Quantitative Fluorescence Techniques and Their Applications in Hydrocarbon Accumulation Studies
-
摘要: 储层定量荧光技术,包括储层颗粒定量荧光(QGF)、储层萃取液定量荧光(QGF-E)、储层颗粒内部油包裹体定量荧光(QGF+)、全息扫描荧光(TSF)和油包裹体萃取液全息扫描荧光(iTSF)等系列技术,已广泛应用于现今油层(含残留油层)和古油层识别、油气成藏历史恢复、油气运移路径追踪以及原油性质测定等.与其他岩矿和有机地化方法相比,储层定量荧光技术具有快速、低成本、分辨率高和易操作等优势.详细介绍了储层定量荧光技术的原理、处理流程、参数意义及其在油气成藏研究中的具体应用实例:(1) 利用QGF和QGF-E技术可有效识别古油层和残留油层,重建油气藏演化历史;(2) 利用QGF-E技术可有效识别测井资料难以识别的致密油层,指导致密油勘探开发;(3) TSF、iTSF、QGF+光谱参数与地化参数之间有一定的内在联系,可以用来检测原油、储层萃取烃和烃类包裹体的地化特征,建立烃类包裹体之间及与原油的联系.还指出了储层定量荧光技术在应用中需要注意的问题以及在其他方面的应用前景.Abstract: Quantitative fluorescence techniques, including a suite of techniques, such as quantitative grain fluorescence (QGF), quantitative grain fluorescence on extract (QGF-E), QGF plus (QGF+), total scanning fluorescence (TSF), and TSF on crushed inclusion extracts (iTSF), have been widely applied in studying hydrocarbon charge history and accumulations. The techniques can be used to delineate the current (residual) oil zone and palaeo oil zone, reconstruct hydrocarbon accumulation history, identify oil migration pathways, and determine oil properties. Compared with the petrographic and organic geochemical methods, the fluorescence techniques have the advantages of extremely sensitive, easy to use and fast turn-around. In this paper, we present the principles, sample preparation procedures, key parameters and some field application examples in hydrocarbon accumulation studies, including (1) the palaeo and residual oil zone delineation and reservoir evolution history reconstruction using the QGF and QGF-E techniques; (2) evaluating tight oil reservoir zones, which are difficult to be detected by well logging data using the QGF-E technique; (3) cross-correlation between TSF, iTSF, QGF+ spectral signatures and other geochemical parameters to detect geochemical characteristics of crude oils, core and oil inclusion extracts. Some pitfalls and other potential application of the techniques are also discussed.
-
表 1 储层定量荧光分析仪器参数设置
Table 1. Instrument parameters in reservoir quantitative fluorescence analysis
参数设置 QGF分析 QGF+分析 QGF-E分析 TSF/iTSF分析 采集类型 荧光 荧光 荧光 荧光 扫描模式 发射波长 发射波长 发射波长 同步扫描 X模式 波长(nm) 波长(nm) 波长(nm) 波长(nm) 激发波长(nm) 254/228 254/228 260 220~340 开始(nm) 295 300 300 250 停止(nm) 605 600 600 540 Delta波长(nm) / / / 30 激发狭缝(nm) 10 10 5 10 发射狭缝(nm) 20 10 10 10 扫描速度(nm/min) 1 200 600 600 1200 数据间隔(nm) 2 1 1 2 平均时间(s) 0.1 0.1 0.1 0.1 激发滤光片 Open Open 250~395 nm Auto 发射滤光片 295~1 100 nm 295~1 100 nm 295~1 100 nm Auto PMT检测器电压(V) High High Medium Medium 校正图谱 OFF OFF OFF OFF 三维模式 OFF OFF OFF ON 激发停止(nm) / / / 200 激发增量(nm) / / / 5 分析附件 well plate:96 wells well plate:96 wells 石英比色皿 石英比色皿 -
[1] Barres, O., Burneau, A., Dubessy, J., et al., 1987.Application of Micro-FT-IR Spectroscopy to Individual Hydrocarbon Fluid Inclusion Analysis.Applied Spectroscopy, 41(6):1000-1008.doi: 10.1366/0003702874447743 [2] Bodnar, R.J.Bethke, P.M., 1984.Systematics of Stretching of Fluid Inclusions; I, Fluorite and Sphalerite at 1 Atmosphere Confining Pressure.Economic Geology, 79(1):141-161.doi:10.2113/gsecongeo.79.1.141">http://dx.doi.org/10.2113/ gsecongeo.79.1.141 [3] Bourdet, J., Eadington, P., Volk, H., et al., 2012.Chemical Changes of Fluid Inclusion Oil Trapped during the Evolution of an Oil Reservoir:Jabiru-1A Case Study (Timor Sea, Australia).Marine and Petroleum Geology, 