• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示

    牛宏 梁杏 李静 马斌 葛勤

    牛宏, 梁杏, 李静, 马斌, 葛勤, 2016. 衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示. 地球科学, 41(3): 499-507. doi: 10.3799/dqkx.2016.041
    引用本文: 牛宏, 梁杏, 李静, 马斌, 葛勤, 2016. 衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示. 地球科学, 41(3): 499-507. doi: 10.3799/dqkx.2016.041
    Niu Hong, Liang Xing, Li Jing, Ma Bin, Ge Qin, 2016. Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui. Earth Science, 41(3): 499-507. doi: 10.3799/dqkx.2016.041
    Citation: Niu Hong, Liang Xing, Li Jing, Ma Bin, Ge Qin, 2016. Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui. Earth Science, 41(3): 499-507. doi: 10.3799/dqkx.2016.041

    衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示

    doi: 10.3799/dqkx.2016.041
    基金项目: 

    国家自然科学基金 41272258

    国家自然科学基金 U1403282

    国家重点基础研究发展计划“973”项目 2010CB428802

    详细信息
      作者简介:

      牛宏(1988-),男,博士研究生,主要研究水文地质方向. E-mail: nrg880607@126.com

      通讯作者:

      梁杏, E-mail: xliang@cug.edu.cn

    • 中图分类号: P532

    Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui

    • 摘要: 衡水地区的咸水层特征一直备受关注.为了探讨咸水层分布区的沉积环境与咸水形成期的古气候特征,利用钻孔(深度130 m)采集了衡水地区咸水层沉积物,进行了沉积物粒度和粘性土孔隙水氘氧同位素测试.沉积物粒度标准偏差显示,剖面上由深至浅,沉积时期水动力呈由弱到强再到弱的变化趋势,其中水动力强段为90~65 m,为厚层砂砾层.孔隙水TDS和δ18O特征显示在6 m以上受到大气降水和人类活动的影响,并且主要是以淡水灌溉影响为主.剖面上粘性土孔隙水的δ18O在130~90 m平均值为-11.5‰,65~29 m平均值为-12.1‰,23~0 m为-10.6‰,而下部淡水含水层地下水δ18O为-9.8‰,上部咸水含水层地下水δ18O为-8.2‰,粘性土孔隙水δ18O明显偏负于含水层的地下水,反映保存记录了古气候信息.130~90 m,δ18O先增大后减小反映温度先升高后降低;65~29 m,δ18O反映温度偏低的气候特征;23~0 m,δ18O相对比较稳定,总体偏正,反映了全新世为一个相对较为稳定但较高的温度.

       

    • 图  1  河北平原分区及钻孔位置

      张人权等(2013)

