• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    频率域航空电磁三维矢量有限元正演模拟

    黄威 殷长春 贲放 刘云鹤 陈辉 蔡晶

    黄威, 殷长春, 贲放, 刘云鹤, 陈辉, 蔡晶, 2016. 频率域航空电磁三维矢量有限元正演模拟. 地球科学, 41(2): 331-342. doi: 10.3799/dqkx.2016.025
    引用本文: 黄威, 殷长春, 贲放, 刘云鹤, 陈辉, 蔡晶, 2016. 频率域航空电磁三维矢量有限元正演模拟. 地球科学, 41(2): 331-342. doi: 10.3799/dqkx.2016.025
    Huang Wei, Yin Changchun, Ben Fang, Liu Yunhe, Chen Hui, Cai Jing, 2016. 3D Forward Modeling for Frequency AEM by Vector Finite Element. Earth Science, 41(2): 331-342. doi: 10.3799/dqkx.2016.025
    Citation: Huang Wei, Yin Changchun, Ben Fang, Liu Yunhe, Chen Hui, Cai Jing, 2016. 3D Forward Modeling for Frequency AEM by Vector Finite Element. Earth Science, 41(2): 331-342. doi: 10.3799/dqkx.2016.025

    频率域航空电磁三维矢量有限元正演模拟

    doi: 10.3799/dqkx.2016.025
    基金项目: 

    国家自然科学基金项目 41530320

    中国科学院重大科研装备研制项目 ZDYZ2012-1-03

    国家自然科学基金项目 41274121

    详细信息
      作者简介:

      黄威(1989-),女,博士研究生,主要从事电磁法的理论研究与应用.E-mail: huangwei2012511@163.com

      通讯作者:

      殷长春,E-mail: yinchangchun@jlu.edu.cn

    • 中图分类号: P631.3

    3D Forward Modeling for Frequency AEM by Vector Finite Element

    • 摘要: 目前有限元技术的开发及在电磁勘查技术中的应用已日趋成熟.然而,有限元正演模拟主要集中于地面和海洋电磁,航空电磁三维有限元模拟尚没有受到足够重视.以前人工作为基础,利用结构化网格实现了航空电磁系统的三维矢量有限元正演模拟.从二次场双旋度矢量非齐次亥姆霍兹方程出发,应用广义变分原理推导出变分方程,并采用六面体单元剖分,将场置于单元棱边上,对每个单元应用线性插值,最后合成含有稀疏矩阵的线性方程组.针对航空电磁多源性问题,利用MUMPS(multifrontal massively parallel sparse direct solver)直接求解器进行求解,在保证精度的前提下大幅度提高计算速度.利用单个异常体模型检验算法的精度和软件的稳定性,进而通过典型地电模型的模拟验证算法的有效性.对不同地下电性结构正演模拟结果进行对比分析,进一步研究了覆盖层和垂直接触带等典型构造对航空电磁响应的影响特征.

       

    • 图  1  区域剖分和六面体单元示意

      Fig.  1.  Sketch of regional subdivision and hexahedron element

      图  2  三维矢量有限元单个异常体模型

      Newman and Alumbaugh (1995)

      Fig.  2.  A single abnormal body model for 3D vector FE

      图  3  本文结果与Newman and Alumbaugh (1995)的IE模拟结果对比

      a, b.单个异常体模型的响应;c, d.各自响应的相对误差

      Fig.  3.  Comparison of FE results from this paper with those from Newman and Alumbaugh (1995)

      图  4  不同频率(900 Hz, 5 000 Hz和23 000 Hz)和不同埋深(20 m, 30 m和50 m)的单个异常体航空电磁响应

      Fig.  4.  AEM responses for a single abnormal body in the earth for different frequencies (900 Hz, 5 000 Hz and 23 000 Hz) and different buried depths (20 m, 30 m and 50 m)