36(1):118-139.doi: 10.1016/j.marpetgeo.2012.05.006 [4] Burruss, R.C., Cercone, K.R., Harris, P.M., 1983.Fluid Inclusion Petrography and Tectonic-burial History of the Al Ali No.2 well:Evidence for the Timing of Diagenesis and Oil Migration, Northern Oman Foredeep.Geology, 11(10):567-570.doi:10.1130/0091-7613(1983)11<567:FIPATH>2.0.CO;2 [5] Cao, X.D., Fang, S.H., Gui, L.L., et al., 2013.Application of Quantitative Grain Fluorescence Techniques in Analysis of Characteristics of Hydrocarbon Adjustment in Yingdong Western Qaidam Basin.Science Technology and Engineering, 13(10):2785-2790 (in Chinese with English abstract). [6] Cao, X.D., Fang, S.H., Gui, L.L., et al., Application of Quantitative Grain Fluorescence Techinques in Analysis of Charactristics of Hydrocarbon Adjustment in Yingdong Western Qaidam Baisin.Science Technology and Engineering, 13(10):2785-2790 (in chinese with English abstract). [7] Fan, J.J., Pan, M., Zhou, H.M., et al., 2014.Hydrocarbon Migration Pathway and Charging Characterization of Yinan-2 Gas Reservoir in Kuqa Depression.Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3):507-514 (in Chinese with English abstract). [8] George, S.C., Krieger, F.W., Eadington, P.J., et al., 1997.Geochemical Comparison of Oil-Bearing Fluid Inclusions and Produced Oil from the Toro Sandstone, Papua New Guinea.Organic Geochemistry, 26(3-4):155-173.doi: 10.1016/s0146-6380(97)00004-1 [9] George, S.C., Volk, H., Ahmed, M., 2007.Geochemical Analysis Techniques and Geological Applications of Oil-Bearing Fluid Inclusions, with some Australian Case Studies.Journal of Petroleum Science and Engineering, 57(1-2):119-138.doi: 10.1016/j.petrol.2005.10.010 [10] Gui, L.L., Liu, K.Y., Liu, S.B., et al., 2015.Hydrocarbon Charge History of Yingdao Oilfield, Western Qidam Basin.Earth Science, 40(5):890-899 (in Chinese with English abstract). [11] Li, Z., Jiang, Z.X., Li, F., 2012.Quantitative Grain Fluorescence Responds to Residual Oil Zones and Paleo-Oil Zones.Spectroscopy and Spectral Analysis, 32(11):3073-3077 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GUAN201211040.htm [12] Li, X., Shi, Y.J., Wang, L., et al., 2013.Logging Identification and Evaluation Technique of Tight Sandstion Gas Reserviors:Taking Sulige Gas Field as an Example, 24(1):62-68, 50 (in chinese with English abstract). [13] Lisk, M., O'brien, G., Eadington, P., 2002.Quantitative Evaluation of the Oil-Leg Potential in the Oliver Gas Field, Timor Sea, Australia.AAPG Bulletin, 86(9):1531-1542.doi:http:// archives.datapages.com/data/bulletns/2002/09sep/1531/1531 [14] Liu, K.Y., Eadington, P., 2003.A New Method for Identifying Secondary Oil Migration Pathways.Journal of Geochemical Exploration, 78-79:389-394.doi: 10.1016/s0375-6742(03)00078-5 [15] Liu, K.Y., Eadington, P., 2005.Quantitative Fluorescence Techniques for Detecting Residual Oils and Reconstructing Hydrocarbon Charge History.Organic Geochemistry, 36(7):1023-1036.doi: 10.1016/j.orggeochem.2005.02.008 [16] Liu, K.Y., Eadington, P., Middleton, H., et al., 2007.Applying Quantitative Fluorescence Techniques to Investigate Petroleum Charge History of Sedimentary Basins in Australia and Papuan New Guinea.Journal of Petroleum Science and Engineering, 57(1-2):139-151.doi: 10.1016/j.petrol.2005.11.019 [17] Liu, K.Y., George, S.C., Lu, X., et al.2014.Innovative Fluorescence