      Fig.  1.  Study area and locations of the drilling

      图  2  河北平原地下水流系统示意图

      据张之淦(1987);A.扇地局部水流系统;B.浅层局部水流系统;C.区域水流系统

      Fig.  2.  The schematic map of groundwater flow systems in Hebei Plain

      图  4  粘性土孔隙水各参数随深度变化

      五角星代表本次所测得的含水层地下水δ18O值,空心三角形和圆圈表示处于含水层中的粘性土孔隙水δ18O

      Fig.  4.  Parameters of clay pore water vary with depth

      图  3  沉积物粒度参数随深度变化

      平均粒径上的误差棒长度表示了标准偏差的相对大小

      Fig.  3.  Parameters of sediment grain size vary with depth

      表  1  粘性土孔隙水δ18O、δD

      Table  1.   δ18O and δD of clay pore water

      深度(m) δD‰ δ18O‰
      0.5 -66.8 -8.9
      0.8 -68.3 -9.2
      1.5 -71.1 -9.4
      2.0 -65.7 -8.8
      2.5 -78.1 -10.4
      3.0 -77.1 -10.3
      3.5 -92.4 -12.6
      4.0 -70.1 -9.4
      4.5 -93.6 -12.5
      5.0 -69.8 -9.5
      6.0 -85.8 -11.9
      7.0 -86.8 -11.6
      8.0 -83.3 -11.0
      9.0 -93.5 -12.2
      10.0 -77.4 -10.5
      11.0 -65.9 -8.9
      12.0 -93.5 -12.6
      13.0 -85.9 -11.7
      15.0 -77.3 -10.4
      16.0 -71.1 -9.0
      19.0 -73.6 -9.9
      20.0 -93.6 -12.6
      21.0 -82.6 -10.9
      22.0 -70.3 -9.7
      24.0 -91.5 -12.0
      25.0 -89.3 -11.8
      27.0 -68.9 -9.1
      29.0 -80.8 -10.8
      30.0 -101.9 -13.1
      31.0 -93.4 -12.2
      32.0 -87.9 -11.8
      33.0 -76.9 -9.9
      34.0 -107.8 -14.6
      35.1 -75.7 -9.9
      39.0 -97.2 -13.2
      40.0 -74.2 -9.8
      41.0 -96.7 -13.0
      43.0 -90.7 -11.8
      44.0 -86.1 -11.7
      45.0 -84.7 -11.2
      46.0 -90.3 -12.0
      47.0 -95.3 -12.6
      49.0 -92.1 -12.2
      51.0 -79.6 -10.3
      52.0 -85.7 -11.1
      53.0 -96.4 -12.2
      54.0 -102.8 -13.8
      55.0 -86.3 -11.3
      56.0 -96.0 -12.8
      57.0 -96.2 -12.6
      58.0 -80.3 -10.8
      58.8 -88.3 -11.9
      60.0 -100.0 -13.1
      61.0 -104.7 -13.8
      62.0 -87.1 -12.2
      63.0 -90.0 -12.1
      64.0 -104.5 -14.0
      65.0 -88.1 -12.0
      83.0 -92.3 -12.5
      91.0 -94.7 -12.8
      92.0 -86.7 -11.4
      93.0 -91.7 -11.7
      94.0 -86.1 -11.3
      95.0 -95.9 -12.5
      99.0 -84.7 -10.5
      100.0 -88.1 -10.7
      101.0 -97.6 -12.5
      102.0 -90.9 -11.7
      103.0 -86.4 -11.0
      104.0 -94.1 -12.3
      105.0 -86.8 -11.4
      106.0 -80.7 -10.6
      109.0 -81.0 -10.6
      110.0 -87.4 -11.4
      111.0 -84.6 -11.2
      112.0 -82.0 -10.7
      113.0 -88.9 -11.9
      114.0 -83.7 -11.0
      115.0 -86.3 -11.5
      117.2 -82.6 -10.9
      118.0 -96.7 -13.3
      119.0 -84.5 -11.6
      120.0 -83.5 -11.3
      123.0 -84.4 -11.5
      124.0 -82.5 -11.2
      125.0 -87.0 -11.9
      129.3 -86.8 -11.7
      下载: 导出CSV
    • [1] An, Z.S., Wu, X.H., Wang, P.X., et al., 1991a.China's Paleomonsoon in the Recent 130 ka-Ⅱ.Paleomonsoon Change.Scientia Sinica Chemica, (11):1 (in Chinese).
      [2] An, Z.S., Wu, X.H., Wang, P.X., et al., 1991b.China's Paleomonsoon in the Recent 130 ka-Ⅰ.Paleomonsoon Change.Scientia Sinica Chemica, (10):1076-1081 (in Chinese).
      [3] Blott, S.J., Pye, K., 2001.GRADISTAT:A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments.Earth Surface Processes and Landforms, 26(11):1237-1248.doi: 10.1002/esp.261
      [4] Bricker, O.P., Matisoff, G., Holder, G.R.Jr., 1977.Interstitial Water Chemistry of Chesapeake Bay Sediments, Basic Date Report No.9.Department of Natural Resources Maryland Geological Survey, U.S.A.
