• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    储层定量荧光技术及其在油气成藏研究中的应用

    刘可禹 鲁雪松 桂丽黎 范俊佳 公言杰 李秀丽

    刘可禹, 鲁雪松, 桂丽黎, 范俊佳, 公言杰, 李秀丽, 2016. 储层定量荧光技术及其在油气成藏研究中的应用. 地球科学, 41(3): 373-384. doi: 10.3799/dqkx.2016.029
    引用本文: 刘可禹, 鲁雪松, 桂丽黎, 范俊佳, 公言杰, 李秀丽, 2016. 储层定量荧光技术及其在油气成藏研究中的应用. 地球科学, 41(3): 373-384. doi: 10.3799/dqkx.2016.029
    Liu Keyu, Lu Xuesong, Gui Lili, Fan Junjia, Gong Yanjie, Li Xiuli, 2016. Quantitative Fluorescence Techniques and Their Applications in Hydrocarbon Accumulation Studies. Earth Science, 41(3): 373-384. doi: 10.3799/dqkx.2016.029
    Citation: Liu Keyu, Lu Xuesong, Gui Lili, Fan Junjia, Gong Yanjie, Li Xiuli, 2016. Quantitative Fluorescence Techniques and Their Applications in Hydrocarbon Accumulation Studies. Earth Science, 41(3): 373-384. doi: 10.3799/dqkx.2016.029

    储层定量荧光技术及其在油气成藏研究中的应用

    doi: 10.3799/dqkx.2016.029
    基金项目: 

    中国石油科技开发项目“前陆盆地油气成藏规律研究与关键技术攻关” 2011-B0403

    国家油气重大专项“前陆盆地油气成藏规律、关键技术及目标评价” 2011ZX05003-001

    详细信息
      作者简介:

      刘可禹(1963-),男,教授,主要从事含油气系统分析研究工作.E-mail: keyu_liu@petrochina.com.cn

    • 中图分类号: P618.130

    Quantitative Fluorescence Techniques and Their Applications in Hydrocarbon Accumulation Studies

    • 摘要: 储层定量荧光技术,包括储层颗粒定量荧光(QGF)、储层萃取液定量荧光(QGF-E)、储层颗粒内部油包裹体定量荧光(QGF+)、全息扫描荧光(TSF)和油包裹体萃取液全息扫描荧光(iTSF)等系列技术,已广泛应用于现今油层(含残留油层)和古油层识别、油气成藏历史恢复、油气运移路径追踪以及原油性质测定等.与其他岩矿和有机地化方法相比,储层定量荧光技术具有快速、低成本、分辨率高和易操作等优势.详细介绍了储层定量荧光技术的原理、处理流程、参数意义及其在油气成藏研究中的具体应用实例:(1) 利用QGF和QGF-E技术可有效识别古油层和残留油层,重建油气藏演化历史;(2) 利用QGF-E技术可有效识别测井资料难以识别的致密油层,指导致密油勘探开发;(3) TSF、iTSF、QGF+光谱参数与地化参数之间有一定的内在联系,可以用来检测原油、储层萃取烃和烃类包裹体的地化特征,建立烃类包裹体之间及与原油的联系.还指出了储层定量荧光技术在应用中需要注意的问题以及在其他方面的应用前景.

       

    • 图  1  QGF光谱及参数

      Fig.  1.  QGF spectrum and the parameters

      图  2  TSF全息扫描荧光光谱及参数

      Fig.  2.  TSF total scanning fluorescence spectrum and the parameters

      图  3  库车前陆盆地克拉2气田克拉201井储层定量荧光剖面

      Fig.  3.  Quantitative fluorescence integrated profile of K1bs reservoir sandstone samples in kela201well in Kela2 gas field, Kuqa foreland basin

      图  4  库车前陆盆地依深4井侏罗系阿合组储层定量荧光剖面

      Fig.  4.  Quantitative fluorescence integrated profile of J1a reservoir sandstone samples in Yishen 4 well, Kuqa foreland basin