Spectroscopic Techniques for Rapidly Characterising Oil Inclusions.Organic Geochemistry, 72:34-45.doi: 10.1016/j.orggeochem.2014.04.010 [18] Lu, X.S., Liu, K.Y., Zhuo, Q.G., et al., 2012.Palaeo-Fluid Evidence for the Multi-Stage Hydrocarbon Charges in Kela-2 Gas Field, Kuqa Foreland Basin, Tarim Basin.Petroleum Exploration and Development, 39(5):537-544 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201205003.htm [19] Munz, I.A., 2001.Petroleum Inclusions in Sedimentary Basins:Systematics, Analytical Methods and Applications.Lithos, 55(1-4):195-212.doi: 10.1016/s0024-4937(00)00045-1 [20] Ralston, C.Y., Wu, X., Mullins, O.C., 1996.Quantum Yields of Crude Oils.Applied Spectroscopy, 50(12):1563-1568.doi: 10.1366/0003702963904601 [21] Ryder, A.G., Analysis of Crude Petroleum Oils Using Fluorescence Spectroscopy.Reviews in Fluorescence, 57:169-198.doi: 10.1007/0-387-23690-2_8 [22] Song, W.J., Jiang, T.W., Feng, J.L., et al., 2005.Geological Features and Exploitation Mechanism of the Yaha Condensate Gas Field in the Tarim Basin.Chinese Journal of Geology:Scientia Geologica Sinica, 40(2):274-283 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX20050200B.htm [23] Wu, F., Fu, X.F., Zhuo, Q.G., et al., 2014.Analysis of hydrocarbon acculation process of Yingmai 7 Structural belt in Kuqa Depression based on Quantitative fluorescence techniqes.Journal of Northeast Petroleum University, 38(4):32-34, 66 (in chinese with English abstract). [24] Zhang, L.H., Zhou, C.C., Liu, G.Q., et al., 2006.Influence of Pore Structures on Electric Properties and Well Logging Evaluation in Low Porosity and Permeability Reservoirs.Petroleum Exploration and Development, 33(6):671-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200606005.htm [25] Zhang, M.L., Shi, Y.J., 2005.Archie's Electrical Parameters of Complex Pore Texture in Sandstone Reservoir.Geophysical Prospecting for Petroleum, 44(1):21-23, 28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200505015.htm [26] 曹许迪, 方世虎, 桂丽黎, 等, 2013.利用定量颗粒荧光技术分析柴西英东地区油气调整特征.科学技术与工程, 13(10): 2785-2790. doi: 10.3969/j.issn.1671-1815.2013.10.033 [27] 范俊佳, 潘懋, 周海民, 等, 2014.库车坳陷依南2气藏油气运移路径及充注特征.北京大学学报:自然科学版, 50(3): 507-514. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201403013.htm [28] 桂丽黎, 刘可禹, 柳少波, 等, 2015.柴达木盆地西部英东地区油气成藏过程.地球科学, 40(5): 890-899. http://www.earth-science.net/WebPage/Article.aspx?id=3081 [29] 李霞, 石玉江, 王玲, 等, 2013.致密砂岩气层测井识别与评价技术——以苏里格气田为例.天然气地球科学, 24(01): 62-68. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201301009.htm [30] 李卓, 姜振学, 李峰, 2012.古油层和残余油层的定量颗粒荧光响应.光谱学与光谱分析, 32(11): 3073-3077. doi: 10.3964/j.issn.1000-0593(2012)11-3073-05 [31] 鲁雪松, 刘可禹, 卓勤功, 等, 2012.库车克拉2气田多期油气充注的古流体证据.石油勘探与开发, 39(5): 537-544. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205003.htm [32] 宋文杰, 江同文, 冯积累, 等, 2005.塔里木盆地牙哈凝析气田地质特征与开发机理研究.地质科学, 40(2): 274-283. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX20050200B.htm [33] 吴凡, 付晓飞, 卓勤功, 等, 2014.基于定量荧光技术的库车拗陷英买7构造带古近系油气成藏过程分析.东北石油大学学报, 38(4): 32-34, 66. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201404006.htm [34] 张龙海, 周灿灿, 刘国强, 等, 2006.孔隙结构对低孔低渗储集层电性及测井解释评价的影响.石油勘探与开发, 33(6): 671-676. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200606005.htm [35] 张明禄, 石玉江, 2005.复杂孔隙结构砂岩储层岩电参数研究.石油物探, 44(1): 21-23, 28. http://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200505015.htm