      图  5  覆盖层异常体模型

      Fig.  5.  3D model with overburden

      图  6  覆盖层下多个异常体的航空电磁响应

      Fig.  6.  AEM responses for multiple abnormal bodies under the overburden

      图  7  垂直接触带模型

      Fig.  7.  A model with a vertical contact zone

      图  8  3种不同模型的电磁响应

      Fig.  8.  AEM responses for three different models

      图  9  倾斜板状体模型

      Fig.  9.  An inclined plate model

      图  10  倾斜板状体模型响应

      Fig.  10.  AEM responses for an inclined plate model

      图  11  Ⅴ型板状体模型

      Fig.  11.  V-shaped plate model

      图  12  Ⅴ型板状体模型响应

      Fig.  12.  Response of a V-shaped plate model

    • [1] Andersen, L.S., Volakis, J.L., 1998.Hierarchical Tangential Vector Finite Elements for Tetrahedra.IEEE Microwave and Guided Wave Letters, 8(3):127-129.doi: 10.1109/75.661137
      [2] Agullo, E., 2008.Méthodes Directes Hors-Mémoire (Out-of-Core) Pour la Résolution de Systèmes Linéaires Creux de Grande Taille(Dissertation).Université Sciences et Technologies-Bordeaux I, Bordeaux.
      [3] Amestoy, P.R., Duff, I.S., L'Excellent, J.Y., et al., 2012.On Computing Inverse Entries of a Sparse Matrix in an Out-Of-Core Environment.SIAM Journal on Scientific Computing, 34(4):A1975-A1999.doi: 10.1137/100799411
      [4] Amestoy, P.R., Duff, I.S., L'Excellent, J.Y., et al., 2001.A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling.SIAM Journal on Matrix Analysis and Applications, 23(1):15-41.doi: 10.1137/s0895479899358194
      [5] Avdeev, D.B., Kuvshinov, A.V., Pankratov, O.V., et al., 1998.Three-Dimensional Frequency-Domain Modeling of Airborne Electromagnetic Responses.Exploration Geophysics, 29(2):111.doi: 10.1071/eg998111
      [6] Cai, J., Qi, Y.F., Yin, C.C., 2014.Weighted Laterally-Constrained Inversion of Frequency-Domain Airborne EM Data.Chinese Journal of Geophysics, 57(3):953-960 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract10223.shtml
      [7] Coggon, J.H., 1971.Electromagnetic and Electrical Modeling by the Finite Element Method.Geophysics, 36(1):132-155.doi: 10.1190/1.1440151
      [8] Fan, C.S., 2013.Research on Complex Resistivity Forward and Inversion with Finite Element Method and Its Application(Dissertation).Jilin University, Changchun, 51-58 (in Chinese with English abstract).
      [9] Farquharson, C.G., Miensopust, M.P., 2011.Three-Dimensional Finite-Element Modelling of Magnetotelluric Data with a Divergence Correction.Journal of Applied Geophysics, 75(4):699-710.doi: 10.1016/j.jappgeo.2011.09.025
      [10] Fèvre, A., L'Excellent, J.Y., Pralet, S., 2006.Scilab and MATLAB Interfaces to MUMPS.Institut National de Recherche en Informatique et en Automatique, Paris.
      [11] Fountain, D., 1998.Airborne Electromagnetic Systems-50 Years of Development.Exploration Geophysics, 29(2):1.doi: 10.1071/eg998001
      [12] Fraser, D.C., 1981.Magnetite Mapping with a Multicoil Airborne Electromagnetic System.Geophysics, 46(11):1579-1593.doi: 10.1190/1.1441165
      [13] Gu, G.W., Wu, W.P., Li, T.L., 2014.Modeling for the Effect of Magnetotelluric 3D Topography Based on the Vector Finite-Element Method.Journal of Jilin University (Earth Science Edition), 44(5):1678-1686 (in Chinese with English abstract). https://www.researchgate.net/publication/286941298_Modeling_for_the_effect_of_magnetotelluric_3D_topography_based_on_the_vector_finite-element_method
      [14] Haber, E., Ascher, U.M., Oldenburg, D.W., 2004.Inversion of 3D Electromagnetic Data in Frequency and Time Domain Using an Inexact All-at-Once Approach.Geophysics, 69(5):1216-1228.doi: 10.1190/1.1801938
