• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海东北部陆坡天然气水合物钻探区生物地层与沉积速率

    陈芳 庄畅 周洋 苏新 段虓 刘广虎 吴聪 荆夏

    陈芳, 庄畅, 周洋, 苏新, 段虓, 刘广虎, 吴聪, 荆夏, 2016. 南海东北部陆坡天然气水合物钻探区生物地层与沉积速率. 地球科学, 41(3): 416-424. doi: 10.3799/dqkx.2016.033
    引用本文: 陈芳, 庄畅, 周洋, 苏新, 段虓, 刘广虎, 吴聪, 荆夏, 2016. 南海东北部陆坡天然气水合物钻探区生物地层与沉积速率. 地球科学, 41(3): 416-424. doi: 10.3799/dqkx.2016.033
    Chen Fang, Zhuang Chang, Zhou Yang, Su Xin, Duan Xiao, Liu Guanghu, Wu Cong, Jing Xia, 2016. Calcareous Nannofossils and Foraminifera Biostratigraphy on the Northeastern Slope of the South China Sea and Variation in Sedimentation Rates. Earth Science, 41(3): 416-424. doi: 10.3799/dqkx.2016.033
    Citation: Chen Fang, Zhuang Chang, Zhou Yang, Su Xin, Duan Xiao, Liu Guanghu, Wu Cong, Jing Xia, 2016. Calcareous Nannofossils and Foraminifera Biostratigraphy on the Northeastern Slope of the South China Sea and Variation in Sedimentation Rates. Earth Science, 41(3): 416-424. doi: 10.3799/dqkx.2016.033

    南海东北部陆坡天然气水合物钻探区生物地层与沉积速率

    doi: 10.3799/dqkx.2016.033
    基金项目: 

    国家自然科学基金面上项目 41372012

    国家专项项目课题 GZH2011003050602

    详细信息
      作者简介:

      陈芳(1966-),女,教授级高级工程师,主要从事微体古生物学和天然气水合物研究.E-mail: Zhchenfang66@21cn.com

    • 中图分类号: P744.4

    Calcareous Nannofossils and Foraminifera Biostratigraphy on the Northeastern Slope of the South China Sea and Variation in Sedimentation Rates

    • 摘要: 2013年我国首次在南海东北部东沙陆坡实施天然气水合物钻探,并获取块状等可视天然气水合物样品.为了解钻区地层、天然气水合物产出带(the zone of gas hydrate occurrence)或天然气水合物储层的地层时代和沉积速率特征,对其中5个站位(GMGS05、GMGS07、GMGS08、GMGS09和GMGS16) 的岩心沉积物进行钙质超微化石、有孔虫生物地层学和沉积速率变化的研究.钻孔取心最大深度为213.55 m.共识别出第四纪中更新世以来3个钙质超微化石事件和2个有孔虫事件,确定了钻探区所钻达最老地层为中更新统;天然气水合物产出带的地层时代为中更新世-全新世约0.44 Ma以来.钻区0.12 Ma以来的沉积速率介于36.9~73.3 cm/ka之间,平均值高达54.2 cm/ka,0.44 Ma以来平均沉积速率为47.4 cm/ka,表明东沙海域天然气水合物钻探区位于一高沉积速率堆积体上,高沉积速率更有利于天然气水合物的成藏,该结论与前人研究结果一致.

       

    • 图  1  南海东北部天然气水合物钻探区地理位置及钻孔位置

      张光学等(2014)

      Fig.  1.  The geography location and sites location in the Dongsha gas hydrate-drilling area of SCS

      图  2  钻探区各站位带化石Emiliania huxleyi百分含量及其初现面分布

      Fig.  2.  Variation in percentage of E. huxleyi for 5 sites in the Dongsha gas hydrate-drilling area of SCS

