Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan
-
摘要: 火神庙岩体位于华北陆块南缘栾川矿集区西部,为一杂岩体,该岩体与火神庙钼矿床密切相关.目前,人们对火神庙岩体的研究程度较低,严重制约了对火神庙钼矿床成因的认识.系统开展了年代学、地球化学和Hf同位素组成研究.结果表明,石英闪长岩、二长花岗岩和花岗斑岩的形成年龄分别为150.3±0.6Ma、146.0±0.6Ma和145.1±0.5Ma,为栾川矿集区晚侏罗世第2次大规模岩浆活动的产物.火神庙杂岩体属于I型花岗岩,是不同源区部分熔融形成的岩浆上升就位的结果.石英闪长岩是富集岩石圈地幔部分熔融的产物;二长花岗岩和花岗斑岩是富集岩石圈地幔部分熔融形成的镁铁质岩浆与太华群TTG岩系部分熔融形成的长英质岩浆混合后上升就位的结果.Abstract: The Huoshenmiao pluton located in the west of the Luanchuan ore district, southern margin of the North China Craton (NCC) is mainly composed of quartz diorite, monzo-granite and granite porphyry. The Huoshenmiao pluton is closely related to the Huoshenmiao Mo deposit. While the degree of research on the Huoshenmiao pluton is very low, which seriously restrict the understanding of the genesis of the Huoshenmiao Mo deposit. Three types of rock including quartz diorite, monzo-granite and granite porphyry has been researched by zircon U-Pb chronology, geochemistry and Hf isotope. The forming ages of quartz diorite, monzo-granite and granite porphyry are 150.3±0.6Ma, 146.0±0.6Ma and 145.1±0.5Ma respectively, and are products of the second magmatism of the Luanchuan ore district, Late Jurassic. Geochemistry and zircon Hf isotope show that the Huoshenmiao pluton belongs to I-type granite, and it results from ascending magma formed by partial melting of different source regions. The quartz diorite stems from remelting of the enriched mantle, while the monzo-granite and granite porphyry are the products of mafic magma derived from remelting of the enriched mantle mixed with felsic magma derived from remelting of the Taihua TTG.
-
Key words:
- zircon U-Pb chronology /
- geochemistry /
- Hf isotope /
- Huoshenmiao pluton /
- West Henan
-
图 1 栾川钼多金属矿集区地质简图
1.新元古界-早古生界陶湾群含砾灰岩、大理岩、千枚岩和石英岩;2.新元古界栾川群碎屑岩、碳酸盐岩和碱性火山岩;3.中元古界-新元古界宽坪群大理岩和基性火山岩;4.中元古界官道口群碎屑岩和含燧石条带大理岩;5.早白垩世花岗岩;6.晚侏罗世花岗斑岩;7.断裂;8.斑岩-矽卡岩型钼矿床;9.矽卡岩型多金属硫铁矿床;10.热液脉型铅锌银矿床;a.太行山断裂带;b.三门峡-宝丰断裂带;c.栾川断裂带;d.商丹断裂带;e.南漳断裂带;据叶会寿等(2006)修改
Fig. 1. Geological sketch of the Luanchuan ore district
图 6 火神庙岩体A/CNK-A/NK图解(a)及SiO2-K2O图解(b)
据Peccerillo and Taylor(1976)和Rickwood(1989)
Fig. 6. SiO2-K2O diagrams (a) and A/CNK-A/NK (b) of the granites from the Huoshenmiao pluton
图 7 火神庙岩体微量元素原始地幔标准化蛛网图和稀土元素球粒陨石标准化图
Fig. 7. Primitive mantle normalized trace element spider diagrams and chondrite normalized REE patterns of the granites from the Huoshenmiao pluton
表 1 火神庙岩体LA-MC-ICPMS错石U-Pb年龄测定结果
Table 1. LA-MC-ICPMS zircon U-Pb data of the Huoshenmiao pluton