      [5] Cao, J.T., Wang, S.M., Shen, J., et al., 2000.The Paleoclimate Changes during the Past Millennium Lnferred from the Lacustrine Core in Daihai Lake, Inner Mongolia.Scientia Geographica Sinica, 20(5):391-396 (in Chinese with English abstract).
      [6] Chen, H., Wang, G.L., Zhang, W., et al., 2005.The Evolvement of Groundwater Chemic Character in Hebei Plain.Earth and Environment, 33(z1):620-623 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ2005S1131.htm
      [7] Chen, S.Y., Wang, S.M., Wu, Y.H., 2006.Sedimentary Cycles and Paleoenvironmental Evolution of the Co Ngoin Lake in Tibetan Plateau since Late Cenozoic.Acta Geoscientica Sinica, 27(4):315-322 (in Chinese with English abstract). http://www.oalib.com/paper/1557882
      [8] Chen, Z.Y., Gao, H.Q., Wei, W., et al., 2009.Confined Aquifer in North China Plain.Resources Science, 31(3):388-393 (in Chinese with English abstract). http://www.oalib.com/paper/1704460#.WX7ZI_l69Hc
      [9] Dansgaard, W., 1964.Stable Isotopes in Precipitation.Tellus, 16(4):436-468.doi: 10.1111/j.2153-3490.1964.tb00181.x
      [10] Dansgaard, W., Johnson, J., Clausen, H.B., et al.1971.Climatic Oscillations Depicted and Predicted by Isotope Analysis of a Greenland Ice Core//First International Conference on Port and Ocean Engineering under Arctic Conditions I., U.S.A.17-22.
      [11] Desaulniers, D.E., Cherry, J.A., Fritz, P., 1981.Origin, Age and Movement of Pore Water in Argillaceous Quaternary Deposits at Four Sites in Southwestern Ontario.Journal of Hydrology, 50:231-257.doi: 10.1016/0022-1694(81)90072-x
      [12] Gao, H.Q., Fei, Y.H., Luo, G.Z., et al., 2010.Effect Analysis of Saline Groundwater Utilization in Hebei Plain.South-To-North Water Transfers and Water Science & Technology, 8(2):53-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSBD201002022.htm
      [13] Gao, Y.X., 2008.Study on Groundwater Hydraulic Connection in Different Aquifers under Mass Pumped Conditions in Typical Area North China Plain (Dissertation).Chinese Academey of Geological Sciences, Beijing (in Chinese with English abstract).
      [14] He, H.C., Ding, H.Y., Zhang, Z.K., et al., 2005.Grain-Size Characteristics and their Environmental Significance of Hongze Lake Sediments.Scientia Geographica Sinica, 25(5):80-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200505012.htm
      [15] Hendry, M.J., Wassenaar, L.I., 1999.Implications of the Distribution of δD in Pore Waters for Groundwater Flow and the Timing of Geologic Events in a Thick Aquitard System.Water Resources Research, 35(6):1751-1760. doi: 10.1029/1999WR900046
      [16] Hendry, M.J., Woodbury, A.D..2007.Clay Aquitards as Archives of Holocene Paleoclimate:δ18O and Thermal Profiling.Ground Water-November-December, 45(6):683-691. doi: 10.1111/gwat.2007.45.issue-6
      [17] Huang, T.M., Nie, Z.Q., Yuan, L.J., 2008.Temperature and Geographical Effects of Hydrogen and Oxygen Isotopes in Precipitation in West of China.Journal of Arid Land Resources and Environment, 22(8):76-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHZH200808015.htm
      [18] Husain, M.M., Cherry, J.A., Frape, S.K., 2004.The Persistence of a Large Stagnation Zone in a Developed Regional Aquifer, Southwestern Ontario.Canadian Geotechnical Journal, 41(5):943-958.doi: 10.1139/t04-040