      图  5  库车前陆盆地牙哈5井新近系吉迪克组储层定量荧光综合剖面

      Fig.  5.  Quantitative fluorescence integrated profile of N1j reservoir sandstone samples in YH5 well, kuqa foreland basin

      图  6  澳大利亚中部Eromanga盆地三叠系储层定量荧光综合剖面

      Fig.  6.  Quantitative fluorescence integrated profile of Triassic reservoir sandstone samples in Eromanga basin, the middle of Australia

      图  7  松辽盆地南部乾223井扶余油层颗粒荧光剖面

      Fig.  7.  Quantitative fluorescence integrated profile of K1q reservoir sandstone samples in Qian 223 well, the southern Songliao Basin

      图  8  原油TSF光谱R1参数与Ts/(Ts+Tm)成熟度参数相关关系

      Fig.  8.  Cross plot of TSF parameter and the thermal maturity biomarkar parameter Ts/(Ts+Tm)

      图  9  前陆盆地不同地区原油TSF光谱参数与饱和烃气相色谱(光谱图单位:pc)

      Fig.  9.  Summary diagrams of three regions of Gas chromatogram of saturated hydrocarbon distribution profile and TSF spectrum

      表  1  储层定量荧光分析仪器参数设置

      Table  1.   Instrument parameters in reservoir quantitative fluorescence analysis