样品号 Pb(10-6) U(10-6) 232Th/238U 同位素比值 同位素年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ B34HSM1 9 350 0.700 0.0496 0.0021 0.1625 0.0070 0.0237 0.0002 178 97 153 7 151 1 B34HSM2 9 346 0.750 0.0491 0.0020 0.1603 0.0067 0.0237 0.0002 154 96 151 6 151 1 B34HSM-3 15 575 1.020 0.0494 0.0016 0.1611 0.0054 0.0236 0.0002 168 77 152 5 151 1 B34HSM-4 12 471 0.850 0.0498 0.0032 0.1610 0.0102 0.0234 0.0002 188 148 152 10 149 2 B34HSM-5 11 436 0.800 0.0494 0.0025 0.1610 0.0084 0.0236 0.0002 168 119 152 8 151 1 B34HSM-6 8 324 0.850 0.0496 0.0059 0.1618 0.0194 0.0237 0.0003 176 277 152 18 151 2 B34HSM-7 11 433 0.750 0.0495 0.0019 0.1606 0.0067 0.0235 0.0002 170 90 151 6 150 2 B34HSM-8 12 460 0.980 0.0498 0.0014 0.1617 0.0046 0.0235 0.0002 187 64 152 4 150 1 B34HSM-9 11 443 0.720 0.0493 0.0013 0.1601 0.0043 0.0236 0.0002 162 61 151 4 150 1 B34HSM-10 6 245 0.710 0.0496 0.0022 0.1612 0.0071 0.0236 0.0002 178 101 152 7 150 1 B34HSM-11 8 333 0.660 0.0497 0.0024 0.1614 0.0079 0.0235 0.0002 183 112 152 7 150 1 B34HSM-12 11 435 0.700 0.0494 0.0013 0.1606 0.0044 0.0236 0.0002 168 62 151 4 150 1 B34HSM-13 11 419 0.670 0.0499 0.0015 0.1625 0.0051 0.0236 0.0002 191 70 153 5 150 2 B34HSM-14 10 363 0.750 0.0499 0.0013 0.1626 0.0044 0.0236 0.0002 191 61 153 4 151 1 B34HSM-15 13 488 0.940 0.0491 0.0013 0.1595 0.0044 0.0236 0.0002 152 62 150 4 150 1 B34HSM-16 13 512 0.860 0.0496 0.0015 0.1617 0.0055 0.0237 0.0003 174 71 152 5 151 2 B34HSM-17 10 395 0.640 0.0492 0.0020 0.1606 0.0069 0.0237 0.0002 159 97 151 6 151 1 B34HSM-18 7 296 0.580 0.0496 0.0018 0.1601 0.0060 0.0234 0.0002 177 85 151 6 149 1 B34HSM-19 11 427 0.660 0.0498 0.0015 0.1609 0.0050 0.0234 0.0002 186 70 151 5 149 1 B34HSM-20 6 230 0.540 0.0494 0.0024 0.1611 0.0080 0.0237 0.0002 167 115 152 8 151 1 B34HSM-21 11 454 0.730 0.0497 0.0014 0.1598 0.0047 0.0233 0.0002 183 67 151 4 148 1 B34HSM-22 11 453 0.730 0.0491 0.0013 0.1603 0.0043 0.0237 0.0002 154 62 151 4 151 1 B34HSM-23 10 418 0.680 0.0493 0.0013 0.1610 0.0044 0.0237 0.0002 161 61 152 4 151 1 B34HSM-24 8 321 0.620 0.0494 0.0018 0.1616 0.0061 0.0237 0.0002 169 87 152 6 151 1 B64jHSM-1 30 527 0.585 0.0962 0.0025 0.7521 0.0512 0.0567 0.0029 1551 48 569 39 356 18 B64jHSM-2 13 567 0.593 0.0541 0.0014 0.1705 0.0044 0.0229 0.0001 374 58 160 4 146 1 B64jHSM-3 11 446 0.937 0.0592 0.0013 0.1868 0.0042 0.0229 0.0001 573 48 174 4 146 1 B64jHSM-4 12 480 0.808 0.0502 0.0009 0.1586 0.0029 0.0229 0.0001 204 42 149 3 146 1 B64jHSM-5 11 460 0.883 0.0671 0.0028 