• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    连续型致密砂岩气近源累计聚集的特征及成因机制

    郭迎春 宋岩 庞雄奇 姜振学 付金华 杜建军

    郭迎春, 宋岩, 庞雄奇, 姜振学, 付金华, 杜建军, 2016. 连续型致密砂岩气近源累计聚集的特征及成因机制. 地球科学, 41(3): 433-440. doi: 10.3799/dqkx.2016.035
    引用本文: 郭迎春, 宋岩, 庞雄奇, 姜振学, 付金华, 杜建军, 2016. 连续型致密砂岩气近源累计聚集的特征及成因机制. 地球科学, 41(3): 433-440. doi: 10.3799/dqkx.2016.035
    Guo Yingchun, Song Yan, Pang Xiongqi, Jiang Zhenxue, Fu Jinhua, Du Jianjun, 2016. Characteristics and Genetic Mechanism of Near-Source Accumulated Accumulation for Continuous-Type Tight-Sand Gas. Earth Science, 41(3): 433-440. doi: 10.3799/dqkx.2016.035
    Citation: Guo Yingchun, Song Yan, Pang Xiongqi, Jiang Zhenxue, Fu Jinhua, Du Jianjun, 2016. Characteristics and Genetic Mechanism of Near-Source Accumulated Accumulation for Continuous-Type Tight-Sand Gas. Earth Science, 41(3): 433-440. doi: 10.3799/dqkx.2016.035

    连续型致密砂岩气近源累计聚集的特征及成因机制

    doi: 10.3799/dqkx.2016.035
    基金项目: 

    中国博士后科学基金 2014M550984

    中国地质调查局地质大调查项目 12120115003501

    国家自然科学基金项目 U1262205

    详细信息
      作者简介:

      郭迎春(1982-),男,博士,助理研究员,主要从事致密油气成藏研究. E-mail: cugcupgych@163.com

    • 中图分类号: P618.130

    Characteristics and Genetic Mechanism of Near-Source Accumulated Accumulation for Continuous-Type Tight-Sand Gas

    • 摘要: 致密砂岩气是非常规油气资源的重要组成部分,是当前技术条件下可动用程度最高的部分.致密砂岩气可分为连续型致密砂岩气和圈闭型致密砂岩气.通过系统地对比圈闭型和连续型致密砂岩气在运聚、分布上的地质、地化特征差异,并使用物理模拟实验揭示了连续型致密砂岩气呈近源累计聚集的动力学成因机制.研究表明:圈闭型致密砂岩气是天然气远距离运聚的结果,在天然气组分和碳同位素上都有很明显的分馏效应,具有良好的输导体系,形成了“常规圈闭汇聚、具有边底水、优质盖层封盖”的特征;连续型致密砂岩气是近源累计聚集的结果,天然气组分和碳同位素基本不产生分馏效应,同一地区碳同位素呈现离散性,表现出“连续分布、近源汇聚、气-水分布复杂或倒置”的特征.连续型致密砂岩气近源累计聚集是致密砂岩储层中近纳米级孔喉背景下天然气运移动阻力变化及平衡的结果.在天然气运移至气-水临界界面之前,气-水界面将天然气与地层水分为两个系统,天然气运移的动力是气体异常压力,浮力作用产生的基本条件不满足,运移阻力是上覆地层水压力和毛细管压力.连续型致密砂岩气圈闭可认为是非常规动力圈闭,其核心可概括为“(近)纳米级孔喉、气体活塞式推进、浮力基本不起作用、动阻力平衡决定气-水界面”.

       

    • 图  1  迪那构造古近系气藏剖面

      Fig.  1.  Paleogene gas reservoir cross-section of Dina structure

      图  2  迪那2气田天然气组分和碳同位素在垂向上的分馏效应

      Fig.  2.  Vertical fractionation of gas composition and carbon isotope from Dina 2 gas field

      图  3  鄂尔多斯盆地上古生界致密砂岩储层含气饱和度对比

      Fig.  3.  Gas saturation comparison of the Upper Paleozoic sandstone reservoirs, Ordos basin

      图  4  鄂尔多斯盆地上古生界天然气组分特征

      Fig.  4.  Characteristics of natural gas component in the Upper Paleozoic of Ordos basin

      图  5  鄂尔多斯盆地上古生界天然气碳同位素垂向变化特征

      Fig.  5.  Vertical characteristics of natural gas carbon isotope in the Upper Paleozoic of Ordos basin

      图  6  鄂尔多斯上古生界天然气C1和C2碳同位素值和烃源岩原地镜质体反射率相关关系

      Fig.  6.  Correlations between gas carbon isotope in Upper Paleozoic and vitrinite reflectances in situ

      图  7  鄂尔多斯盆地上古生界南北向气藏剖面

      Fig.  7.  The south-north gas reservoirs section in the Upper Paleozoic of Ordos basin

      图  8  致密砂岩气藏的封闭机制和理论模型

      Fig.  8.  Microscopic view of the trapping mechanisms and the theoretical model

      图  9  多层不同粒径砂柱物理模拟实验装置示意图及气-水临界界面

      Fig.  9.  Schematic diagram of physical simulation experiment and the critical gas-water inversed interfaces