      参数设置QGF分析QGF+分析QGF-E分析TSF/iTSF分析
      采集类型荧光荧光荧光荧光
      扫描模式发射波长发射波长发射波长同步扫描
      X模式波长(nm)波长(nm)波长(nm)波长(nm)
      激发波长(nm)254/228254/228260220~340
      开始(nm)295300300250
      停止(nm)605600600540
      Delta波长(nm)///30
      激发狭缝(nm)1010510
      发射狭缝(nm)20101010
      扫描速度(nm/min)1 2006006001200
      数据间隔(nm)2112
      平均时间(s)0.10.10.10.1
      激发滤光片OpenOpen250~395 nmAuto
      发射滤光片295~1 100 nm295~1 100 nm295~1 100 nmAuto
      PMT检测器电压(V)HighHighMediumMedium
      校正图谱OFFOFFOFFOFF
      三维模式OFFOFFOFFON
      激发停止(nm)///200
      激发增量(nm)///5
      分析附件well plate:96 wellswell plate:96 wells石英比色皿石英比色皿
      下载: 导出CSV
    • [1] Barres, O., Burneau, A., Dubessy, J., et al., 1987.Application of Micro-FT-IR Spectroscopy to Individual Hydrocarbon Fluid Inclusion Analysis.Applied Spectroscopy, 41(6):1000-1008.doi: 10.1366/0003702874447743
      [2] Bodnar, R.J.Bethke, P.M., 1984.Systematics of Stretching of Fluid Inclusions; I, Fluorite and Sphalerite at 1 Atmosphere Confining Pressure.Economic Geology, 79(1):141-161.doi:10.2113/gsecongeo.79.1.141">http://dx.doi.org/10.2113/ gsecongeo.79.1.141
      [3] Bourdet, J., Eadington, P., Volk, H., et al., 2012.Chemical Changes of Fluid Inclusion Oil Trapped during the Evolution of an Oil Reservoir:Jabiru-1A Case Study (Timor Sea, Australia).Marine and Petroleum Geology, 36(1):118-139.doi: 10.1016/j.marpetgeo.2012.05.006
      [4] Burruss, R.C., Cercone, K.R., Harris, P.M., 1983.Fluid Inclusion Petrography and Tectonic-burial History of the Al Ali No.2 well:Evidence for the Timing of Diagenesis and Oil Migration, Northern Oman Foredeep.Geology, 11(10):567-570.doi:10.1130/0091-7613(1983)11<567:FIPATH>2.0.CO;2
      [5] Cao, X.D., Fang, S.H., Gui, L.L., et al., 2013.Application of Quantitative Grain Fluorescence Techniques in Analysis of Characteristics of Hydrocarbon Adjustment in Yingdong Western Qaidam Basin.Science Technology and Engineering, 13(10):2785-2790 (in Chinese with English abstract).
      [6] Cao, X.D., Fang, S.H., Gui, L.L., et al., Application of Quantitative Grain Fluorescence Techinques in Analysis of Charactristics of Hydrocarbon Adjustment in Yingdong Western Qaidam Baisin.Science Technology and Engineering, 13(10):2785-2790 (in chinese with English abstract).
      [7] Fan, J.J., Pan, M., Zhou, H.M., et al., 2014.Hydrocarbon Migration Pathway and Charging Characterization of Yinan-2 Gas Reservoir in Kuqa Depression.Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3):507-514 (in Chinese with English abstract).
      [8] George, S.C., Krieger, F.W., Eadington, P.J., et al., 1997.Geochemical Comparison of Oil-Bearing Fluid Inclusions and Produced Oil from the Toro Sandstone, Papua New Guinea.Organic Geochemistry, 26(3-4):155-173.doi: 10.1016/s0146-6380(97)00004-1
      [9] George, S.C., Volk, H., Ahmed, M., 2007.Geochemical Analysis Techniques and Geological Applications of Oil-Bearing Fluid Inclusions, with some Australian Case Studies.Journal of Petroleum Science and Engineering, 57(1-2):119-138.doi: 10.1016/j.petrol.2005.10.010
      [10] Gui, L.L., Liu, K.Y., Liu, S.B., et al., 2015.Hydrocarbon Charge History of Yingdao Oilfield, Western Qidam Basin.Earth Science, 40(5):890-899 (in Chinese with English abstract).
      [11] Li, Z., Jiang, Z.X., Li, F., 2012.Quantitative Grain Fluorescence Responds to Residual Oil Zones and Paleo-Oil Zones.Spectroscopy and Spectral Analysis, 32(11):3073-3077 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GUAN201211040.htm
      [12] Li, X., Shi, Y.J., Wang, L., et al., 2013.Logging Identification and Evaluation Technique of Tight Sandstion Gas Reserviors:Taking Sulige Gas Field as an Example, 24(1):62-68, 50 (in chinese with English abstract).
      [13] Lisk, M., O'brien, G., Eadington, P., 2002.Quantitative Evaluation of the Oil-Leg Potential in the Oliver Gas Field, Timor Sea, Australia.AAPG Bulletin, 86(9):1531-1542.doi:http:// archives.datapages.com/data/bulletns/2002/09sep/1531/1531
      [14] Liu, K.Y., Eadington, P., 2003.A New Method for Identifying Secondary Oil Migration Pathways.Journal of Geochemical Exploration, 78-79:389-394.doi: 10.1016/s0375-6742(03)00078-5