0.2119 0.0089 0.0229 0.0002 841 86 195 8 146 1 B64jHSM-6 11 462 0.890 0.0616 0.0040 0.1950 0.0138 0.0229 0.0002 662 140 181 13 146 1 B64jHSM-7 11 420 1.037 0.0635 0.0011 0.2148 0.0040 0.0245 0.0001 725 37 198 4 156 1 B64jHSM-8 33 466 0.692 0.0935 0.0009 0.8627 0.0267 0.0669 0.0017 1497 18 632 20 418 11 B64jHSM-9 9 378 1.235 0.0544 0.0012 0.1725 0.0040 0.0230 0.0001 388 48 162 4 147 1 B64jHSM-10 13 551 0.640 0.0513 0.0007 0.1619 0.0022 0.0229 0.0001 253 31 152 2 146 1 B64jHSM-11 13 554 0.625 0.0517 0.0008 0.1630 0.0026 0.0229 0.0001 270 37 153 2 146 1 B64jHSM-12 9 338 1.428 0.0548 0.0007 0.1733 0.0022 0.0229 0.0001 403 28 162 2 146 1 B64jHSM-13 9 346 1.380 0.0751 0.0019 0.2370 0.0061 0.0229 0.0001 1071 52 216 6 146 1 B64jHSM-14 49 504 0.461 0.0866 0.0009 1.1371 0.0343 0.0953 0.0025 1351 20 771 23 587 15 B64jHSM-15 8 326 1.545 0.0494 0.0019 0.1561 0.0061 0.0229 0.0001 165 89 147 6 146 1 B64jHSM-16 9 393 0.317 0.0587 0.0012 0.1851 0.0039 0.0229 0.0001 554 43 172 4 146 1 B64jHSM-17 9 452 0.063 0.0583 0.0006 0.1820 0.0019 0.0226 0.0001 543 22 170 2 144 1 B64jHSM-18 14 573 0.581 0.0554 0.0010 0.1748 0.0033 0.0229 0.0001 429 40 164 3 146 1 B64jHSM-19 8 291 1.829 0.0531 0.0013 0.1673 0.0042 0.0229 0.0001 332 55 157 4 146 1 B64jHSM-20 14 585 0.557 0.0555 0.0009 0.1752 0.0030 0.0229 0.0001 433 37 164 3 146 1 B64jHSM-21 13 540 0.658 0.0547 0.0009 0.1724 0.0027 0.0229 0.0001 401 36 162 3 146 1 B64jHSM-22 9 367 1.309 0.0510 0.0011 0.1607 0.0034 0.0229 0.0001 241 48 151 3 146 1 B64jHSM-23 12 507 0.738 0.0577 0.0012 0.1824 0.0041 0.0229 0.0001 519 48 170 4 146 1 B64jHSM-24 10 396 1.142 0.0676 0.0012 0.2129 0.0041 0.0228 0.0001 857 36 196 4 146 1 B33HSM-1 7 246 2.300 0.0491 0.0021 0.1525 0.0067 0.0226 0.0001 150 102 144 6 144 1 B33HSM-2 3 115 1.440 0.0485 0.0093 0.1526 0.0289 0.0228 0.0002 122 450 144 27 146 2 B33HSM-3 16 626 1.730 0.0489 0.0007 0.1513 0.0020 0.0224 0.0001 144 32 143 2 143 1 B33HSM-4 4 164 1.700 0.0492 0.0019 0.1527 0.0060 0.0225 0.0001 158 92 144 6 144 1 B33HSM-5 10 416 1.420 0.0491 0.0009 0.1521 0.0029 0.0225 0.0001 152 44 144 3 143 1 B33HSM-6 10 386 1.740 0.0489 0.0009 0.1523 0.0028 0.0226 0.0001 145 42 144 3 144 1 B33HSM-7 9 318 2.420 0.0487 0.0013 0.1528 0.0039 0.0228 0.0001 134 61 144 4 145 1 B33HSM-8 29 1077 1.990 0.0489 0.0007 0.1544 0.0020 0.0229 0.0001 141 33 146 2 146 1 B33HSM-9 19 705 1.730 0.0492 0.0008 0.1533 0.0024 0.0226 0.0001 158 37 145 2 144 1 B33HSM-10 19 596 2.570 0.0488 0.0008 0.1533 0.0025 0.0228 0.0001 139 38 145 