      [15] Hauser, J., Gunning, J., Annetts, D., 2015.Probabilistic Inversion of Airborne Electromagnetic Data under Spatial Constraints.Geophysics, 80(2):E135-E146.doi: 10.1190/geo2014-0389.1
      [16] Hohmann, G.W., 1975.Three-Dimensional Induced Polarization and Electromagnetic Modeling.Geophysics, 40(2):309-324.doi: 10.1190/1.1440527
      [17] Hu, Y.C., 2015.Three Dimensional Tensor Controlled Source Electromagnetic Modeling Based the Vector Finite Element(Dissertation).Jilin University, Changchun, 58-59 (in Chinese with English abstract).
      [18] Huang, H., Palacky, G.J., 1991.Damped Least-Squares Inversion of Time-Domain Airborne EM Data Based on Singular Value Decomposition1.Geophysical Prospecting, 39(6):827-844. doi: 10.1111/gpr.1991.39.issue-6
      [19] Huang, H.P., Wang, W.Z., 1990.Inversion of Time-Domain Airborne Electromagnetic Data.Chinese Journal of Geophysics, 33(1):87-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199001012.htm
      [20] Huang, J.G., Ruan, B.Y., Bao, G.S., 2002.Fem under Quantic-Boundary Condition for Modeling Resistivity on 3-D Geoelectric Section.Journal of Guilin Institute of Technology, (1):11-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX200201002.htm
      [21] Jahandari, H., Farquharson, C.G., 2014.A Finite-Volume Solution to the Geophysical Electromagnetic Forward Problem Using Unstructured Grids.Geophysics, 79(6):E287-E302.doi: 10.1190/GEO2013-0312.1.
      [22] Jin, J.M., 1998.Electromagnetic FEM.Translated by Wang J.G., Xi'an University of Electronic Science and Technology Press, Xi'an, 96 (in Chinese).
      [23] Key, K., Weiss, C., 2006.Adaptive Finite-Element Modeling Using Unstructured Grids: The 2D Magnetotelluric Example.Geophysics, 71(6):G291-G299.doi: 10.1190/1.2348091
      [24] Li, Y., Wu, X.P., Lin, P.R., 2015.Three-Dimensional Controlled Source Electromagnetic Finite Element Simulation Using the Secondary Field for Continuous Variation of Electrical Conductivity within Each Block.Chinese Journal of Geophysics, 58(3):1072-1087 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract11374.shtml
      [25] Liu, Y.H., Yin, C.C., 2013.3D Inversion for Frequency-Domain HEM Data.Chinese Journal of Geophysics, 56(12):4278-4287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201312030.htm
      [26] Livelybrooks, D., 1993.Program 3Dfeem: A Multidimensional Electromagnetic Finite Element Model.Geophysical Journal International, 114(3):443-458.doi: 10.1111/j.1365-246x.1993.tb06978.x
      [27] Macnae, J.C., Smith, R., Polzer, B.D., et al., 1991.Conductivity-Depth Imaging of Airborne Electromagnetic Step-Response Data.Geophysics, 56(1):102-114.doi: 10.1190/1.1442945
      [28] Mitsuhata, Y., Uchida, T., 2004.3D Magnetotelluric Modeling Using the T-Ω Finite-Element Method.Geophysics, 69(1):108-119.doi: 10.1190/1.1649380
      [29] Nabighian, M.N., 1992.Electromagnetic Methods in Applied Geophysics Volume 1, Theory Society of Exploration Geophysicists.Translated by Zhao, J.X., et al., Geology Press, Beijing, 306 (in Chinese).
      [30] Newman, G.A., Alumbaugh, D.L., 1995.Frequency-Domain Modelling of Airborne Electromagnetic Responses Using Staggered Finite Differences1.Geophysical Prospecting, 43(8):1021-1042.doi: 10.1111/j.1365-2478.1995.tb00294.x
      [31] Oldenburg, D.W., Haber, E., Shekhtman, R., 2013.Three Dimensional Inversion of Multisource Time Domain Electromagnetic Data.Geophysics, 78(1):E47-E57.doi: 10.1190/geo2012-0131.1
      [32] Pemberton, R.H., 1962.Airborne Electromagnetics in Review.Geophysics, 27(5):691-713.doi: 10.1190/1.1439081
      [33] Puzyrev, V., Koldan, J., de la Puente, J., et al., 2013.A Parallel Finite-Element Method for Three-Dimensional Controlled-Source Electromagnetic Forward Modelling.Geophysical Journal International, 193(2):678-693.doi: 10.1093/gji/ggt027
