• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    库车前陆盆地大北地区砂岩储层致密化与油气充注的关系

    郭小文 刘可禹 宋岩 赵孟军 柳少波 卓勤功 鲁雪松

    郭小文, 刘可禹, 宋岩, 赵孟军, 柳少波, 卓勤功, 鲁雪松, 2016. 库车前陆盆地大北地区砂岩储层致密化与油气充注的关系. 地球科学, 41(3): 394-402. doi: 10.3799/dqkx.2016.031
    引用本文: 郭小文, 刘可禹, 宋岩, 赵孟军, 柳少波, 卓勤功, 鲁雪松, 2016. 库车前陆盆地大北地区砂岩储层致密化与油气充注的关系. 地球科学, 41(3): 394-402. doi: 10.3799/dqkx.2016.031
    Guo Xiaowen, Liu Keyu, Song Yan, Zhao Mengjun, Liu Shaobo, Zhuo Qingong, Lu Xuesong, 2016. Relationship between Tight Sandstone Reservoir Formation and Petroleum Charge in Dabei Area of Kuqa Foreland Basin. Earth Science, 41(3): 394-402. doi: 10.3799/dqkx.2016.031
    Citation: Guo Xiaowen, Liu Keyu, Song Yan, Zhao Mengjun, Liu Shaobo, Zhuo Qingong, Lu Xuesong, 2016. Relationship between Tight Sandstone Reservoir Formation and Petroleum Charge in Dabei Area of Kuqa Foreland Basin. Earth Science, 41(3): 394-402. doi: 10.3799/dqkx.2016.031

    库车前陆盆地大北地区砂岩储层致密化与油气充注的关系

    doi: 10.3799/dqkx.2016.031
    基金项目: 

    国家自然科学基金项目 41302110

    国家自然科学基金项目 41572114

    详细信息
      作者简介:

      郭小文(1980-),男,副教授,主要从事油气地质方面研究.E-mail:cuggxw@163.com

    • 中图分类号: P618.130

    Relationship between Tight Sandstone Reservoir Formation and Petroleum Charge in Dabei Area of Kuqa Foreland Basin

    • 摘要: 库车前陆盆地大北地区盐下致密砂岩储层具有埋藏深度大、低孔和低渗的特征,以产气为主并伴生少量的轻质原油.在对大北地区盐下致密砂岩储层特征、油气成熟度、油气充注史研究基础之上,结合致密砂岩孔隙演化特征综合分析油气充注与储层致密化的时间关系.大北地区盐下致密砂岩储层孔隙空间主要以次生溶蚀孔为主,大部分孔隙空间都被沥青充填,由孔隙和沥青组成的空间网络具有较好的连通性,压实作用为储层致密化重要成因,碳酸盐胶结作用应该主要在库车组沉积之前使孔隙度降低.致密砂岩储层中发育沥青,油气地球化学特征以及流体包裹体分析结果均表明库车前陆盆地大北地区致密砂岩储层存在两期油和一期天然气充注.晚期原油充注发生在距今5~4 Ma,对应库车组沉积早期,天然气充注发生在距今3~2 Ma,对应地层抬升剥蚀时期.库车前陆盆地大北地区盐下砂岩储层在油充注时期埋藏深度较浅,具有较高的孔隙度,而天然气充注时期,砂岩储层已经遭受了强烈的压实作用达到了致密化程度.

       

    • 图  1  库车前陆盆地构造单元划分

      Fig.  1.  Map showing the tectonic subdivisions in the Kuqa Foreland Basin

      图  2  大北地区致密砂岩储层实测孔隙度和渗透率关系

      Fig.  2.  Relationship between measured porosity and permeability of tight reservoir sandstone samples in the Dabei area

      图  3  大北地区致密砂岩储层微米CT扫描照片

      Fig.  3.  Micro-CT images s of the tight sandstones reservoirs in the Dabei area

      图  4  大北地区天然气乙烷与甲烷和丙烷同位素关系

      Fig.  4.  Cross plots of methane, ethane and propane carbon isotope values in the Dabei area

      图  5  库车前陆盆地轻质原油金刚烷化合物成熟度指标MDI与MAI和金刚烷化合物含量关系

      Fig.  5.  Plots of maturity indices MDI versus MAI and concentrations of diamondoid hydrocarbons in the light oils from the Kuqa Foreland Basin

      图  6  大北地区典型油包裹体荧光和透射光照片

      Fig.  6.  Photomicrographs of representative oil inclusions under UV light and transmitted light in the Dabei area

      图  7  大北地区致密砂岩储层中流体包裹体均一温度直方图

      Fig.  7.  Histograms of homogenization temperatures (Th) for the fluid inclusions in the tight sandstone reservoirs of the Dabei area