2 145 1 B33HSM-11 7 268 1.500 0.0491 0.0017 0.1547 0.0054 0.0229 0.0001 151 81 146 5 146 1 B33HSM-12 11 384 1.560 0.0489 0.0011 0.1544 0.0035 0.0229 0.0001 141 54 146 3 146 1 B33HSM-13 10 286 2.270 0.0486 0.0013 0.1538 0.0040 0.0229 0.0001 129 61 145 4 146 1 B33HSM-14 16 539 1.400 0.0489 0.0012 0.1543 0.0038 0.0229 0.0001 145 57 146 4 146 1 B33HSM-15 17 528 1.510 0.0480 0.0008 0.1520 0.0025 0.0230 0.0001 100 40 144 2 146 1 B33HSM-16 19 466 2.790 0.0488 0.0009 0.1544 0.0028 0.0230 0.0001 141 43 146 3 146 1 B33HSM-17 10 253 2.390 0.0488 0.0018 0.1551 0.0056 0.0230 0.0001 140 84 146 5 147 1 B33HSM-18 3 106 0.970 0.0489 0.0031 0.1537 0.0099 0.0228 0.0002 143 150 145 9 145 1 B33HSM-19 16 516 1.390 0.0488 0.0007 0.1534 0.0022 0.0228 0.0001 140 34 145 2 145 1 B33HSM-20 22 761 1.090 0.0489 0.0008 0.1546 0.0025 0.0229 0.0001 143 38 146 2 146 1 B33HSM-21 16 555 1.320 0.0485 0.0007 0.1523 0.0020 0.0228 0.0001 122 32 144 2 145 1 B33HSM-22 12 419 1.250 0.0490 0.0012 0.1537 0.0038 0.0227 0.0001 148 57 145 4 145 1 B33HSM-23 14 493 1.310 0.0494 0.0009 0.1540 0.0026 0.0226 0.0001 167 40 145 2 144 1 B33HSM-24 8 228 2.430 0.0488 0.0016 0.1522 0.0051 0.0226 0.0001 136 76 144 5 144 1 B33HSM-25 10 367 1.020 0.0491 0.0015 0.1549 0.0046 0.0229 0.0001 152 69 146 4 146 1 B33HSM-26 7 228 1.470 0.0488 0.0017 0.1541 0.0055 0.0229 0.0001 138 83 145 5 146 1 表 2 火神庙岩体主量(%)测定结果
Table 2. Major elements (%)data of the Huoshenmiao pluton
样品号 石英闪长岩 二长花岗岩 花岗斑岩 B1/HSM B22/HSM B24/HSM B25/HSM B6 B10 B19 B28 B9/HSM B11/HSM B33/HSM B65/HSM SiO2 61.96 56.79 56.87 60.84 71.10 70.40 71.90 69.70 70.91 70.36 72.40 71.10 TiO2 0.50 0.75 0.75 0.53 0.21 0.21 0.19 0.23 0.16 0.16 0.14 0.16 Al2O3 16.13 16.88 17.97 17.57 15.10 15.75 14.90 15.90 14.09 14.49 14.60 14.95 TFe2O3 4.15 8.02 6.62 5.16 0.97 0.91 1.32 1.39 1.12 1.17 1.31 1.26 MnO 0.13 0.18 0.13 0.11 0.04 0.03 0.03 0.04 0.08 0.13 0.09 0.07 MgO 1.49 2.73 2.33 1.83 0.16 0.15 0.17 0.19 0.17 0.16 0.18 0.19 CaO 4.44 5.75 5.71 4.58 1.05 1.44 1.00 1.57 1.62 1.70 0.96 1.59 Na2O 4.56 3.88 4.18 4.12 3.62 3.94 3.49 3.53 3.05 3.82 4.20 3.66 K2O 4.80 3.10 2.92 3.33 6.78 5.56 6.75 6.55 5.66 5.75 5.02 5.07 P2O5 0.28 0.61 0.58 0.35 0.08 0.09 0.07 0.08 0.04 0.04 0.02 0.03 LOI 0.95 1.20 1.04 0.91 0.82 0.50 0.67 0.73 2.00 1.67 0.35 1.31 TATAL 99.39 99.89 99.10 99.33 99.93 98.98 100.49 99.91 98.90 99.45 99.30 99.40 K2O+Na2O 9.36 6.98 7.10 7.45 10.40 9.50 10.24 10.08 8.71 9.57 9.22 8.73 K2O/Na2O 1.05 0.80 0.70 0.81 1.87 1.41 1.93 1.86 1.86 1.51 1.20 1.39 