      [19] Lei, K., Meng, W., Zheng, B.H., et al., 2006.Grain Size Distributions of Sediments in the Intertidal Zone on the West Coast of the Bohai Bay.Marine Science Bulletin, 25(1):54-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-hutb200601008.htm
      [20] Li, Q.H., 2003.Application of Deposit's Size to Reconstruction of Ancient Environment.Journal of Chaohu College, (3):26-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHXY200303007.htm
      [21] Liu, C.F., Wang, P.Y., 1997 The Environment Significance of H, O, C and Cl Isotopic Composition in Groundwater of Hebei Plain.Earth Science Frontiers, 4(2):267-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY7Z1.042.htm
      [22] Northern Shanxi Team of Chengdu College of Geology, 1978.Sedimentary Rocks (Sediments) Size Analysis and Its Applications.Geological Publishing House, Beijing (in Chinese).
      [23] Reeburgh, W.S., 1967.An Improved Interstitial Water Sampler.Limnology and Oceanography, 12(1):163-165.doi: 10.4319/lo.1967.12.1.0163
      [24] Remenda, V.H., Cherry, J.A., Edwards, T.W.D., 1994.Isotopic Composition of Old Ground Water from Lake Agassiz:Implications for Late Pleistocene Climate.Science, 266(5193):1975-1978.doi: 10.1126/science.266.5193.1975
      [25] Sacchi, E., Michelot, J.L., Pitsch, H., et al., 2001.Extraction of Water and Solutes from Argillaceous Rocks for Geochemical Characterisation:Methods, Processes and Current Understanding.Hydrogeology Journal, 9(1):17-33.doi: 10.1007/s100400000113
      [26] Shen, Z.L., Zhu, W.H., 1993.Hydrogeochemical Foundation.Geological Publishing House, Beijing (in Chinese).
      [27] Shi, K., Dai, X.R., Shi, Y.X., et al., 2009.Grain-Size Characterstics and their Paleoenvironmental Significance of SC7 Core Sediments in Lake Chenghu, Jiangsu Province, China.Journal of Lake Sciences, 21(5):741-748 (in Chinese with English abstract). doi: 10.18307/2009.0520
      [28] State Oceanic Administration, 1975.Area of Marine Survey (Fourth Volumes-Marine Geological Survey).Ocean Press, Beijing, 9-88 (in Chinese).
      [29] Sun, Y.C., Li, H.S., 1986.Sedimentary Facies and Depositional environment of Clastic Rocks.Geological Publishing House, Beijing (in Chinese).
      [30] Wang, H.Y., Shi, Y.C., Yu, P.T., et al., 2002.Alluviums of the Early and Middle Holocene in the Quzhou Area, the Southern Hebei Plain and Palaeoenvironment Inferences.Quaternary Sciences, 22(4):381-393 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200204010.htm
      [31] Wang, J.B., Zhu, L.P., 2002.Grain-Size Characteristics and their Paleo-Environmental Significance of Chen Co Lake Sediments in Southern Tibet.Progress in Geography, 21(5):459-467 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLKJ200205006.htm
      [32] Wang, Q., Li, F.L., 1983.The Changes of Marine-Continental Conditions in the West Coast of the Bohai Gulf during Quaternary.Marine Geology & Quaternary Geology, 3(4):83-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198304012.htm
      [33] Wang, S.M., Wu, R.J., Jiang, X.H., 1990.Environment Evolution and Paleoclimate of Daihai Lake, Inner Mongolia since the last Glaciation.Quaternary Sciences, 10(3):223-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199003003.htm
      [34] Wang, X.Y., Wu, L., Zhang, G.S., et al., 2008.Characteristics and Environmental Significance of Magnetic Susceptibility and Grain Size of Lake Sediments since Holocene in Chaohu Lake, Anhui Province.Scientia Geographica Sinica, 28(4):548-553 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200804015.htm
