Characterization of Diagenesis and the Petroleum Charge in Kela 2 Gas Field, Kuqa Depression, Tarim Basin
-
摘要: 克拉2气田是中国陆上勘探已知最大的天然气气田,下白垩系巴什基奇克组砂岩是其主力储层.为了揭示本区储层成岩作用和油气充注之间的成因联系,综合应用偏光显微镜、阴极发光显微镜、扫描电镜、CT扫描三维重构、X-射线衍射、荧光光谱、显微测温和激光拉曼等技术手段研究了克拉2气田储层的成岩作用和油气充注期次及特征,并且探讨了油气充注对成岩作用的影响.研究结果显示:本区的成岩矿物组合为石英次生加大边、方解石、白云石,铁白云石,微晶石英和自生高岭石.发育3期油气充注:第1期为低温高盐度的低成熟油气流体,以记录在石英愈合裂隙、长石解理和方解石胶结物中的黄褐色荧光包裹体为代表,充注时间为18 Ma;第2期为高温高盐度的高成熟油气流体,以记录在石英愈合裂隙和白云石胶结物中的黄白-蓝白色荧光包裹体为代表,充注时间为6 Ma;第3期为高温低盐度的天然气充注,以记录在石英愈合裂隙和铁白云石胶结物中的无荧光气烃包裹体为代表,充注时间4 Ma.本区储层中自生高岭石、微晶石英和储层沥青是晚期天然气充注对储层改造的结果.Abstract: The Kela-2 gas field is the most productive gas field in China. The lower Cretaceous Bashenjiqike Formation (K1bs) are the dominated gas-bearing strata. Characterization of the diagenetic history, different fluid inclusion assemblages and the effects of oil emplacement on diagenetic processes of the K1bs in the Kuqa Depression, Tarim Basin have been studied using a combination of techniques such as polarizing microscope, cathode luminescence (CL), scanning electron microscope (SEM), CT three-dimensional reconstruction, X-ray diffraction (XRD), fluorescence spectroscopy, microthermometry, and Raman microspectroscopy. Diagenetic events identify include quartz overgrowths, early calcite cements, dolomite cements, ankerite cements, micro-quartz and authigenic kaolinite. Three episodes of oil emplacement are recorded by the diagenetic products in the K1bs Formations. The first episode consists of the yellowish-brown fluorescent petroleum inclusions hosted in the transgranular fractures, cleavage plans of the feldspar and calcite cements, paired with low trapped temperature and relatively high salinity, forming around 18 Ma; the second episode consists of the yellow-white to blue-white petroleum inclusions located in the transgranular fractures, boundary of quartz particles and dolomite cements, paired with high trapped temperature and high salinity, forming around 6 Ma; the third episode consists of the CH4-bearing vapour inclusions within the annealed microfractures and ankerite cements, having with high trapped temperature and low salinity, forming around 4 Ma. Authigenic kaolinite, micor-quartz and solid bitumen are the results transformed by the advanced natural gas charge.
-
Key words:
- diagenesis /
- fluid inclusions /
- oil emplacement /
- Kuqa depression
-
表 1 流体包裹体显微测温结果
Table 1. Summary of microthermometric results
编号 包裹体类型 宿主矿物 产状 大小
(μm×μm)气液比
(%)均一温度
(℃)冰点
(℃)盐度
(% NaCl eq.)伴生烃类包裹体 1 气液两相盐水包裹体 石英 愈合裂隙 2×3 5 95.0 -13.5 17.34 黄褐色荧光包裹体 2 2×4 5 96.2 / / 3 2×3 5 120.0 / / 4 2×3 5 102.3 -14.5 18.22 5 2×5 10 108.3 -14.5 18.22 6 1×8 5 96.7 -15.2 18.80 7 气液两相盐水包裹体 石英 愈合裂隙 1×3 5 123.0 -12.6 16.53 气烃包裹体 8 1×4 5 160.0 -14.1 17.87 9 2×4 5 140.0 -13.3 17.17 10 5×9 10 145.8 -13.4 17.26 11 2×4 20 156.4 -10.0 13.94 12 2×4 10 123.4 / / 13 2×2 10 162.1 / / 14 3×12 5 154.7 / / 15 2×1 10 175.3 -14.4 18.13 16 2×6 10 177.7 -12.6 16.53 17 气液两相盐水包裹体 石英 边部 3×6 10 114.0 / / 蓝白色荧光包裹体 18 2×3 5 122.0 -17.0 20.22 19 白云石 2×4 5 122.0 -17.4 20.52 20 孤立分布 1×5 5 123.0 -17.0 20.22 21 蓝白色荧光包裹体 白云石 10×25 25 93.7 / / / 22 黄褐色荧光包裹体 方解石 7×15 25 80.0 / / / 23 10×14 30 81.2 / / / 表 2 室温下流体包裹体激光拉曼测试结果