      [34] Rachowicz, W., Zdunek, A., 2011.Application of the FEM with Adaptivity for Electromagnetic Inverse Medium Scattering Problems.Computer Methods in Applied Mechanics and Engineering, 200(29-32):2337-2347.doi: 10.1016/j.cma.2011.04.005
      [35] Raiche, A., 1998.Modelling the Time-Domain Response of AEM Systems.Exploration Geophysics, 29(2):103-106.doi: 10.1071/eg998103
      [36] Ruan, B.Y., Xiong, B., Xu, S.Z., 2001.Finite Element Method for Modeling Resistivity Sounding on 3-D Geoelectric Section.Earth Science, 26 (1):73-77 (in Chinese with English abstract). http://downloads.hindawi.com/journals/mpe/2017/8027616.pdf
      [37] Schwarzbach, C., Haber, E., 2013.Finite Element Based Inversion for Time-Harmonic Electromagnetic Problems.Geophysical Journal International, 193(2):615-634.doi: 10.1093/gji/ggt006
      [38] Tang, J.T., Zhang, L.C., Gong, J.Z., et al., 2014.3D Frequency Domain Controlled Source Electromagnetic Numerical Modeling with Coupled Finite-Infinite Element Method.Journal of Central South University (Science and Technology), 45(4):1251-12603 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201404033.htm
      [39] Tang, J.T., Wang, F.Y., Ren, Z.Y., 2010.2.5D DC Resistivity Modeling by Adaptive Finite-Element Method with Unstructured Triangulation.Chinese Journal of Geophysics, 53(3):708-716.doi: 10.3969/j.issn.0001-5733.2010.03.026
      [40] Tong, X.Z., Liu, J.X., Xie, W., et al., 2009.Three-Dimensional Forward Modeling for Magnetotelluric Sounding by Finite Element Method.Journal of Central South University of Technology, 16(1):136-142.doi: 10.1007/s11771-009-0023-5
      [41] Wang, W.P., Zeng, Z.F., Wu, C.P., 2015.Coil Attitude Influence and Attitude Correction Method for Frequency Domain Airborne Electromagnetic System.Earth Science, 7(7):1266-1275 (in Chinese with English abstract). https://www.researchgate.net/publication/290024870_Vehicle-borne_array_radar_attitude_correction_method
      [42] Wannamaker, P.E., Hohmann, G.W., SanFilipo, W.A., 1984.Electromagnetic Modeling of Three-Dimensional Bodies in Layered Earths Using Integral Equations.Geophysics, 49(1):60-74.doi: 10.1190/1.1441562
      [43] Xu, S.Z., 1994.The Finite Element Method in Geophysics.Science Press, Beijing, 247 (in Chinese).
      [44] Yang, B., Xu, Y.X., He, Z.X., 2012.3D Frequency-Domain Modeling of Marine Controlled Source Electromagnetic Responses with Topography Using Finite Volume Method.Chinese Journal of Geophysics, 55(4):1390-1399 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201204036.htm
      [45] Yang, H.J., Pan, H.P., Luo, M., et al., 2015.Numerical Modeling for Transient Anomalous Secondary Electromagnetic of Tabular Orebodyin Borehole.Earth Science, 40(10):1689-1700 (in Chinese with English abstract). https://www.researchgate.net/publication/249864657_The_borehole_transient_electromagnetic_response_of_a_three-dimensional_fracture_zone_in_a_conductive_half-space
      [46] Yin, C.C., Hodges, G., 2007.Simulated Annealing for Airborne EM Inversion.Geophysics, 72(4):F189-F195.doi: 10.1190/1.2736195
      [47] Yin, C.C., Huang, W., Ben, F., 2013.The Full-Time Electromagnetic Modeling for Time-Domain Airborne Electromagnetic Systems.Chinese Journal of Geophysics, 56(9):3153-3162.(in Chinese with English abstract) http://manu39.magtech.com.cn/Geophy_en/EN/abstract/abstract9765.shtml
      [48] Yin, C.C., Huang, X., Liu, Y.H., et al., 2014.Footprint for Frequency-Domain Airborne Electromagnetic Systems.Geophysics, 79(6):E243-E254.doi: 10.1190/geo2014-0007.1