      [35] Xiao, C.X., Li, Z.Z., 2006.The Research Summary of Grain Size Analysis and Its Application in the Sedimentation.Journal of Xinjiang Normal University, 25(3):118-123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSZ200603034.htm
      [36] Yang, G.F., Wu, F.D., Chen, Z.H., et al., 2015.n-Alkane Distribution and Their Palaeoenvironmental Implications in Fluvial-Lacustrine Sediments in Dengkou, Inner Mongolia.Earth Science, 40(2):327-333 (in Chinese with English abstract).
      [37] Yu, G., Liu, J., Xue, B., et al., 2007.Dynamical Palaeoclimate Simulations.Higher Education Press, Beijing, 137-139 (in Chinese).
      [38] Zhang, C.S., Zhang, Y.C., Hu, J.J., 1995.Evolution of Geological Environment in North Huabel Plain in Historic Times.Journal of Geological Hazards and Enveronment Preservation, 6(2):12-19 (in Chinese with English abstract).
      [39] Zhang, G.H., Fei, Y.H., Yang, L.Z., et al., 2010.Variation Characteristics and Mechanisms of Exploitation Yield Formation in the Region with Confined-Groundwater Depression Cone.Advances in Water Science, 21(3):370-376 (in Chinese with English abstract).
      [40] Zhang, J.X., Shen, Z.J., Gu, H.B., et al., 2007.Quaternary Environmental Geochemistry of Dongting Lake Area.Geological Publishing House, Beijing, 124-127 (in Chinese).
      [41] Zhang, R.Q., Liang, X., Jin, M.G., 2013.The Evolution of Groundwater Flow Systems in the Quaternary of Hebei Plain since the last Glacial Maximum.Earth Science Frontiers, 20(3):217-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201303026.htm
      [42] Zhang, S.E., Li, Z.J., Sun, X.F., et al., 2010.Impact of Invasion of Salty Groundwater into Fresh Groundwater in Hebei Province.Journal of Geological Hazards and Environment Preservation, 21(1):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZHB201001009.htm
      [43] Zhang, Z.H., Shi, D.H., Ren, H.F., 1997.Evolution of the Quaternary groundwater system of the North China Plain.Scientia Sinica Terrae, 27(2):168-173 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg199703007&dbname=CJFD&dbcode=CJFQ
      [44] Zhou, L., Liu, C.F., Wang, P.Y., 1998.Isotopic Composition of Saline Water in Quaternary Aquifers of Hebei Plain.Hydrogeology and Engineering Geology, 25(3):6-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG803.001.htm
      [45] 安芷生, 吴锡浩, 汪品先, 等, 1991a.最近130 ka中国的古季风-Ⅰ.古季风记录.中国科学B辑:化学, (10): 1076-1081. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199110010.htm
      [46] 安芷生, 吴锡浩, 汪品先, 等, 1991b.最近130 ka中国的古季风-Ⅱ.古季风变迁.中国科学B辑:化学, (11): 1. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199111012.htm
      [47] 曹建廷, 王苏民, 沈吉, 等, 2000.近千年来内蒙古岱海气候环境演变的湖泊沉积记录.地理科学, 20(5): 391-396. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200005000.htm
      [48] 陈浩, 王贵玲, 张薇, 等, 2005.河北平原地下水水化学演化.地球与环境, 33(z1): 620-623. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200509002130.htm
      [49] 陈诗越, 王苏民, 吴艳宏, 2006.西藏错鄂湖沉积旋回与古环境变迁.地球学报, 27(4): 315-322. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200604005.htm
      [50] 陈宗宇, 皓洪强, 卫文, 等, 2009.华北平原深层地下水的更新与资源属性.资源科学, 31(3): 388-393. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200903010.htm
      [51] 成都地质学院陕北队, 1978.沉积岩(物)粒度分析及其应用.北京:地质出版社.
