Using Hydraulic Barrier Control CO2 Plume Migration in Sloping Reservoir
-
摘要: 摘要:在单一倾斜含水层中封存CO2时,在浮力作用下,CO2会向地层上升一侧快速运移,不利于封存安全.可在倾斜地层的上升一侧,距离CO2注入井一定位置设置注水井,创造水力屏障,以阻止CO2向上移动.建立了数值模型来探讨这一方法的有效性,分析注水位置、距离、速度等因素的影响.结果表明注水形成的水力屏障能有效阻挡CO2羽的向上迁移,且能促进CO2溶解,抽水能显著降低地层压力.为了确保能完全阻挡CO2运移,需要注水长度大于CO2羽的厚度,甚至是在全部储层注水.注水速度是影响水力屏障效果的关键因素.注水距离越近阻挡效果越好.可以在CO2羽即将到达之前注水,以减少注水量和能源消耗.Abstract: CO2 will rapidly migrate toward the up-tilt direction of the formation under buoyancy when CO2 is stored in the sloping aquifers. This phenomenon is not conducive to the storage security. In this paper, we are proposed setting water injection wells at a certain distance from the CO2 injection well in the up-tilt direction of the formation. Then hydraulic barrier is created to retard upward CO2 migration. The numerical model is set up to investigate the effectiveness of this approach, and to analyze the effects of some factors, for instance, the injection position, the injection distance and the injection rate. The results show that the hydraulic barrier caused by injecting water can effectively retard upward CO2 migration and enhance CO2 dissolution. Pumping water can significantly reduce the formation pressure. To ensure that CO2 is completely retarded, the length of the injection water needs to be greater than the thickness of the CO2 plume, even injecting water through all thickness of the formation. The rate of the injection water is the key factor affecting the effectiveness of the hydraulic barrier. The effectiveness is better when the injection water well is closer to the CO2 injection well. The water can be injected just before the arrival of CO2 plume to reduce the amount of injected water and energy consumption.
-
Key words:
- deep aquifer /
- CO2 geological storage /
- injecting water /
- pumping water /
- formation pressure /
- groundwater /
- environmental geology
-
图 3 Base case中A-A′剖面CO2饱和度和溶解的质量分数在不同时间的分布情况
剖面位置见图 1;Sg代表CO2饱和度;XCO2代表CO2溶解的质量分数
Fig. 3. The distribution of CO2 gas saturation and dissolved CO2 mass fraction along the A-A′ cross section at different times for the Base case
图 4 Case 1a和Case 1c中A-A′剖面CO2饱和度在不同时间的分布情况
剖面位置见图 1;Sg代表CO2饱和度
Fig. 4. The distribution of CO2 gas saturation along the A-A′ cross section at different times for the Cases 1a and 1c
图 5 Case 2a和Case 2b中A-A′剖面CO2饱和度在50 a时的分布情况
剖面位置见图 1;Sg代表CO2饱和度
Fig. 5. The distribution of CO2 gas saturation along the A-A′ cross section at 50 years for the Cases 2a and 2b
图 6 Case 3a和Case 3c中A-A′剖面CO2饱和度在不同时间的分布情况
剖面位置见图 1;Sg代表CO2饱和度
Fig. 6. The distribution of CO2 gas saturation along the A-A′ cross section at different times for the Cases 3a and 3c
图 7 Case 4a和Case 4b中A-A′剖面CO2饱和度在100年时的分布情况
剖面位置见图 1;Sg代表CO2饱和度;XCO2代表CO2溶解的质量分数
Fig. 7. The distribution of CO2 gas saturation along the A-A′ cross section at 100 years for the Cases 4a and 4b
表 1 模型主要参数取值
Table 1. The values of main model parameters
地层 Kh (10-15 m2) Kh/Kv α-1(MPa) β(10-10 Pa-1) Srw Srg m 盖层 0.001 10 5.00 4.5 0.40 0.15 0.457 储层 100 10 0.02 4.5 0.30 0.15 0.457 注:Kh为水平渗透率;Kh/Kv为水平和垂直渗透率的比值;α-1为毛细进入压力;β为压缩率;Srw为最大残余水饱和度;Srg为最大残余气饱和度;m为相对渗透率函数中的指数. 表 2 不同注水方案中的参数设置
Table 2. The parameter values used in the different injection scenarios