      [15] Liu, K.Y., Eadington, P., 2005.Quantitative Fluorescence Techniques for Detecting Residual Oils and Reconstructing Hydrocarbon Charge History.Organic Geochemistry, 36(7):1023-1036.doi: 10.1016/j.orggeochem.2005.02.008
      [16] Liu, K.Y., Eadington, P., Middleton, H., et al., 2007.Applying Quantitative Fluorescence Techniques to Investigate Petroleum Charge History of Sedimentary Basins in Australia and Papuan New Guinea.Journal of Petroleum Science and Engineering, 57(1-2):139-151.doi: 10.1016/j.petrol.2005.11.019
      [17] Liu, K.Y., George, S.C., Lu, X., et al.2014.Innovative Fluorescence Spectroscopic Techniques for Rapidly Characterising Oil Inclusions.Organic Geochemistry, 72:34-45.doi: 10.1016/j.orggeochem.2014.04.010
      [18] Lu, X.S., Liu, K.Y., Zhuo, Q.G., et al., 2012.Palaeo-Fluid Evidence for the Multi-Stage Hydrocarbon Charges in Kela-2 Gas Field, Kuqa Foreland Basin, Tarim Basin.Petroleum Exploration and Development, 39(5):537-544 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201205003.htm
      [19] Munz, I.A., 2001.Petroleum Inclusions in Sedimentary Basins:Systematics, Analytical Methods and Applications.Lithos, 55(1-4):195-212.doi: 10.1016/s0024-4937(00)00045-1
      [20] Ralston, C.Y., Wu, X., Mullins, O.C., 1996.Quantum Yields of Crude Oils.Applied Spectroscopy, 50(12):1563-1568.doi: 10.1366/0003702963904601
      [21] Ryder, A.G., Analysis of Crude Petroleum Oils Using Fluorescence Spectroscopy.Reviews in Fluorescence, 57:169-198.doi: 10.1007/0-387-23690-2_8
      [22] Song, W.J., Jiang, T.W., Feng, J.L., et al., 2005.Geological Features and Exploitation Mechanism of the Yaha Condensate Gas Field in the Tarim Basin.Chinese Journal of Geology:Scientia Geologica Sinica, 40(2):274-283 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX20050200B.htm
      [23] Wu, F., Fu, X.F., Zhuo, Q.G., et al., 2014.Analysis of hydrocarbon acculation process of Yingmai 7 Structural belt in Kuqa Depression based on Quantitative fluorescence techniqes.Journal of Northeast Petroleum University, 38(4):32-34, 66 (in chinese with English abstract).
      [24] Zhang, L.H., Zhou, C.C., Liu, G.Q., et al., 2006.Influence of Pore Structures on Electric Properties and Well Logging Evaluation in Low Porosity and Permeability Reservoirs.Petroleum Exploration and Development, 33(6):671-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200606005.htm
      [25] Zhang, M.L., Shi, Y.J., 2005.Archie's Electrical Parameters of Complex Pore Texture in Sandstone Reservoir.Geophysical Prospecting for Petroleum, 44(1):21-23, 28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200505015.htm
      [26] 曹许迪, 方世虎, 桂丽黎, 等, 2013.利用定量颗粒荧光技术分析柴西英东地区油气调整特征.科学技术与工程, 13(10): 2785-2790. doi: 10.3969/j.issn.1671-1815.2013.10.033
      [27] 范俊佳, 潘懋, 周海民, 等, 2014.库车坳陷依南2气藏油气运移路径及充注特征.北京大学学报:自然科学版, 50(3): 507-514. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201403013.htm
      [28] 桂丽黎, 刘可禹, 柳少波, 等, 2015.柴达木盆地西部英东地区油气成藏过程.地球科学, 40(5): 890-899. http://www.earth-science.net/WebPage/Article.aspx?id=3081
      [29] 李霞, 石玉江, 王玲, 等, 2013.致密砂岩气层测井识别与评价技术——以苏里格气田为例.天然气地球科学, 24(01): 62-68. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201301009.htm
      [30] 李卓, 姜振学, 李峰, 2012.古油层和残余油层的定量颗粒荧光响应.光谱学与光谱分析, 32(11): 3073-3077. doi: 10.3964/j.issn.1000-0593(2012)11-3073-05
      [31] 鲁雪松, 刘可禹, 卓勤功, 等, 2012.库车克拉2气田多期油气充注的古流体证据.石油勘探与开发, 39(5): 537-544. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205003.htm
      [32] 宋文杰, 江同文, 冯积累, 等, 2005.塔里木盆地牙哈凝析气田地质特征与开发机理研究.地质科学, 40(2): 274-283. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX20050200B.htm
      [33] 吴凡, 付晓飞, 卓勤功, 等, 2014.基于定量荧光技术的库车拗陷英买7构造带古近系油气成藏过程分析.东北石油大学学报, 38(4): 32-34, 66. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201404006.htm
      [34] 张龙海, 周灿灿, 刘国强, 等, 2006.孔隙结构对低孔低渗储集层电性及测井解释评价的影响.石油勘探与开发, 33(6): 671-676. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200606005.htm
      [35] 张明禄, 石玉江, 2005.复杂孔隙结构砂岩储层岩电参数研究.石油物探, 44(1): 21-23, 28. http://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200505015.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  4183
    • HTML全文浏览量:  1770
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-08-22
    • 刊出日期:  2016-03-15

    目录

      /

      返回文章
      返回