Table 2. Laser Raman analysis of fluid inclusions at room temperature
编号 深度(m) 包裹体类型 产状 气相成分 拉曼位移(cm-1) KL201-1 3 667.7 气烃包裹体 石英颗粒愈合裂隙 CH4 2 913.6 KL201-2 3 667.7 气烃包裹体 石英颗粒愈合裂隙 CH4 2 912.7 KL201-3 3 788.1 气烃包裹体 石英颗粒愈合裂隙 CH4 2 911.2 KL201-4 3 788.1 气烃包裹体 石英颗粒愈合裂隙 CH4 2 911.1 KL201-5 3 632.0 气烃包裹体 石英颗粒愈合裂隙 CH4 2 913.6 KL201-6 3 632.0 气烃包裹体 石英颗粒愈合裂隙 CH4 2 911.9 KL201-7 3 850.4 气烃包裹体 石英颗粒愈合裂隙 CH4 2 910.2 KL201-8 3 850.4 气烃包裹体 石英颗粒愈合裂隙 CH4 2 911.1 KL201-9 3 850.4 气烃包裹体 石英颗粒愈合裂隙 CH4 2 911.0 KL201-10 3 850.4 气烃包裹体 石英颗粒愈合裂隙 CH4 2 911.1 -
[1] Baron, M., Parnell, J., Mark, D., et al., 2008.Evolution of Hydrocarbon Migration Style in a Fractured Reservoir Deduced from Fluid Inclusion Data, Clair Field, West of Shetland, UK.Marine and Petroleum Geology, 25(2):153-172.doi: 10.1016/j.marpetgeo.2007.05.010 [2] Bourdet, J., Pironon, J., Levresse, G., et al., 2010.Petroleum Accumulation and Leakage in a Deeply Buried Carbonate Reservoir, Níspero Field (Mexico).Marine and Petroleum Geology, 27(1):126-142.doi: 10.1016/j.marpetgeo.2009.07.003 [3] Dutkiewicz, A., Ridley, J., Buick, R., 2003.Oil-Bearing CO2-CH4-H2O Fluid Inclusions:Oil Survival since the Palaeoproterozoic after High Temperature Entrapment.Chemical Geology, 194(1-3):51-79.doi: 10.1016/s0009-2541(02)00271-1 [4] Feng, Y., Zhu, C.Q., Wang, X.H., et al., 2013.A Capacity Prediction Model for the Low Porosity Fractured Reservoirs in the Kuqa Foreland Basin, NW China.Petroleum Exploration and Development, 40(3):367-371.doi: 10.1016/s1876-3804(13)60044-0 [5] Gierlowski-Kordesch, E., Rust, B.R., 1994.The Jurassic East Berlin Formation, Hartford Basin, Newark Supergroup (Connecticut and Massachusetts):A Saline Lake-Playa-Alluvial Plain System.In:Renaut, R.W., Last, W.M., eds., Sedimentology and Geochemistry of Modern and Ancient Saline Lakes.SEPM Special Publication, Vol.50, Tulsa, 249-265. http://sp.sepmonline.org/content/sepspseg/1/SEC20.short [6] Goldstein, R.H., 2001.Fluid Inclusions in Sedimentary and Diagenetic Systems.Lithos, 55(1-4):159-193.doi: 10.1016/s0024-4937(00)00044-x [7] Goldstein, R.H., Reynolds, T.J., 1994.Systematics of Fluid Inclusions in Diagenetic Minerals.SEPM Short Course.Tulsa. http://sedimentary-geology-store.com/catalog/book/systematics-fluid-inclusions-diagenetic-minerals [8] Gui, L.L., Liu, K.Y., Liu, S.B., 2015.Hydrocarbon Charge History of Yingdong Oilfield, Weostern Qaidam Basin.Earth Science, 40(5):890-899 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201505012.htm [9] Jia, C.Z., Li, Q.M., 2008.Petroleum Geology of Kela-2, the most Productive Gas Field in China.Marine and Petroleum Geology, 25(4-5):335-343.doi: 10.1016/j.marpetgeo.2008.01.002 [10] Jia, C.Z., Zhou, X.Y., Wang, Z.M., et al., 2002.Petroleum Geological Characteristics of Kela-2 Gas Field.Chinese Science Bulletin, 47(S1):94-99 (in Chinese with English abstract).doi: 