Characteristics and Significances of the Geological Boundary SB21 in the Zhujiang Formation of the Liwan Sag, Pearl River Mouth Basin
-
摘要: 荔湾凹陷是珠江口盆地最南部的一个超深水凹陷,其结构特点、沉积过程研究是认识被动陆缘演化的重要内容.运用地震地层学方法,基于高分辨率2D/3D地震资料的沉积追踪与对比,一个特征明显且全区可追踪的地质界面——SB21界面被识别出.该界面上下揭示出多种沉积现象:北部剥蚀区、中北部的沉积物过路区、中南部冲沟和沉积物波叠置区、南部的沉积物堆积区.推测这种沉积样式的多样性与发生在23.8 Ma前后的白云运动有密切关系,该构造运动造成荔湾凹陷的差异性沉降,主要表现为荔湾凹陷中南部的快速沉降,导致凹陷北部及中东部的相对抬升.该期构造运动使原有的沉积平衡发生改变,造成沉积物的再分配,沉积物从北部剥蚀区经过路区向中南部堆积区运移.自东向西发育的冲沟,推测与该时期差异沉降导致中东部近南北走向的相对隆起与西侧沉降区的差异沉降,以及有来自凹陷东北角的物源叠加作用有关.SB21界面的沉积反射特征研究,揭示了洋陆边界复杂多变的沉积过程及其驱动机制,对我们认识更大区域的构造沉积过程具有一定的帮助.Abstract: Liwan sag is an ultra deep water sag in the southernmost of the Pearl River Mouth Basin (PRMB), whose structural characteristics and sedimentary process is the important part of passive margin evolution. Using seismic stratigraphy, structures and sedimentation analysis were carried out on high-resolution 2D/3D seismic data in the Liwan Sag of the PRMB. A significant geological boundary with obvious characteristics in the Zhujiang Formation could be identified and traced—SB21. Above the sequence boundary, four types of deposition were identified: the denudation zone in the north, the sediment passing zone in the central-north, the superimposition zone of sediment waves over gulliesin the central-south, the sediment accumulation zone in the South. It's suggested that the various depositional pattern has a close relationship with the tectonic movement—Baiyun Movement—which happened in 23.8 Ma. The tectonic movement caused the differential subsidence of Liwan Sag. Accelerated subsidence happened in the central and south of the sag, and the relative uplift in the north and east. The former sedimentation equilibrium was destroyed and led to redistribution of the sediments. Sediments migrate from the northern denudation zone and migrated along the passing zone and finally deposited at the accumulation zone. We inferred that the gullies which move from east to the west were related to the differential subsidence during this period. The differential subsidence caused topographic gradient change between the NS-trending uplift and the sag center. The study of the sedimentary reflection characteristics at the boundary SB21 reveals the complicated sedimentary process and its driving mechanism in ultra deep water area, which will make great contibution to the tectonic sedimentary process in larger areas.
-
Key words:
- Zhujiang Formation /
- gully /
- sediment wave /
- submarine fan /
- Liwan sag /
- Pearl River Mouth Basin /
- marine geology
-
图 2 珠江口盆地新生界沉积充填序列及构造演化阶段划分(庞雄等,2008)
Fig. 2. The Cenozoic sedimentary sequence and tectonic evolution stages in Pearl River Mouth basin
图 3 珠江口盆地荔湾凹陷区域地震反射特征(a)和SB21界面典型地震反射特征(b~e)
b.北部削截反射特征;c.中北部差异反射特征;d.中南部波状反射特征;e.南部双向超覆反射特征;Ⅰ-Ⅱ代表两期海底扇;各剖面具体位置参见图 1
Fig. 3. The regional seismic reflection characteristics of Liwan sag, Pearl River Mouth basin (a) and typical seismic reflection characteristics of SB21 boundary (b-e)
图 4 波状反射区的空间特征(平面和剖面具体位置参见图 1,平面图的底图是23.8 Ma构造图)
Fig. 4. Wave reflection characteristics in S and E direction
图 6 荔湾凹陷古沉积物波的叠瓦状构造(剖面具体位置参见图 1)
Fig. 6. The imbricate structure of the ancient sediment wave in the Liwan Sag
图 7 SB21界面之上海底扇自北向南的反射特征变化(平面和剖面具体位置参见图 1;纵轴为双程反射时,单位:s)
Fig. 7. The seismic reflection characteristics of the submarine fan from north to south above SB21
图 8 SB21界面之上海底扇自东向西的反射特征变化(平面和剖面具体位置参见图 1;纵轴为双程反射时,单位:s)
Fig. 8. The seismic reflection characteristics variation of submarine fan from east to west above SB21
图 9 (a) T70-T60时期构造沉降量;(b) SB23.8-SB21时期构造沉降量(谢辉,2014)
Fig. 9. (a) Tectonic subsidence at T70-SB23.8; (b) Tectonic subsidence at SB23.8-SB21
-