      [52] 郜洪强, 费宇红, 雒国忠, 等, 2010.河北平原地下咸水资源利用的效应分析.南水北调与水利科技, 8(2): 53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201002022.htm
      [53] 高业新, 2008. 华北平原典型地区大规摸开采条件下不同层位含水组地下水互动关系研究(博士毕业论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2008177389.htm
      [54] 国家海洋局, 1975.海洋调查范围(第四分册—海洋地质调查).北京:海洋出版社, 9-88.
      [55] 何华春, 丁海燕, 张振克, 等, 2005.淮河中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义.地理科学, 25(5): 80-86. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200505012.htm
      [56] 黄天明, 聂中青, 袁利娟, 2008.西部降水氢氧稳定同位素温度及地理效应.干旱区资源与环境, 22(8): 76-81. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200808015.htm
      [57] 雷坤, 孟伟, 郑丙辉, 等, 2006.渤海湾西岸潮间带沉积物粒度分布特征.海洋通报, 25(1): 54-61. http://cdmd.cnki.com.cn/Article/CDMD-10183-2007093311.htm
      [58] 李其华, 2003.沉积物粒度在古环境重建中的应用.巢湖学院学报, (3): 26-28. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXY200303007.htm
      [59] 刘存富, 王佩仪, 1997.河北平原地下水氢, 氧, 碳, 氯同位素组成的环境意义.地学前缘, 4(2): 267-274. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z1.042.htm
      [60] 沈照理, 朱宛华, 1993.水文地球化学基础.北京:地质出版社.
      [61] 史凯, 戴雪荣, 师育新, 等, 2009.苏州澄湖SC7孔沉积物粒度特征及其古环境意义.湖泊科学, 21(5): 741-748. http://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200905022.htm
      [62] 孙永传, 李惠生, 1986.碎屑岩沉积相和沉积环境.北京:地质出版社.
      [63] 王红亚, 石元春, 于澎涛, 等, 2002.河北平原南部曲周地区早、中全新世冲积物的分析及古环境状况的推测.第四纪研究, 22(4): 381-393. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200204010.htm
      [64] 王君波, 朱立平, 2002.藏南沉错沉积物的粒度特征及其古环境意义.地理科学进展, 21(5): 459-467. doi: 10.11820/dlkxjz.2002.05.007
      [65] 王强, 李凤林, 1983.渤海湾西岸第四纪海陆变迁.海洋地质与第四纪地质, 3(4): 83-89. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198304012.htm
      [66] 王苏民, 吴瑞金, 蒋新禾, 1990.内蒙古岱海末次冰期以来的环境变迁与古气候.第四纪研究, 10(3): 223-232. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199003003.htm
      [67] 王心源, 吴立, 张广胜, 等, 2008.安徽巢湖全新世湖泊沉积物磁化率与粒度组合的变化特征及其环境意义.地理科学, 28(4): 548-553. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200804015.htm
      [68] 肖晨曦, 李志忠, 2006.粒度分析及其在沉积学中应用研究.新疆师范大学学报(自然科学版), 25(3): 118-123. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200603034.htm
      [69] 杨桂芳, 武法东, 陈正洪, 等, 2015.内蒙古磴口河湖相沉积物正构烷烃分布特征及其环境意义.地球科学, 40(2): 327-333. http://earth-science.net/WebPage/Article.aspx?id=3056
      [70] 于革, 刘健, 薛滨, 等, 2007.古气候动力模拟.北京:高等教育出版社, 137-139.
      [71] 张春山, 张业成, 胡景江, 1995.华北平原北部历史时期地质环境演化.地质灾害与环境保护, 6(2): 12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB502.001.htm
      [72] 张光辉, 费宇红, 杨丽芝, 等, 2010.深层水漏斗区开采量组成变化特征与机制.水科学进展, 21(3): 370-376. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201003013.htm
      [73] 张建新, 申志军, 顾海滨, 等, 2007.洞庭湖区第四纪环境地球化学.北京:地质出版社:124-127.
      [74] 张人权, 梁杏, 靳孟贵, 2013.末次盛冰期以来河北平原第四系地下水流系统的演变.地学前缘, 20(3): 217-226. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm
      [75] 张素娥, 李志军, 孙先锋, 等, 2010.河北省地下咸水对地下淡水资源入侵影响分析.地质灾害与环境保护, 21(1): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201001009.htm
      [76] 张宗祜, 施德鸿, 任福弘, 等, 1997.论华北平原第四系地下水系统之演化.中国科学D辑:地球科学, (2): 168-173. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702012.htm
      [77] 周炼, 刘存富, 王佩仪, 1998.河北平原第四系咸水同位素组成.水文地质工程地质, 25(3): 6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG803.001.htm
    • 加载中
    图(4) / 表(1)
    计量
    • 文章访问数:  4979
    • HTML全文浏览量:  1738
    • PDF下载量:  11
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-09-13
    • 刊出日期:  2016-03-15

    目录

      /

      返回文章
      返回