A/CNK 0.78 0.83 0.88 0.94 0.99 1.04 1.00 1.01 1.00 0.93 1.04 1.04 A/NK 1.27 1.73 1.79 1.69 1.13 1.26 1.14 1.23 1.26 1.16 1.18 1.30 σ 4.62 3.53 3.63 3.11 3.85 3.29 3.63 3.81 2.72 3.35 2.89 2.71 DI 76 59 60 67 93 90 93 90 90 91 92 89 Mg# 46 44 45 45 28 28 23 24 26 24 24 26 Tzr 736 735 733 762 791 795 777 797 769 765 776 781 注:A/CNK=(Al2O3)/(CaO+K2O+Na2O)摩尔数分数比;A/NK=(Al2O3)/(K2O+Na2O)摩尔数分数比;里特曼指数δ=(K2O+Na2O)2/(SiO2-43);Mg#=100×(MgO/40.31)/(MgO/40.31+TFe2O3×0.8998/71.85×0.85);全岩锆饱和温度TZr=12900/(lnDZr+0.85M+2.95)-273.15,DZr=49600/w(Zr),M=(2Ca+K+Na)/(Si×Al),w(Zr)为岩石中Zr的质量分数;熔体组成参数FM=(1/Si)[Na+K+2(Ca+Mg+Fe)]/Al. 表 3 火神庙岩体微量和稀土元素(10-6)测定结果
Table 3. Trace elements (10-6) data of the Huoshenmiao pluton
样品号 石英闪长岩 二长花岗岩 花岗斑岩 B1/HSM B22/HSM B24/HSM B25/HSM B6 B10 B19 B28 B9/HSM B11/HSM B33/HSM B65/HSM Li 6.67 5.81 3.32 5.12 4.00 1.90 2.00 1.90 6.97 9.73 2.10 7.90 Be 2.15 1.82 2.65 1.68 2.82 2.45 1.71 2.23 4.00 2.21 2.69 2.72 Sc 12.45 9.24 5.93 8.59 1.80 1.70 1.70 1.70 2.83 2.05 1.40 1.60 V 140.1 145.0 78.5 87.3 18.0 13.0 15.0 9.0 12.0 8.7 5.0 7.0 Cr 6.30 9.45 8.72 7.57 1.00 1.00 2.00 1.00 5.43 3.52 1.47 3.66 Co 15.18 14.49 13.64 10.40 1.00 1.20 1.60 1.40 1.07 0.71 1.30 0.90 Ni 4.03 6.34 4.20 3.39 2.20 1.40 1.70 2.70 1.48 1.19 1.30 0.70 Cu 15.34 2.86 13.99 5.23 4.40 1.00 14.60 3.20 5.38 8.77 11.80 4.30 Zn 252.1 144.7 101.8 86.4 50.0 24.0 103.0 44.0 52.7 53.5 55.0 63.0 Ga 32.7 31.3 26.9 31.3 21.2 19.6 18.0 18.8 19.0 21.7 17.9 18.0 Rb 98 88 165 129 140 120 142 146 285 192 148 141 Sr 1377 1652 1062 1433 406 552 448 502 152 190 138 156 Y 20.4 18.9 16.2 20.6 17.0 13.7 12.2 14.4 13.9 13.6 15.2 12.1 Zr 176 154 177 177 187 185 156 201 238 151 168 180 Cd 0.86 0.77 0.47 0.61 0.19 0.11 0.26 0.17 0.27 0.26 0.21 0.26 In 0.09 0.07 0.09 0.07 0.07 0.06 0.05 0.07 0.04 0.03 0.04 0.03 Nb 31.2 28.8 33.2 32.8 39.7 34.4 28.1 39.4 50.5 33.1 37.9 35.6 Cs 4.43 5.09 3.80 4.73 2.38 1.87 1.58 1.83 1.93 1.26 1.22 1.19 Ba 2367 3108 3600 3155 2200 1980 1475 2050 1678 1537 512 823 La 76.4 62.2 53.4 72.0 22.7 23.9 26.6 16.1 50.5 49.5 39.0 47.7 Ce 149.6 116.2 97.8 132.2 64.3 57.4 53.6 40.4 87.7 82.9 70.2 86.0 Pr 16.12 11.96 9.06 12.64 7.23 7.45 6.35 5.81 7.73 7.37 7.78 9.61 Nd 52.8 45.2 31.6 45.5 24.2 25.1 21.2 21.7 24.9 23.5 25.4 29.1 Sm 9.28 8.17 5.41 7.76 3.97 3.75 3.27 3.94 4.29 3.95 4.04 4.16 Eu 2.19 2.17 1.48 1.89 0.90 1.00 0.93 1.13 0.78 0.77 0.81 0.84 Gd 6.90 5.86 3.99 5.75 2.88 2.81 2.64 2.80 3.11 2.98 3.35 3.32 Tb 0.87 0.73 0.50 0.74 0.46 0.43 0.39 0.44 0.44 0.41 0.52 0.52 Dy 4.64 