of Steady Flow Wiring Method.Engineering Survey, 1:63-67(in Chinese).
      [20] 白利平, 王金生, 2004.GMS在临汾盆地地下水数值模拟中的应用.山西建筑, 30(16):78-79. doi: 10.3969/j.issn.1009-6825.2004.16.047
      [21] 郭建青, 周宏飞, 李彦, 2008.分析含水层水位恢复数据的多次直线解析法.岩土力学, 29(12):3246-3250. doi: 10.3969/j.issn.1000-7598.2008.12.012
      [22] 金玮泽, 骆祖江, 陈兴贤, 等, 2014.地下水渗流与地面沉降耦合模拟.地球科学, 39(5):611-619. http://earth-science.net/WebPage/Article.aspx?id=2869
      [23] 李贵仁, 赵珍, 陈植华, 2013.数值模拟在反演矿区水文地质条件中的应用.水文地质工程地质, 40(2):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201302006.htm
      [24] 李平, 郭会荣, 吴孔军, 等, 2011.王河煤矿矿井涌水量数值模拟及预测.地球科学, 36(4):755-760. http://earth-science.net/WebPage/Article.aspx?id=2143
      [25] 李伟, 赵燕容, 朱旭芬, 等, 2013.自动配线法求水文地质参数的优化路径法研究.勘察科学技术, 2:6-10. doi: 10.3969/j.issn.1001-3946.2013.02.002
      [26] 刘颖, 邵景力, 陈家洵, 2015.基于微水试验倾斜承压含水层水文地质参数的推估.地球科学, 40(5):925-932. http://earth-science.net/WebPage/Article.aspx?id=3084
      [27] 谭文清, 孙春, 胡婧敏, 等, 2008.GMS在地下水污染质运移数值模拟预测中的应用.东北水利水电, 26(5):54-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DBSL200805022.htm
      [28] 武选民, 陈崇希, 史生胜, 等, 2003.西北黑河额济纳盆地水资源管理研究——三维地下水流数值模拟.地球科学, 28(5):527-532. http://earth-science.net/WebPage/Article.aspx?id=1289
      [29] 肖明贵, 陈学军, 刘宝臣, 2003.无限承压含水层中主孔涌水多孔观测定降深井流试验水文地质参数计算.地球科学, 28(5):575-578. http://earth-science.net/WebPage/Article.aspx?id=1297
      [30] 薛禹群, 朱学愚, 1979.地下水动力学.北京:地质出版社, 66-72.
      [31] 余倩, 谢先军, 马瑞, 等, 2013.地下水流动对砷迁移的影响:大同盆地试验场的观测与模拟.地球科学, 38(4):877-886. http://earth-science.net/WebPage/Article.aspx?id=2763
      [32] 赵宝峰, 康卫东, 祝田多娃, 等, 2009.基于数值模拟的含水层参数识别.地球科学与环境学报, 31(4):409-412. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200904013.htm
      [33] 赵凯荣, 1982.稳定流配线法计算参数探讨.工程勘察, 1:63-67. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198201018.htm
    • 加载中
    图(15) / 表(4)
    计量
    • 文章访问数:  4141
    • HTML全文浏览量:  1716
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-05-09
    • 刊出日期:  2016-04-15

    目录

      /

      返回文章
      返回