      图  3  GMGS16站位Globigerinoides ruber(pink)的丰度、百分含量及其初(末)现面分布

      Fig.  3.  Abundence and percentage of G. ruber(pink) in site GMGS16

      图  4  钻探区5个站位生物地层划分与对比

      Fig.  4.  Correlation of calcareous nannofossils and foraminifera zones and events among sites from the Dongsha gas hydrate-drilling area in SCS

      图  5  GMGS16站位深度-年龄关系(据钙质超微化石、有孔虫生物事件)

      Fig.  5.  Sedimentation rates (left) and age-depth plot (right) for site GMGS16 based on calcareous nannofossils and foraminifera

      表  1  南海中更新世以来钙质超微化石、有孔虫事件及年代

      Table  1.   Calcareous nannofossils and foraminifera events chronology scheme since Middle Pleitocene in South China Sea

      事件属种年龄(Ma)
      BAcmeEmiliania huxleyi0.09
      TGlobigerinoides ruber(pink)0.12
      BEmiliania huxleyi0.29
      BGlobigerinoides ruber(pink)0.40
      TPseudoemiliania lacunosa0.44
      注:B=Base/FO初现面(First Occurrence);T=Top/LO末现面(Last Occurrence).
      下载: 导出CSV

      表  2  南海东北部天然气水合物钻探区各站位生物事件的深度(mbsf,海底以下深度)分布

      Table  2.   The depths of bioevents at sites GMGS05,GMGS07,GMGS08,GMGS09 and GMGS16

      生物事件生物类型年龄(Ma)深度(mbsf)
      GMGS5GMGS7GMGS8GMGS9GMGS16
      B E.huxleyi Acme钙质超微化石中更新世以来0.0956.27>203.3044.30>74.7667.90>93.8488.00>104.8544.00
      T G.ruber(pink)有孔虫0.1261.50
      B E.Huxleyi钙质超微化石0.29167.30
      B G.ruber(pink)有孔虫0.40197.60
      T P.Lacunose钙质超微化石0.44213.45
      钻孔取心最大深度(mbsf)203.3074.7693.84104.95213.55
      下载: 导出CSV

      表  3  南海东北部天然气水合物钻探区各站位0.12 Ma以来的沉积速率(cm/ka)

      Table  3.   Variation in sedimentation rates since 0.12 Ma in gas hydrate-drilling area of the northeastern SCS

      站位0.12 Ma以来
      T G.ruber(pink)(cm)厚度(cm)沉积速率(cm/ka)
      GMGS055 6275 62746.9
      GMGS074 4304 43036.9
      GMGS086 7906 79056.6
      GMGS098 8008 80073.3
      GMGS166 1506 15051.3
      下载: 导出CSV

      表  4  南海天然气水合物钻探区沉积速率的比对

      Table  4.   Comparison of sedimentation rates between Shenhu and Dongsha gas hydrate-drilling areas in SCS