      图  8  大北地区埋藏史、热史以及致密砂岩储层孔隙演化模拟结果

      Fig.  8.  Modeling results of the burial history, thermal history and porosity evolution of the tight sandstone reservoirs in the Dabei area

    • [1] Aplin, A.C., Larter, S.R., Bigge, M.A., et al., 2000.PVTX History of the North Sea's Judy Oilfield.Journal of Geochemical Exploration, 69-70:641-644.doi: 10.1016/s0375-6742(00)00066-2
      [2] Bates, C.R., Phillips, D.R., Grimm, R., et al., 2001.The Seismic Evaluation of a Naturally Fractured Tight Gas Sand Reservoir in the Wind River Basin, Wyoming.Petroleum Geoscience, 7(1):35-44.doi: 10.1144/petgeo.7.1.35
      [3] Berner, U., Faber, E., 1996.Empirical Carbon Isotope/maturity Relationships for Gases from Algal Kerogens and Terrigenous Organic Matter, Based on Dry, Open-System Pyrolysis.Organic Geochemistry, 24(10-11):947-955.doi: 10.1016/s0146-6380(96)00090-3
      [4] Burley, S.D., Mullis, J., Matter, A., 1989.Timing Diagenesis in the Tartan Reservoir (UK North Sea):Constraints from Combined Cathodoluminescence Microscopy and Fluid Inclusion Studies.Marine and Petroleum Geology, 6(2):98-120.doi: 10.1016/0264-8172(89)90014-7
      [5] Chen, J., Fu, J., Shen, G., et al., 1996.Diamondoid Hydrocarbon Ratios:Novel Maturity Indices for Highly Mature Crude Oils.Organic Geochemistry, 25:179-190.doi: org/ 10.1016/S0146-6380(96)00125-8
      [6] Chung, H.M., Gormly, J.R., Squires, R.M., 1988.Origin of Gaseous Hydrocarbons in Subsurface Environments:Theoretical Considerations of Carbon Isotope Distribution.Chemical Geology, 71(1-3):97-104.doi: 10.1016/0009-2541(88)90108-8
      [7] Dahl, J., Moldowan, J.M., 1998.Abstract: Diamondoid Hydrocarbons as Indicators of Thermal Maturity and Oil Cracking.AAPG Bulletin, 82:54-57.doi: 10.1306/1d9bdbff-172d-11d7-8645000102c1865d
      [8] Dai, J.X., Song, Y., Cheng, K.F., et al., 1993.Characteristics of Carbon Isotopes of Organic Alkane Gases in Petroliferous Basins of China.Acta Petrolei Sinica, 14(2):23-31 (in Chinese with English abstract).
      [9] Desbois, G., Urai, J.L., Kukla, P.A., et al., 2011.High-Resolution 3D Fabric and Porosity Model in a Tight Gas Sandstone Reservoir:A New Approach to Investigate Microstructures from Mm-to Nm-Scale Combining Argon Beam Cross-Sectioning and SEM Imaging.Journal of Petroleum Science and Engineering, 78(2):243-257.doi: 10.1016/j.petrol.2011.06.004
      [10] Falvey, D.A., Middleton, M.F., 1981.Passive Continental Margins:Evidence for a Prebreakup Deep Crustal Metamorphic Subsidencemechanism.Oceanologica Acta, 4(Suppl.):103-114.
      [11] Fuex, ,A.N, 1977.The Use of Stable Carbon Isotopes in Hydrocarbon Exploration.Journal of Geochemical Exploration, 7:155-188.doi: 10.1016/0375-6742(77)90080-2
      [12] Grechka, V., Mazumdar, P., Shapiro, S.A., 2010.Predicting Permeability and Gas Production of Hydraulically Fractured Tight Sands from Microseismic Data.Geophysics, 75(1):B1-B10.doi: 10.1190/1.3278724
      [13] Gu, J.Y., Fang, H., Jia, J.H., 2001.Diagenesis and Reservoir Characteristics of Cretaceous Braided Delta Sandbody in Kuqa Depression, Tarim Basin.Acta Sedimentologica Sinica, 19(4):517-523 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200104007.htm
      [14] Hao, F., Zou, H.Y., 2013.Cause of Shale Gas Geochemical Anomalies and Mechanisms for Gas Enrichment and Depletion in High-Maturity Shales.Marine and Petroleum Geology, 44:1-12, doi:org/ 10.1016/j.marpetgeo.2013.03.005
      [15] James, A.T., 1983.Correlation of Natural Gas by Use of Carbon Isotopic Distribution between Hydrocarbon Components.AAPG Bulletin, 67:1176-1191.doi: 10.1306/03b5b722-16d1-11d7-8645000102c1865d