[1] Ding, W.W., Li, J.B., Li, J., et al., 2013.Morphotectonics and Evolutionary Controls on the Pearl River Canyon System, South China Sea.Marine Geophysical Research, 34(3-4):221-238.doi: 10.1007/s11001-013-9173-9 [2] He, J.X., Chen, S.H., Liu, S.L., et al., 2008.Potential Petroleum Resources and Favorable Prospecting Directions in Zhujiangkou Basin in Northern Margin of the South China Sea.Xinjiang Petroleum Geology, 29(4):457-461 (in Chinese with English abstract). http://www.nggs.ac.cn/EN/abstract/abstract4138.shtml [3] Li, P.L., 1993.Cenozoic Tectonic Movement in the Pearl River Mouth Basin.China Offshore Oil and Gas, 5(6):11-17 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZHSD199306003.htm [4] Li, P.L., Wang, W.P., He, Y.C., et al., 1989.Structural Features and Evolution of the Pearl River Mouth Basin.China Offshore Oil and Gas, 1(1):11-18, 63-64 (in Chinese). [5] Li, S.T., Yang, S.G., Lin, C.S., 1992.On the Chronostratigraphic Framework and Basic Building Blocks of Sedimentary Basin.Acta Sedimentologica Sinica, 10(4):11-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199204001.htm [6] Lin, C.S., 2009.Sequence and Depositional Architecture of Sedimentary Basin and Process Responses.Acta Sedimentologica Sinica, 27(5):849-862 (in Chinese with English abstract). doi: 10.1007/s11430-013-4703-5 [7] Liu, B.J., Shen, J., Pang, X., et al., 2007.Characteristics of Continental Delta Deposits in Zhuhai Formation of Baiyun Depression in Pearl River Mouth Basin.Acta Petrolei Sinica, 28(2):49-56, 61 (in Chinese with English abstract). [8] Lonergan, L., Jamin, N.H., Jackson, C.A.L., et al., 2013.U-Shaped Slope Gully Systems and Sediment Waves on the Passive Margin of Gabon (West Africa).Marine Geology, 337:80-97.doi: 10.1016/j.margeo.2013.02.001 [9] Pang, X., Chen, C.M., Peng, D.J., et al., 2007.The Pearl River Deep-water Fan System and Petroleum in South China Sea.Science Press, Beijing (in Chinese). [10] Pang, X., Chen, C.M., Peng, D.J., et al., 2008.Basic Geology of Baiyun Deep-Water Area in the Northern South China Sea.China Offshore Oil and Gas, 20(4):215-222 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD200804002.htm [11] Pang, X., Chen, C.M., Shao, L., et al., 2012.Baiyun Movement, a Great Tectonic Event on the Oligocene-Miocene Boundary in the Northern South China Sea and its Implications.Geological Review, 53(2):145-151 (in Chinese with English abstract). doi: 10.1007/s12583-009-0005-4?no-access=true [12] Peng, D.J., Pang, X., Chen, C.M., et al., 2005.From Shallow-Water Shelf to Deep-Water Slope—The Study on Deep-Water Fan Systems in South China Sea.Acta Sedimentologica Sinica, 23(1):1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200501000.htm [13] Qin, G.Q., 1996.Application of Micropaleontology to the Sequence Stratigraphic Studies of Late Cenozoic in the Pear River Mouth Basin.Marine Geology & Quaternary Geology, 16(4):1-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ604.000.htm [14] Shi, H.S., Liu, B.J., Yan, C.Z., et al., 2010.Hydrocarbon Accumulation Conditions and Exploration Potential in Baiyun-Liwan Deepwater Area, Pearl River Month Basin.China Offshore Oil and Gas, 22(6):369-374 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201405002.htm [15] Sun, Z., Xu, Z.Y., Sun, L.T., et al., 2014.The Mechanism of Post-Rift Fault Activities in Baiyun Sag, Pearl River Mouth Basin.Journal of Asian Earth Sciences, 89:76-87.doi: 10.1016/j.jseaes.2014.02.018 [16] Tian, W., He, M., Yang, Y.J., 2015.Complex Lindage and Transformation of Boundary Fault of Northern Huizhou Sagin Pearl River Mount Basin.Earth Science, 40(12):2037-2051 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201512008.htm [17] Wang, H.R., Wang, Y.M., Qiu, Y., et al, 2007.The Sediment Waves of Deep Water Environment at the Northern Continental Margin of the South China Sea.Progress in Natural Science, 17(9):1235-1243 (in Chinese with English abstract). [18] Wang, P.X., Prell, W.L., Blum, P., et al., 2000.Proceedings of the Ocean Drilling Program, Initial Reports.9:College Station, TX (Ocean Drilling Program), 1-122. doi: 10.2973-odp.proc.ir.184.2000/ [19] Wei, X., Deng, J.F., Xie, W.Y., et al., 2005.Constraints on Biogenetic Reef Formation during Evolution of the South China Sea and Exploration Potential Analysis.Earth