      图  10  气-水临界界面处的力学平衡

      Fig.  10.  The dynamic balance of the critical gas-water inversed interfaces

      表  1  物理模拟实验中气-水临界界面处的动力与阻力

      Table  1.   Forces record and conversion of critical gas-water inversed interfaces

      编号 水柱高度(m) 水柱压力(MPa) 砂岩粒径(mm) 毛管压力(MPa) 充气气压(MPa)
      1 6.5 0.063 7 0.075 0.003 7 0.07
      2 13.8 0.135 2 0.125 0.002 2 0.15
      3 21.2 0.207 8 0.175 0.001 6 0.22
      4 27.5 0.269 5 0.225 0.001 2 0.28
      5 35.5 0.347 9 0.275 0.001 0 0.36
      下载: 导出CSV
    • [1] Berkenpas, P.G., 1991.The Milk River Shallow Gas Pool:Role of the Updip Water Trap and Connate Water in Gas Production from the Pool.SPE, 22922:371-380. https://www.onepetro.org/conference-paper/SPE-22922-MS
      [2] Cao, F., Zou, C.N., Fu, J.H., et al., 2011.Evidence Analysis of Natural Gas Near-source Migration-accumulation Model in the Sulige Large Gas Province, Ordos Basin.Acta Petrologica Sinica, 27(3):857-866 (in Chinese with English abstract). http://www.oalib.com/paper/1473395
      [3] Dai, J.X., Ni, Y.Y., Hu, G.Y., et al., 2014.Stable Carbon and Hydrogen Isotopes of Gases from the Large Tight Gas Fields in China.Scientia Sinica Terrae, 44(4):563-578 (in Chinese with English abstract). doi: 10.1007/s11430-013-4701-7
      [4] Dai, J.X., Ni, Y.Y., Wu, X.Q., 2012.Tight Gas in China and Its Significance in Exploration and Exploitation.Petroleum Exploration and Development, 39(3):257-264 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600433
      [5] EIA, 2013.Annual Energ Outlook 2013 with Projections to 2040.
      [6] Guo, Y.C., Pang, X.Q., Chen, D.X., et al., 2013.Progress of Research on Hydrocarbon Accumulation of Tight Sand Gas and Several Issues for Concerns.Oil & Gas Geology, 34(6):717-724 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201306002.htm
      [7] Jia, C.Z., Zheng, M., Zhang, Y.F., 2012.Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development.Petroleum Exploration and Development, 39(2):129-136 (in Chinese with English abstract). doi: 10.1111/j.1399-3054.2010.01364.x/pdf
      [8] Li, J., Zhao, J.Z., Fan, Y.F., et al., 2013.Gas Migration Mechanism of Quasi-continuous Accumulation in the Upper Paleozoic of Ordos Basin.Oil & Gas Geology, 34(5):592-600 (in Chinese with English abstract).
      [9] Li, X.Q., Feng, S.B., Li, J., et al., 2012.Geochemistry of Natural Gas Accumulation in Sulige Large Gas Field in Ordos Basin.Acta Petrologica Sinica, 28(3):836-846 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201203013.htm
      [10] Ma, Y.J., Hao, G.X., Zhang, L.J., et al., 2004.The Kind of Dina 2 Gas Field.Natural Gas Geoscience, 15(1):91-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX200401018.htm
      [11] Pang, X.Q., Zhou, X.Y., Dong, Y.X., et al., 2013.Formation Mechanism Classification of Tight Sandstone Hydrocarbon Reservoirs in Petroliferous Basin and Resources Appraisal.Journal of China University of Petroleum, 37(5):28-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201305006.htm
      [12] Song, Y., Jiang, L., Ma, X.Z., 2013.Formation and Distribution Characteristics of Unconventional Oil and Gas Reservoirs.Journal of Palaeogeography, 15(5):605-614 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201305007.htm
      [13] Sun, D.S., Jin, Z.J., Lv, X.X., et al., 2004.Reservoiring Mechanism and Finalization Period of Dina 2 Gas Field in Kuqa Depression.Oil & Gas Geology, 25(5):559-564 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200405016.htm
      [14] Wang, P.W., Pang, X.Q., Jiang, Z.X., et al., 2014.Critical Physical Conditions for Accumulation of Yi'nan 2 Continuous Tight Sand Gas Reservoir, Kuqa Depression.Earth Science, 39(10):1381-1390 (in Chinese with English abstract).