      [49] Yin, C.C., Qi, Y.F., Liu, Y.H., et al., 2014.Trans-Dimensional Bayesian Inversion of Frequency-Domain Airborne EM Data.Chinese Journal of Geophysics, 57(9):2971-2980 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract10735.shtml
      [50] Yin, C.C., Zhang, B., Liu, Y.H., et al., 2015.2.5-D Forward Modeling of the Time-Domain Airborne EM System in Areas with Topographic Relief.Chinese Journal of Geophysics, 58(4):1411-1424.(in Chinese with English abstract) http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract11402.shtml
      [51] Zhang, J.F., Tang, J.T., Yu, Y., et al., 2009.Three Dimensional Controlled Source Electromagnetic Numerical Simulation Based on Electric Field Vector Wave Equation Using Finite Element Method.Chinese Journal of Geophysics, 52(12):3132-3141 (in Chinese with English abstract). https://www.researchgate.net/publication/282794995_Three-dimensional_CSAMT_numerical_modeling_using_finite_difference_method_based_on_the_SQMR_method
      [52] Zyserman, F.I., Santos, J.E., 2000.Parallel Finite Element Algorithm with Domain Decomposition for Three-Dimensional Magnetotelluric Modelling.Journal of Applied Geophysics, 44(4):337-351.doi: 10.1016/S0926-9851(00)00012-4
      [53] 蔡晶, 齐彦福, 殷长春, 2014.频率域航空电磁数据的加权横向约束反演.地球物理学报, 57(1):953-960. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403024.htm
      [54] 范翠松, 2013. 基于有限元法的复电阻率正反演研究及应用(博士学位论文). 吉林大学, 长春, 51-58. http://cdmd.cnki.com.cn/Article/CDMD-10183-1013193112.htm
      [55] 顾观文, 吴文鹏, 李桐林, 2014.大地电磁场三维地形影响的矢量有限元数值模拟.吉林大学学报(地球科学版), 44(5):1678-1686. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405028.htm
      [56] 胡英才, 2015. 矢量有限元三维CSAMT正演模拟(博士学位论文). 长春: 吉林大学, 58-59.
      [57] 黄皓平, 王维中, 1990.时间域航空电磁数据的反演.地球物理学报, 33(1):87-97. http://cdmd.cnki.com.cn/Article/CDMD-10183-1015590947.htm
      [58] 黄俊革, 阮百尧, 鲍光淑, 2002.齐次边界条件下三维地电断面电阻率有限元数值模拟法.桂林工学学院学报, 22(1):11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200201002.htm
      [59] 金建铭, 1998. 电磁场有限元方法. 王建国译, 西安: 西安电子科技大学出版社, 96.
      [60] 李勇, 吴小平, 林平荣, 2015.基于二次场电导率分块连续变化的三维可控源电磁有限元数值模拟.地球物理学报, 58(3):1072-1087. doi: 10.6038/cjg20150331
      [61] 刘云鹤, 殷长春, 2013.三维频率域航空电磁反演研究.地球物理学报, 56(12):4278-4287. doi: 10.6038/cjg20131230
      [62] Nabighian, M. N. , 1992. 勘察地球物理电磁法第一卷理论. 赵经祥等译, 北京: 地质出版社, 306.
      [63] 阮百尧, 熊彬, 徐世浙, 2001.三维地电断面电阻率测深有限元数值模拟.地球科学, 26(1):73-77. http://www.earth-science.net/WebPage/Article.aspx?id=812
      [64] 汤井田, 张林成, 公劲喆, 等, 2014.三维频率域可控源电磁法有限元-无限远结合数值模拟, 中南大学学报(自然科学版), 45(4):1251-1260. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201404033.htm
      [65] 王卫平, 曾昭发, 吴成平, 2015.频率域航空电磁系统线圈姿态变化影响及校正方法.地球科学, 7(7):1266-1275. http://www.earth-science.net/WebPage/Article.aspx?id=3121
      [66] 徐世浙, 1994.地球物理中的有限单元法.北京:科学出版社, 247.
      [67] 杨波, 徐义贤, 何展翔, 2012.考虑海底地形的三维频率域可控源电磁响应有限体积法的模拟.地球物理学报, 55(4):1390-1399. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201204036.htm
      [68] 杨怀杰, 潘和平, 骆淼, 等, 2015.井中板状矿体瞬态异常二次场数值模拟.地球科学, 40(10):1689-1700. http://www.earth-science.net/WebPage/Article.aspx?id=3171
      [69] 殷长春, 黄威, 贲放, 2013.时间域航空电磁系统瞬变全时响应正演模拟.地球物理学报, 56(9):3153-3162. doi: 10.6038/cjg20130928
      [70] 殷长春, 齐彦福, 刘云鹤, 等, 2014.频率域航空电磁数据变维数贝叶斯反演研究.地球物理学报, 57(9):2971-2980. doi: 10.6038/cjg20140922
      [71] 殷长春, 张博, 刘云鹤, 等, 2015.2.5维起伏地表条件下时间域航空电磁正演模拟.地球物理学报, 58(4):1411-1424. doi: 10.6038/cjg20150427
      [72] 张继峰, 汤井田, 喻言, 等.2009.基于电场矢量波动方程的三维可控源电磁法有限元法数值模拟.地球物理学报, 52(12):3132-3141. doi: 10.3969/j.issn.0001-5733.2009.12.023
    • 加载中
    图(12)
    计量
    • 文章访问数:  4278
    • HTML全文浏览量:  1174
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-09-25
    • 刊出日期:  2016-02-15

    目录

      /

      返回文章
      返回