      航次站位岩心长(m)沉积速率(cm/ka)钻井底部年代(Ma)钻达地层天然气水合物层位
      全新世更新世上新世中新世
      南海天然气水合物钻探神狐海域(GMGS1)(陈芳等,2013)SH1B261.8626.252.022.94>5.85<7.362中新统中新统
      ★SH2B238.85--1.963.27>4.18<7.362中新统
      SH5C175.1734.165.16--~4.470上新统
      ★SH7B194.1820.005.711.887.018中新统中新统-上新统
      东沙海域(GMGS2)★GMGS05203.3046.90<0.290中更新统中更新统以来
      ★GMGS0774.7636.90<0.290中更新统中更新统以来
      ★GMGS0893.8456.60<0.290中更新统中更新统以来
      GMGS09104.9573.30<0.290中更新统
      ★GMGS16213.5551.30~0.440中更新统中更新统以来
      注:★SH2B等代表钻取天然气水合物的站位.
      下载: 导出CSV
    • [1] Anthonissen, D.E., Ogg, J.G., 2012.Cenozoic and Cretaceous Biochronology of Planktonic Foraminifera and Calcareous Nannofossils.In:Gradstein, F.M., Ogg, J.G., Schmitz, M., eds., The Geologic Time Scale 2012.Elsevier Science Press, Amsterdam, 1083-1127.
      [2] Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., 1985.Plankton Stratigraphy.Cambridge University Press, Cambridge.
      [3] Blow, W.H., 1979.The Cainozoic Globigerinida.Brill, E.J., (3 Volumes), 1-1413 Leiden.
      [4] Claypool, G.E., Kaplan, I.R., 1974.The Origin and Distribution of Methane in Marine Sediments.Natural Gases in Marine Sediments.Plenum Press, New York, 99-139.
      [5] Chen, F., Su, X., Zhou, Y., 2013.Late Miocene-Pleistocene Calcareous Nannofossil Biostratigraphy of Shenhu Gas Hydrate Drilling Area in the South China Sea and Variation in Sedimentation Rates.Earth Science, 38(1):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301004.htm
      [6] Dillon, W.P., Danforth, W.W., Hutchinson, D.R., et al., 1998.Evidence for Faulting Related to Dissociation of Gas Hydrate and Release of Methane off the Southeastern United States.Geological Society London Special Publications, 137(1):293-302.doi: 10.1144/gsl.sp.1998.01.23
      [7] Diaconescu, C.C., Kieckhefer, R.M., Knapp, J.H., 2001.Geophysical Evidence for Gas Hydrate in the Deep Water of the South Caspian Basin, Azerbaijian.Marine and Petroleum Geology, 18(2):209-221. doi: 10.1016/S0264-8172(00)00061-1
      [8] Huang, X., Zhu Y.H., Lu, Z.Q., et al., 2010.Study on Genetic Types of Hydrocarbon Gases from the Gas Hydrate Drilling Area, the Northern South China Sea.Geoscience, 24(3):576-580 (in Chinese with English abstract).
      [9] Jing, C, S., Wang, J, Y., Wang, Y, X., et al., 2004.Geothermal Field Characteristics in the Area of Gas Hydrates Distribution.Chinese Journal of Geology, 39(3):416-423 (in Chinese with English abstract). https://www.researchgate.net/publication/290005571_Geothermal_field_characteristics_in_the_areas_of_gas_hydrates_distribution
      [10] Li, B.H., Jian, Z.M., Li, Q.Y., et al., 2005.Paleoceanography of the South China Sea since the Middle Miocene:Evidence from Planktonic Foraminifera.Marine Micropaleontology, 54(2005):49-62.doi: 10.1016/j.marmicro.2004.09.003
      [11] Li, B.H., Chen, M.P., Zhao, Q.H., et al., 2001.Planktonic Foraminiferal Events and Their Paleoceanographic Signifances in the Southern South China Sea since the Last 800, 000 Years.Acta Micropaleontoligia Sinica, 18(1):1-9 (in Chinese with English abstract).
      [12] Li, Q.Y., Lourens, L., Wang, P.X., 2007.New Ages for Neocene Marine Biosratigraphic Events.Journal of Stratigraphy, 31(3):197-208 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200703000.htm
      [13] Liu, H.L., Yao, Y.J., Shen, B.Y., 2015.On Linkage of Western Boundary Fault Soft the South China Sea.Earth Science, 40(4):615-632 (in Chinese with English abstract).