方案编号 注水位置 注水距离(km) 注水速度(kg/s) 停止注入CO2后注水速度(kg/s) 抽水速度(kg/s) Base case 全部储层 1 31.7 10 31.7 Case 1a 储层上部100 m Case 1b 储层上部40 m Case 1c 储层上部20 m Case 2a 2 Case 2b 3 Case 2c 5 Case 3a 10.0 Case 3b 5.0 Case 3c 1.0 Case 4a 5 Case 4b 1 Case 5a 10.0 Case 5b 5.0 Case 5c 0(不抽水) 注:空白处与Base case设置相同. -
[1] Bachu, S., 2003.Screening and Ranking of Sedimentary Basins for Sequestration of CO2 in Geological Media in Response to Climate Change.Environmental Geology, 44(3):277-289.doi: 10.1007/s00254-003-0762-9 [2] Birkholzer, J.T., Zhou, Q., 2009.Basin-Scale Hydrogeologic Impacts of CO2 Storage:Capacity and Regulatory Implications.International Journal of Greenhouse Gas Control, 3(6):745-756.doi: 10.1016/j.ijggc.2009.07.002 [3] Buscheck, T.A., Sun, Y., Chen, M., et al., 2012.Active CO2 Reservoir Management for Carbon Storage:Analysis of Operational Strategies to Relieve Pressure Buildup and Improve Injectivity.International Journal of Greenhouse Gas Control, 6(1):230-245.doi: 10.1016/j.ijggc.2011.11.007 [4] Corey, A.T., 1954.The Interrelation between Gas and Oil Relative Permeabilities.Producers Monthly, 19(1):38-41. [5] Court, B., Bandilla, K.W., Celia, M.A., et al., 2012.Initial Evaluation of Advantageous Synergies Associated with Simultaneous Brine Production and CO2 Geological Sequestration.International Journal of Greenhouse Gas Control, 8(5):90-100.doi: 10.1016/j.ijggc.2011.12.009 [6] de Coninck, H., Benson, S.M., 2014.Carbon Dioxide Capture and Storage:Issues and Prospects.Annual Review of Environment and Resources, 39(1):243-270.doi: 10.1146/annurev-environ-032112-095222 [7] Deng, H., Stauffer, P.H., Dai, Z., et al., 2012.Simulation of Industrial-Scale CO2 Storage:Multi-Scale Heterogeneity and Its Impacts on Storage Capacity, Injectivity and Leakage.International Journal of Greenhouse Gas Control, 10:397-418.doi: 10.1016/j.ijggc.2012.07.003 [8] Doughty, C., Freifeld, B.M., Trautz, R.C., 2008.Site Characterization for CO2 Geologic Storage and Vice Versa:the Frio Brine Pilot, Texas, USA as a Case Study.Environmental Geology, 54(8):1635-1656.doi: 10.1007/s00254-007-0942-0 [9] Fang, Q., Li, Y.L., Cheng, P., et al., 2014.Enhancing CO2 Injectivity in High-Salinity and Low-Permeability Aquifers:A Case Study of Jianghan Basin, China.Earth Science, 39(11):1675-1683. [10] IPCC, 2005.IPCC Special Report on Carbon Dioxide Capture and Storage.Cambridge University Press, Cambridge. [11] Jing, J., Yuan, Y.L., Yang, Y.L., et al., 2014.Influence of Strata Dip on CO2 Geological Storage—A Case Study of Erdos CCS Project.Geotechnical Investigation & Surveying, (6):39-44 (in Chinese with English abstract). [12] Leonenko, Y., Keith, D.W., 2008.Reservoir Engineering to Accelerate the Dissolution of CO2 Stored in Aquifers.Environmental Science & Technology, 42(8):2742-2747.doi: 10.1021/es071578c [13] Li, X.C., Liu, Y.F., Bai, B., et al., 2006.Ranking and Screening of CO2 Saline Aquifer Storage Zones in China.Chinese Journal of Rock Mechanics and Engineering, 25(5):963-968 (in Chinese with English abstract). [14] Michael, K., Golab, A., Shulakova, V., et al., 2010.Geological Storage of CO2 in Saline Aquifers—A Review of the Experience from Existing Storage Operations.International Journal of Greenhouse Gas Control, 4(4):659-667.doi: 10.1016/j.ijggc.2009.12.011 [15] Nordbotten, J.M., Kavetski, D., Celia, M.A., et al., 2009.Model for CO2 Leakage Including Multiple