      [16] Jenden, P.D., Drazan, D.J., 1993.Mixing of Thermogenic Natural Gases in Northern Appalachian Basin.AAPG Bulletin, 77:980-998.doi: 10.1306/bdff8dbc-1718-11d7-8645000102c1865d
      [17] Jia, C.Z., Zheng, M., Zhang, Y.F., 2012.Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development.Petroleum Exploration and Development, 39(2):129-136 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600263
      [18] Jiang, L.Z., Gu, J.Y., Guo, B.C., 2004.Characteristics and Mechanism of Low Permeability Clastic Reservoir in Chinese Petroliferous Basin.Acta Sedimentologica Sinica, 22:13-21 (in Chinese with English abstract). https://www.researchgate.net/publication/284257827_Characteristics_and_mechanism_of_low_permeability_clastic_reservoir_in_Chinese_petroliferous_basin
      [19] Kang, Y.L., Luo, P.Y., 2007.Current Status and Prospect of Key Techniques for Exploration and Production of Tight Sandstone Gas Reservoirs in China.Petroleum Exploration and Development, 34(2):239-245 (in Chinese with English abstract).
      [20] Law, B.E., 2002.Basin-Centered Gas Systems.AAPG Bulletin, 86:1891-1919.doi: 10.1306/61eeddb4-173e-11d7-8645000102c1865d
      [21] Liu, S.B., Liu, K.Y., Zhuo, Q.G., et al., 2012.Investigate Hydrocarbon Charge History Using X-ray Micro CT, FM-SEM and Fluid Inclusion Techniques, An Example from the Kela-2 Giant Gas Field, Tarim Basin, China.AAPG Search and Discovery.
      [22] Masters, J.A., 1979.Deep Basin Gas Trap, Western Canada.AAPG Bulletin, 63:152-181.doi: 10.1306/c1ea55cb-16c9-11d7-8645000102c1865d
      [23] Parnell, J., 2010.Potential of Palaeofluid Analysis for Understanding Oil Charge History.Geofluids, 9:73-82.doi: 10.1111/j.1468-8123.2009.00268.x
      [24] Schoell, M., 1983.Genetic Characterization of Natural Gases.AAPG Bulletin, 67:2225-2238.doi: 10.1306/ad46094a-16f7-11d7-8645000102c1865d
      [25] Schoell, M., 1988.Multiple Origins of Methane in the Earth.Chemical Geology, 71(1-3):1-10.doi: 10.1016/0009-2541(88)90101-5
      [26] Song, Y., Hong, F., Xia, X.Y., et al., 2006.Syngenesis Relationship between Abnormal Overpressure and Gas Pool Formation-with Kuqa Depression as an Example.Petroleum Exploration and Development, 33(3):303-308 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200603009.htm
      [27] Stroker, T.M., Harris, N.B., Elliott, W.C., et al., 2013.Diagenesis of a Tight Gas Sand Reservoir:Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado.Marine and Petroleum Geology, 40:48-68.doi: 10.1016/j.marpetgeo.2012.08.003
      [28] Tobin, R.C., McClain, T., Lieber, R.B., et al., 2010.Reservoir Quality Modeling of Tight-Gas Sands in Wamsutter Field:Integration of Diagenesis, Petroleum Systems, and Production Data.AAPG Bulletin, 94(8):1229-1266.doi: 10.1306/04211009140
      [29] Wang, P.W., Pang, X.Q., Jiang, Z.X., 2014.Critical Phyisical Conditions for Accumulation of Yinan 2 "Continuous" Tight Sandstone Gas Reservoir, Kuqu Depression.Earth Science, 39(10):1381-1340 (in Chinese with English abstract).
      [30] Wei, Z.B., Moldowan, J.M., Zhang, S.C., et al., 2007.Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil Cracking:Geochemical Models from Hydrous Pyrolysis.Organic Geochemistry, 38:227-249.doi: 10.1016/j.orggeochem.2006.09.011
      [31] Whiticar, M., 1990.A Geochemical Prospective of Nature Gas and Atmospheric Methane.Organic Geochemistry, 16(1-3):531-547. doi: 10.1016/0146-6380(90)90068-B
      [32] Yang, H., Fu, J.H., Wei, X.S., et al., 2008.Sulige Field in the Ordos Basin:Geological Setting, Field Discovery and Tight Gas Reservoirs.Marine and Petroleum Geology, 25:387-400.doi: org/ 10.1016/j.marpetgeo.2008.01.007
      [33] Zeng, L.B., 2010, Microfracturing in the Upper Triassic Sichuan Basin Tight-Gas Sandstones: Tectonic, Overpressure, and Diagenetic Origins.AAPG Bulletin, 94(12):1811-1825, doi: 10.1306/06301009191