10.1007/bf02902824 [11] Ketzer, J.M., Holz, M., Morad, S., et al., 2003.Sequence Stratigraphic Distribution of Diagenetic Alterations in Coal-Bearing, Paralic Sandstones:Evidence from the Rio Bonito Formation (Early Permian), Southern Brazil.Sedimentology, 50(5):855-877.doi: 10.1046/j.1365-3091.2003.00586.x [12] Lu, W.J., Chou, I.M., Burruss, R.C., Song, Y.C., 2007.A Unified Equation for Calculating Methane Vapor Pressures in the CH4-H2O System with Measured Raman Shifts.Geochimica et Cosmochimica Acta, 71:3969-3978. doi: 10.1016/j.gca.2007.06.004 [13] Lu, X.S., Liu, K.Y., Zhuo, Q.G., et al., 2012.Palaeo-Fluid Evidence of the Multi-Stage Hydrocarbon Charges in Kela-2 Gas Field, Kuqa Foreland Basin, Tarim Basin.Petroleum Exploration and Development, 39(5):574-582.doi: 10.1016/s1876-3804(12)60078-0 [14] Lu, X.S., Song, Y., Zhao, M.J., 2014.Thermal History Modeling of Complicated Extrusional Section and Source Rock Maturation Characteristics in Kuqa Foreland Basin.Natural Gas Geoscience, 25(10):1547-1557 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2014.10.1547 [15] Meisler, H., Leahy, P.P., Knobel, L.L., 1984.Effect of Eustatic Sea-Level Changes on Saltwater-Freshwater in the North Atlantic Coast Plain.United State Geological SurveyWater-Supply Paper, 2255.U.S.A., 27. [16] Morad, S., Ketzer, J.M., De Ros, L.F., 2000.Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks:Implications for Mass Transfer in Sedimentary Basins.Sedimentology, 47:95-120.doi: 10.1046/j.1365-3091.2000.00007.x [17] Parnell, J., 2010.Potential of Palaeofluid Analysis for Understanding Oil Charge History.Geofluids, 34(10):73-82.doi: 10.1111/j.1468-8123.2009.00268.x [18] Parnell, J., Carey, P.F., Monson, B., 1996.Fluid Inclusion Constraints on Temperatures of Petroleum Migration from Authigenic Quartz in Bitumen Veins.Chemical Geology, 129(3-4):217-226.doi: 10.1016/0009-2541(95)00141-7 [19] Roedder, E., 1984.Fluid Inclusions.In:MSO America, eds., Reviews in Mineralogy, Vol.12.Mineralogical Society of America, Washington. [20] Saigal, G.C., Bjorlykk, K., 1992.The Effects of Oil Emplacement on Diagenetic Processes:Examples from the Fulmar Reservoir Sandstones, Central North Sea:Geologic Note (1).AAPG Bulletin, 76(7):1024-1033.doi: 10.1306/bdff8966-1718-11d7-8645000102c1865d [21] Schmid, S., Worden, R.H., Fisher, Q.J., 2004.Diagenesis and Reservoir Quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, West of Ireland.Marine and Petroleum Geology, 21(3):299-315.doi: 10.1016/j.marpetgeo.2003.11.015 [22] Surdam, R.C., Boese, S.W., Crossey, L.J., 1984.The Chemistry of Secondary Porosity in Clastic Diagenesis.American Association of Petroleum Geologists Memoir, 37:127-149. http://archives.datapages.com/data/specpubs/sandsto2/data/a059/a059/0001/0100/0127.htm [23] Surdam, R.C., Crossly, L.J., Hagen, E.S., 1989.Organic-Inorganic Interactions and Sandstone Diagenesis.The American Association of Petroleum Geologists Bulletin, 73(1):1-23. http://archives.datapages.com/data/bulletns/1988-89/data/pg/0073/0001/0000/0001.htm?doi=10.1306%2F703C9AD7-1707-11D7-8645000102C1865D [24] Van Keer, I.V., Muchez, P., Viaene, W., 1998.Clay Mineralogical Variations and Evolutions in Sandstone Sequences near a Coal Seam and Shales in the Westphalian of the Campine Basin (NE Belgium).Clay Minerals, 33(1):159-169.doi: 10.1180/000985598545345 [25] Zeng, L.B., Wang, H.J., Gong, L., Liu, B.M., 2010.Impacts of the Tectonic Stress Field on Natural Gas Migration and Accumulation:A Case Study of the Kuqa Depression in the Tarim Basin, China.Marine and Petroleum Geology, 25:335-343. http://www.sciencedirect.com/science/article/pii/S0264817210001030 [26] Zhang, N., 2001.The Characteristics of Organic Inclusions of Kela 2 and Kela 3 Gas Fields and their Indicative Significance to Oil and Gas Pool-Forming in Kuqa Depression.Petroleum Exploration and Development, 28(4):57-59, 103-12, 4. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200104021.htm [27] Zhang, R.H., Yang, H.J., Wang, J.P., 2014.The Formation Mechanism and Exploration Significance of Ultra-Deep, Low-Porosity and Tight Sandstone Reservoirs in Kuqa Depression, Tarim Basin, 2014.Acta Petrolei Sinica, 35(6):1057-1069 (in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201406004.htm [28] Zhao, M.J., Lu, S.F., Wang, T.D., et al., 2002.Geochemical Characteristics of Natural Gas and Accumulation Process of Oil Charge in Kela 2 Gas Field.Chinese Science Bulletin, 47(z1):109-115 (in Chinese with English abstract). [29] Zhuo, Q.G., Zhao, M.J., Xie, H.W., et al., 2011.Relationship between Reservoir Bitumen and Hydrocarbon Migration in Dabei Region, Kuqa Foreland Basin.Petroleum Geology and Experiment, 33(2):193-196 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201102018.htm [30] Zou, H.Y., Hao, F., Liu, G.D., et al., 2005.Genesis of Authigenic Kaolinite and Gas Accumulation in Bashijiqike Fm Sandstone in Kuqa Thrust Belt.Oil & Gas Geology, 26(6):786-791, 799 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT200506015.htm [31] 桂丽黎, 刘可禹, 柳少波, 等, 2015.柴达木盆地西部英东地区油气成藏过程.地球科学, 40(5): 890-899. http://earth-science.net/WebPage/Article.aspx?id=3081 [32] 贾承造, 周新源, 王招明, 等, 2002.克拉2气田石油地质特征.科学通报, 47(S1): 91-96. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1013.htm [33] 鲁雪松, 宋岩, 赵孟军, 等, 2014.库车前陆盆地复杂挤压剖面热演化历史模拟及烃源岩成熟度演化特征.天然气地球科学, 25(10): 1547-1557. doi: 10.11764/j.issn.1672-1926.2014.10.1547 [34] 张鼐, 2001.库车坳陷克拉苏构造带有机包裹体特征及对油气成藏的指示意义.石油勘探与开发, 28(4): 57-59, 103-12, 4. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200104021.htm [35] 张荣虎, 杨海军, 王俊鹏, 等, 2014.库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义.石油学报, 35(6): 1057-1069. doi: 10.7623/syxb201406003 [36] 赵孟军, 卢双舫, 王庭栋, 等, 2002.克拉2气田天然气地球化学特征与成藏过程.科学通报, 47(Z1): 109-115. doi: 10.3321/j.issn:0023-074X.2002.z1.017 [37] 卓勤功, 赵孟军, 谢会文, 等, 2011.库车前陆盆地大北地区储层沥青与油气运聚关系.石油实验地质, 33(2): 193-196. doi: 10.11781/sysydz201102193 [38] 邹华耀, 郝芳, 柳广弟, 等, 2005.库车冲断带巴什基奇克组砂岩自生高岭石成因与油气成藏.石油与天然气地质, 26(6): 786-791, 799. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200506015.htm