Geological Layers and Multiple Leaky Wells.Environmental Science & Technology, 43(3):743-749.doi: 10.1021/es801135v [16] Pruess, K., García, J., 2002.Multiphase Flow Dynamics during CO2 Disposal into Saline Aquifers.Environmental Geology, 42(2-3):282-295.doi: 10.1007/s00254-001-0498-3 [17] Pruess, K., Nordbotten, J., 2011.Numerical Simulation Studies of the Long-Term Evolution of a CO2 Plume in a Saline Aquifer with a Sloping Caprock.Transport in Porous Media, 90(1):135-151.doi: 10.1007/s11242-011-9729-6 [18] Pruess, K., Oldenburg, C., Moridis, G., 2012.TOUGH2 User's Guide, Version 2.1.Report LBNL-43134, Lawrence Berkeley Laboratory, Berkeley. [19] Pruess, K., Spycher, N., 2007.ECO2N—A Fluid Property Module for the TOUGH2 Code for Studies of CO2 Storage in Saline Aquifers.Energy Conversion and Management, 48(6):1761-1767.doi: 10.1016/j.enconman.2007.01.016 [20] Réveillère, A., Rohmer, J., Manceau, J.C., 2012.Hydraulic Barrier Design and Applicability for Managing the Risk of CO2 Leakage from Deep Saline Aquifers.International Journal of Greenhouse Gas Control, 9:62-71.doi: 10.1016/j.ijggc.2012.02.016 [21] Shi, X.Q., Zhang, K.N., Wu, J.C., 2009.The History and Application of TOUGH2 Code.Geotechnical Investigation & Surveying, (10):29-34 (in Chinese with English abstract). [22] Sung, R.T., Li, M.H., Dong, J.J., et al., 2014.Numerical Assessment of CO2 Geological Sequestration in Sloping and Layered Heterogeneous Formations:A Case Study from Taiwan.International Journal of Greenhouse Gas Control, 20:168-179.doi: 10.1016/j.ijggc.2013.11.003 [23] van Genuchten, M.T., 1980.A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.Soil Science Society of America Journal, 44(5):892-898. doi: 10.2136/sssaj1980.03615995004400050002x [24] Yamamoto, H., Zhang, K., Karasaki, K., et al., 2009.Numerical Investigation Concerning the Impact of CO2 Geologic Storage on Regional Groundwater Flow.International Journal of Greenhouse Gas Control, 3(5):586-599.doi: 10.1016/j.ijggc.2009.04.007 [25] Yang, G.D., Li, Y.L., Ma, X., et al., 2014.Effect of Chlorite on CO2-Water Rock Interaction.Earth Science, 39(4):462-472. [26] Zhang, K., Wu, Y.S., Pruess, K., 2008.User's Guide for TOUGH2-MP-A Massively Parallel Version of the TOUGH2 Code.Report LBNL-315E, Lawrence Berkeley National Laboratory, Berkeley. [27] Zhao, R., Cheng, J., Zhang, K., 2012.CO2 Plume Evolution and Pressure Buildup of Large-Scale CO2 Injection into Saline Aquifers in Sanzhao Depression, Songliao Basin, China.Transport in Porous Media, 95(2):407-424.doi: 10.1007/s11242-012-0052-7 [28] Zhou, Q., Birkholzer, J.T., Mehnert, E., et al., 2010.Modeling Basin-and Plume-Scale Processes of CO2 Storage for Full-Scale Deployment.Ground Water, 48(4):494-514.doi: 10.1111/j.1745-6584.2009.00657.x [29] 房琦, 李义连, 程鹏, 等, 2014.低渗卤水盆地提高CO2注入性的技术方法:以江汉盆地为例.地球科学, 39(11):1675-1683. http://earth-science.net/WebPage/Article.aspx?id=2965 [30] 靖晶, 苑艺琳, 杨艳林, 等, 2014.地层倾角对CO2地质封存的影响研究——以鄂尔多斯CCS工程为例.工程勘察, (6):39-44. [31] 李小春, 刘延锋, 白冰, 等, 2006.中国深部咸水含水层CO2储存优先区域选择.岩石力学与工程学报, 25(5):963-968. [32] 施小清, 张可霓, 吴吉春, 2009.TOUGH2软件的发展及应用.工程勘察, (10):29-34. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200910008.htm [33] 杨国栋, 李义连, 马鑫, 等, 2014.绿泥石对CO2-水-岩石相互作用的影响.地球科学, 39(4):462-472. http://earth-science.net/WebPage/Article.aspx?id=2855