      [14] Lourens, L.J., Hilgen, F.J., Shackleton, N.J., et al., 2004.The Neogene Period.In:Gradstein, F.M., Ogg, J.G., Smith, A.G., Eds., A Geological Time Scale 2004.Cambridge University Press, Cambridge, 409-440.
      [15] Martini, E., 1971.Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation.In:Farinacci, A., ed., Proc.2nd Int.Conf., Planktonic Microfossils Roma:Rome (Ed. Tecnosci.), 2:739-785.
      [16] Martens, C.S., Klump, J.V., 1980.Biogeochemical Cycling in an Organic-Rich Coastal Marine Basin:Methane and Sediment-Water Exchange Processes.Geochimica et Cosmochimica Acta, 44(3):471-490.doi: 10.1016/0016-7037(80)90045-9
      [17] Mountain, G.S., Tucholke, B.E., 1985.Mesozoic and Cenozoic geology of the U.S.Continental Slope and Rise.In:Poag, C.W., ed., Geologic Evolution of the United States Atlantic Margin.Van Nostrand-Reinhold, New York, 293-341.
      [18] Okada, H., Bukry, D., 1980.Supplementary Modification and Introduction of Code Numbers to the Low-Latitude Coccolith Biostratigraphic Zonation (Bukry, 1973, 1975).Mar.Micropaleontol., 5(3):321-325.doi: 10.1016/0377-8398(80)90016-X
      [19] Paul, C.K., Matsumotom, R., 2000.Leg 164 Overview.In:Paul C.K., Matsumotom, R., Wallace, P.J., eds., Proceedings of the Ocean Drilling Program, Scientific Results(v.164).Ocean Drilling Program, Texas, 3-10.
      [20] Raffi, I., Backman, J., Fornaciari, E., et al., 2006.A Review of Calcareous Nannofossil Astrobiochronology Encompassing the Past 25 Million Years.Quaternary Science Reviews, 25(23-24):3113-3137.doi: 10.1016/j.quascirev.2006.07.007.
      [21] Shao, L., Li, X.J., Qiao, P.J., et al., 2007.Deep Water Bottom Current Deposition in the Northern South China Sea.Scientia Sinica Tervae, 7(6):771-777 (in Chinese with English abstract).
      [22] Zhang, G.X., Yang, S.X., Zhang, M., et al., 2014.GMGS2 Expedition Investigates Rich and Complex Gas Hydrate Environment in the South China Sea."Fire in the Ice", the Methane Hydrate Newsletter of the U.S.Department of Energy.Fire in the Ice, 14(1):1-5. https://www.netl.doe.gov/File%20Library/Research/Oil-Gas/methane%20hydrates/MHNews_2014_February.pdf#page=1
      [23] Zhang, G.X., Liang, J.Q., Lu, J.A., et al., 2014.Characteristics of Natural Gas Hydrate Reservoirs on the Northeastern Slope of the South China Sea.Natural Gas Industry, 34(11):1-10.doi: 10.3787/j.issn.1000-0976.2014.11.001.
      [24] 陈芳, 苏新, 周洋, 2013.南海神狐海域天然气水合物钻探区钙质超微化石生物地层与沉积速率.地球科学, 38(1): 1-9. doi: 10.11867/j.issn.1001-8166.2013.01.0001
      [25] 黄霞, 祝有海, 卢振权, 等, 2010.南海北部天然气水合物钻探区烃类气体成因类型研究.现代地质, 24(3): 577-580. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201003023.htm
      [26] 金春爽, 汪集旸, 王永新, 等, 2004.天然气水合物地热场分布特征.地质科学, 39(3): 416-423. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200403011.htm
      [27] 李前裕, Lucas Lourens, 汪品先, 2007.新近纪海相生物地层事件年龄新编.地层学杂志.31(3): 197-208. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200703000.htm
      [28] 刘海龄, 姚永坚, 沈宝云, 2015.南海西缘结合带的贯通性.地球科学, 40(4): 615-632. http://www.earth-science.net/WebPage/Article.aspx?id=3107
      [29] 邵磊, 李学杰, 乔培军, 等, 2007.南海北部深水底流沉积作用.中国科学D辑:地球科学, 37(6): 771-777. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200706007.htm
      [30] 张光学, 梁金强, 陆敬安, 等, 2014.南海东北部陆坡天然气水合物藏特征.天然气工业, 34(11): 1-10. doi: 10.3787/j.issn.1000-0976.2014.11.001
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  4338
    • HTML全文浏览量:  1769
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-10-22
    • 刊出日期:  2016-03-15

    目录

      /

      返回文章
      返回