Science Frontiers, 12(3):245-252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200503033.htm [20] Wu, J.F., Zhang, G.C., Wang, P.J., et al., 2012.Geological Response and Forming Mechanisms of 23.8 Ma Tectonic Events in Deepwater Area of the Pearl River Mouth Basin in South China Sea.Earth Science, 37(4):654-666 (in Chinese with English abstract). [21] Wynn, R.B., Piper, D.J.W., Gee, M.J.R., 2002.Generation and Migration of Coarse-Grained Sediment Waves in Turbidity Current Channels and Channel-Lobe Transition Zones.Marine Geology, 192(1-3):59-78.doi: 10.1016/s0025-3227(02)00549-2 [22] Xiao, Y.Y., 1991.Seismic Stratigraphy.Advances in Earth Science, 6(3):100-101 (in Chinese with English abstract). [23] Xie, H., 2014.The Cenozoic Subsidence History and Its Implications of the Deepwater Sags in the Pearl River Mouth Basin (Dissertation).University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0040195114000286 [24] Yang, T.T., Lv, F.L., Wang, B., et al., 2011.Geophysical Features and Hydrocarbon Exploration Prospectin of Eeef in Xisha Offshore.Progress in Geophysics, 26(5):1771-1778 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201105035.htm [25] Zhao, S.J., Wu, S.G., Shi, H.S., et al., 2012.Structures and Dynamic Mechanism Related to the Dongsha Movement at the Northern Margin of South China Sea.Progress in Geophysics, 27(3):1008-1019 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201203023.htm [26] 何家雄, 陈胜红, 刘士林, 等, 2008.南海北缘珠江口盆地油气资源前景及有利勘探方向.新疆石油地质, 29(4): 457-461. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200804015.htm [27] 李平鲁, 王维平, 贺亚纯, 等, 1989.珠江口盆地构造特征及演化.中国海上油气, 1(1): 11-18, 63-64. http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250612.htm [28] 李平鲁, 1993.珠江口盆地新生代构造运动.中国海上油气, 5(6): 11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199306003.htm [29] 李思田, 杨士恭, 林畅松, 1992.论沉积盆地等时地层格架和基本建造单元.沉积学报, 10(4): 11-22. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199204001.htm [30] 林畅松, 2009.沉积盆地的层序和沉积充填结构及过程响应.沉积学报, 27(5): 849-862. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905010.htm [31] 柳保军, 申俊, 庞雄, 等, 2007.珠江口盆地白云凹陷珠海组浅海三角洲沉积特征.石油学报, 28(2): 49-56, 61. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200702008.htm [32] 庞雄, 陈长民, 彭大钧, 等, 2007.南海珠江深水扇系统及油气.北京:科学出版社. [33] 庞雄, 陈长民, 彭大钧, 等, 2008.南海北部白云深水区之基础地质.中国海上油气, 20(4): 215-222. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200804002.htm [34] 庞雄, 陈长民, 邵磊, 等, 2012.白云运动:南海北部渐新统-中新统重大地质事件及其意义.地质论评, 53(2): 145-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200702001.htm [35] 彭大钧, 庞雄, 陈长民, 等, 2005.从浅水陆架走向深水陆坡——南海深水扇系统的研究.沉积学报, 23(1): 1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200501000.htm [36] 秦国权, 1996.微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用.海洋地质与第四纪地质, 16(4): 1-18. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ604.000.htm [37] 施和生, 柳保军, 颜承志, 等, 2010.珠江口盆地白云-荔湾深水区油气成藏条件与勘探潜力.中国海上油气, 22(6): 369-374. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201006004.htm [38] 田巍, 何敏, 杨亚娟, 等, 2015.珠江口地惠州凹陷北部边界断裂复合联接和转换.地球科学, 40(12): 2037-2051. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201512008.htm [39] 王海荣, 王英民, 邱燕, 等, 2007.南海北部大陆边缘深水环境的沉积物波.自然科学进展, 17(9): 1235-1243. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200709014.htm [40] 魏喜, 邓晋福, 谢文彦, 等, 2005.南海盆地演化对生物礁的控制及礁油气藏勘探潜力分析.地学前缘, 12(3): 245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503033.htm [41] 吴景富, 张功成, 王璞珺, 等, 2012.珠江口盆地深水区23.8 Ma构造事件地质响应及其形成机制.地球科学, 37(4): 654-666. http://earth-science.net/WebPage/Article.aspx?id=2272 [42] 肖义越, 1991.地震地层学.地球科学进展, 6(3): 100-101. http://www.cnki.com.cn/Article/CJFDTOTAL-XZHK201607007.htm [43] 谢辉, 2014. 珠江口盆地白云深水区新生代沉降史分析及其构造意义(博士学位论文). 北京: 中科院研究生院. http://www.irgrid.ac.cn/handle/1471x/911231 [44] 杨涛涛, 吕福亮, 王彬, 等, 2011.西沙海域生物礁地球物理特征及油气勘探前景.地球物理学进展, 26(5): 1771-1778. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201105035.htm [45] 赵淑娟, 吴时国, 施和生, 等, 2012.南海北部东沙运动的构造特征及动力学机制探讨.地球物理学进展, 27(3): 1008-1019. doi: 10.6038/j.issn.1004-2903.2012.03.022