      [34] Zhang, J.C., Zhang, J., 2003.Equilibrium Principle and Mathematic Description for Source-Contacting Gas Accumulation.Geological Journal of China Universities, 9(3):458-466 (in Chinese with English abstract).
      [35] Zhang, S.C., Zhang, B., Zhu, G.Y., et al., 2011.Geochemical Evidence for Coal-Derived hydrocarbons and Their Charge History in the Dabei Gas Field, Kuqa Thrust Belt, Tarim Basin, NW China.Marine and Petroleum Geology, 28:1364-1375.doi:org/ 10.1016/j.marpetgeo.2011.02.006
      [36] Zhou, X.X., 2001.The Reservoir-Forming Process and Model in the Kuqa Petroleum Systems.Petroleum Exploration and Development, 28(2):8-10, 107-108, 115-116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200102002.htm
      [37] Ziarani, A.S., Aguilera, R., 2012.Pore-Throat Radius and Tortuosity Estimation from Formation Resistivity Data for Tight-Gas Sandstone Reservoirs.Journal of Applied Geophysics, 83:65-73.doi:org/ 10.1016/j.jappgeo.2012.05.008
      [38] Zou, C.N., Yang, Z., Tao, S.Z., et al., 2013.Continuous Hydrocarbon Accumulation over a Large Area as a Distinguishing Characteristic of Unconventional Petroleum: The Ordos Basin, North-Central China.Earth-Science Reviews, 126:358-369.doi:org/ 10.1016/j.earscirev.2013.08.006
      [39] Zou, C.N., Zhang, G.Y., Tao S.Z., et al., 2010.Geological Features, Major Discoveries and Unconventional Petroleum geology in the Global Petroleum Exploration.Petroleum Exploration and Development, 37:129-145 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60021-3
      [40] Zou, C.N., Zhu, R.K., Liu, K.Y., et al., 2012.Tight gas Sandstone Reservoirs in China:Characteristics and Recognition Criteria.Journal of Petroleum Science and Engineering, 88-89:82-91.doi: org/10.1016/j.petrol.2012.02.001
      [41] Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012.Types Characteristics Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as An Instance.Acta Petrolei Sinica, 31(2):173-187 (in Chinese with English abstract).
      [42] 戴金星, 宋岩, 程坤芳, 等, 1993.中国含油气盆地有机烷烃气碳同位素特征.石油学报, 14(2): 23-31. doi: 10.7623/syxb199302003
      [43] 顾家裕, 方辉, 贾进华, 2001.塔里木盆地库车坳陷白垩系辫状三角洲砂体成岩作用和储层特征.沉积学报, 19(4): 517-523. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200104007.htm
      [44] 贾承造, 郑民, 张永峰, 2012.中国非常规油气资源与勘探开发前景.石油勘探与开发, 39(2): 129-136. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
      [45] 蒋凌志, 顾家裕, 郭彬程, 2004.中国含油气盆地碎屑岩低渗透储层的特征及形成机理.沉积学报, 22: 13-21. doi: 10.3969/j.issn.1000-0550.2004.01.003
      [46] 康毅力, 罗平亚, 2007.中国致密砂岩气藏勘探开发关键工程技术现状与展望.石油勘探与开发, 34(2): 239-245. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200702022.htm
      [47] 宋岩, 洪峰, 夏新宇, 等, 2006.异常压力与油气藏的同生关系——以库车坳陷为例.石油勘探与开发, 33(3): 303-308. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200603009.htm
      [48] 王鹏威, 庞雄奇, 姜振学, 等, 2014.库东坳陷依南2"连续型"致密砂岩气藏成藏临界物性条件.地球科学, 39(10): 1381-1340. http://www.earth-science.net/WebPage/Article.aspx?id=2956
      [49] 张金川, 张杰, 2003.深盆气成藏平衡原理及数学描述.高校地质学报, 9(3): 458-466. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200303016.htm
      [50] 周兴熙.2001.库车油气系统成藏作用与成藏模式.石油勘探与开发, 28(2): 8-10, 107-108, 115-116. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200102002.htm
      [51] 邹才能, 张光亚, 陶士振, 等, 2010.全球油气勘探领域地质特征、重大发现及非常规石油地质.石油勘探与开发, 37: 129-145. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002002.htm
      [52] 邹才能, 朱如凯, 吴松涛, 等, 2012.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例.石油学报, 31(2): 173-187. doi: 10.7623/syxb201202001
    • 加载中
    图(8)
    计量
    • 文章访问数:  4055
    • HTML全文浏览量:  1815
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-10-22
    • 刊出日期:  2016-03-15

    目录

      /

      返回文章
      返回