      [15] Yan, W.H., Li, J.M., Wang, D.M., et al., 2009.Geologic Characteristics and Sedimentary Reservoir of Dina 2 Gas Field in Kuqa Depression.Natural Gas Geoscience, 20(1):86-93 (in Chinese with English abstract). http://www.oalib.com/paper/1417968
      [16] Yang, H., Fu, J.H., Liu, X.S., et al., 2012a.Accumulation Conditions and Exploration and Development of Tight Gas in the Upper Paleozoic of the Ordos Basin.Petroleum Exploration and Development, 39(3):295-303 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60045-7
      [17] Yang, H., Fu, J.H., Liu, X.S., et al., 2012b.Formation Conditions and Exploration Technology of Large-scale Tight Sandstone Gas Reservoir in Sulige.Acta Petrolei Sinica, 33(S1):27-36 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/abstract/abstract2727.shtml
      [18] Zhao, J.Z., Fu, J.H., Yao, J.L., et al., 2012.Quasi-continuous Accumulation Model of Large Tight Sandstone Gas Field in Ordos Basin.Acta Petrolei Sinica, 33(S1):37-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2012S1008.htm
      [19] Zhu, G.Y., Yang, H.J., Zhang, B., et al., 2012.The Geological Feature and Origin of Dina 2 Large Gas Field in Kuqa Depression, Tarim Basin.Acta Petrologica Sinica, 28(8):2479-2492 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201208016.htm
      [20] Zou, C.N., Tao, S.Z., Hou, L.H., et al., 2013.Unconventional Oil and Gas Geology (2nd edition).Geological Publishing House, Beijing (in Chinese).
      [21] 曹峰, 邹才能, 付金华, 等, 2011.鄂尔多斯盆地苏里格大气区天然气近源运聚的证据剖析.岩石学报, 27(3): 857-866. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103023.htm
      [22] 戴金星, 倪云燕, 胡国艺, 等, 2014.中国致密砂岩大气田的稳定碳氢同位素组成特征.中国科学D辑:地球科学, 44(4): 563-578. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201404001.htm
      [23] 戴金星, 倪云燕, 吴小奇, 2012.中国致密砂岩气及在勘探开发上的重要意义.石油勘探与开发, 39(3): 257-264. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm
      [24] 郭迎春, 庞雄奇, 陈冬霞, 等, 2013.致密砂岩气成藏研究进展及值得关注的几个问题.石油与天然气地质, 34(6): 717-724. doi: 10.11743/ogg20130601
      [25] 贾承造, 郑民, 张永峰, 2012.中国非常规油气资源与勘探开发前景.石油勘探与开发, 39(2): 129-136. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
      [26] 李军, 赵靖舟, 凡元芳, 等, 2013.鄂尔多斯盆地上古生界准连续型气藏天然气运移机制.石油与天然气地质, 34(5):592-600. doi: 10.11743/ogg20130503
      [27] 李贤庆, 冯松宝, 李剑, 等, 2012.鄂尔多斯盆地苏里格大气田天然气成藏地球化学研究.岩石学报, 28(3): 836-846. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203013.htm
      [28] 马玉杰, 郜国玺, 张丽娟, 等, 2004.迪那2气田气藏类型研究.天然气地球科学, 15(1): 91-94. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200401018.htm
      [29] 庞雄奇, 周新源, 董月霞, 等, 2013.含油气盆地致密砂岩类油气藏成因机制与资源潜力.中国石油大学学报(自然科学版), 37(5): 28-37. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201305006.htm
      [30] 宋岩, 姜林, 马行陟, 2013.非常规油气藏的形成及其分布特征.古地理学报, 15(5): 605-614. doi: 10.7605/gdlxb.2013.05.048
      [31] 孙冬胜, 金之钧, 吕修祥, 等, 2004.库车前陆盆地迪那2气田成藏机理及成藏年代.石油与天然气地质, 25(5): 559-564. doi: 10.11743/ogg20040516
      [32] 王鹏威, 庞雄奇, 姜振学, 等, 2014.库车坳陷依南2连续型致密砂岩气藏成藏临界物性条件.地球科学, 39(10): 1381-1390. http://earth-science.net/WebPage/Article.aspx?id=2956
      [33] 颜文豪, 李建明, 王冬梅, 等, 2009.库车坳陷迪那2气田地质特征与沉积储层研究.天然气地球科学, 20(1): 86-93. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200901017.htm
      [34] 杨华, 付金华, 刘新社, 等, 2012a.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发.石油勘探与开发, 39(3): 295-303. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203006.htm
      [35] 杨华, 付金华, 刘新社, 等, 2012b.苏里格大型致密砂岩气藏形成条件及勘探技术.石油学报, 33(S1): 27-36. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2012S1007.htm
      [36] 赵靖舟, 付金华, 姚泾利, 等, 2012.鄂尔多斯盆地准连续型致密砂岩大气田成藏模式.石油学报, 33(S1): 37-52. doi: 10.7623/syxb2012S1006
      [37] 朱光有, 杨海军, 张斌, 等, 2012.塔里木盆地迪那2大型凝析气田的地质特征及其成藏机制.岩石学报, 28(8): 2479-2492. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208016.htm
      [38] 邹才能, 陶士振, 侯连华, 等, 2013.非常规油气地质(第二版).北京:地质出版社.
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  3987
    • HTML全文浏览量:  1779
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-06-25
    • 刊出日期:  2016-03-15

    目录

      /

      返回文章
      返回