3.91 2.81 4.10 2.68 2.40 2.11 2.65 2.69 2.46 3.36 2.90 Ho 0.88 0.72 0.55 0.80 0.53 0.51 0.43 0.56 0.56 0.51 0.64 0.61 Er 2.43 1.94 1.61 2.29 1.69 1.53 1.27 1.52 1.75 1.60 1.89 1.85 Tm 0.33 0.25 0.24 0.32 0.22 0.22 0.16 0.23 0.29 0.28 0.32 0.30 Yb 1.76 1.69 1.63 1.73 1.53 1.56 1.33 1.66 1.88 1.65 2.18 2.12 Lu 0.32 0.23 0.25 0.30 0.28 0.25 0.21 0.27 0.33 0.29 0.33 0.33 Hf 3.66 3.18 3.87 3.85 5.10 4.70 3.90 5.10 6.25 3.90 5.90 5.70 Ta 1.42 1.29 1.82 1.85 2.98 2.24 2.03 2.61 2.66 1.70 2.03 1.92 Pb 69.9 59.0 57.3 48.6 29.1 38.0 42.4 20.4 51.6 35.3 47.3 52.0 Bi 0.05 0.05 0.13 0.07 0.08 0.07 0.06 0.06 0.12 0.11 0.09 0.07 Th 13.3 11.3 18.0 18.1 24.8 20.9 17.1 20.6 24.9 23.5 24.5 23.8 U 3.12 2.44 3.85 3.63 2.28 1.31 2.43 1.33 5.28 4.18 4.94 5.21 ∑REE 325 261 210 288 134 128 120 99 187 178 160 189 LREE 306 246 199 272 123 119 116 89 176 168 147 177 HREE 18.34 15.13 11.38 16.22 10.27 9.71 8.54 10.13 11.05 10.19 12.59 11.95 LREE/HREE 17 16 17 17 12 12 13 9 16 16 12 15 (La/Yb)N 28 30 27 27 11 11 14 7 19 22 13 16 δEu 0.80 0.91 0.93 0.83 0.78 0.90 0.94 0.99 0.62 0.66 0.65 0.67 Sr/Y 66 68 87 70 24 40 37 35 11 14 9 13 Y/Yb 9.9 11.6 11.2 11.9 11.1 8.8 9.2 8.7 7.4 8.3 7.0 5.7 (Ho/Yb)N 1.01 1.50 1.28 1.39 1.04 0.98 0.97 1.01 0.89 0.93 0.88 0.86 Nb/La 0.62 0.41 0.46 0.46 1.75 1.44 1.06 2.45 1.00 0.67 0.97 0.75 注:δEu=2EuN/(SmN+GdN). 表 4 火神庙岩体的锆石Hf同位素分析结果
Table 4. Hf isotopic data of zircon from the Huoshenmiao pluton
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1(Ga) TDM2(Ga) fLu/Hf B34-HSM-1 151.2 0.018591 0.000844 0.282164 0.000020 -21.5 -18.3 0.7 1.53 2.36 -0.97 B34-HSM-2 150.8 0.020692 0.000938 0.282200 0.000018 -20.2 -17.0 0.6 1.48 2.28 -0.97 B34-HSM-3 150.7 0.024327 0.001090 0.282208 0.000021 -19.9 -16.7 0.8 1.47 2.26 -0.97 B34-HSM-4 149.3 0.019685 0.000886 0.282199 0.000017 -20.3 -17.1 0.6 1.48 2.28 -0.97 B34-HSM-5 150.6 0.024672 0.001110 0.282239 0.000017 -18.8 -15.6 0.6 1.43 2.19 -0.97 B34-HSM-6 150.8 0.021276 0.000977 0.282240 0.000017 -18.8 -15.6 0.6 1.43 2.19 -0.97 B34-HSM-7 150.0 0.024471 0.001076 0.282208 0.000020 -20.0 -16.8 0.7 1.48 2.26 -0.97 B34-HSM-8 150.0 0.017605 0.000783 0.282222 0.000018 -19.5 -16.3 0.6 1.44 2.23 -0.98 B34-HSM-9 150.1 0.024608 0.001104 0.282186 0.000020 -20.7 -17.5 0.7 1.51 2.31 -0.97 B34-HSM-10 150.1 0.014042 0.000641 0.282127 0.000019 -22.8 -19.6 0.7 1.57 2.44 -0.98 B34-HSM-11 150.0 0.018052 0.000807 0.282238 0.000018 -18.9 -15.7 0.6 1.42 2.20 -0.98 B34-HSM-12 150.1 0.021176 0.000970 0.282225 0.000020 -19.3 -16.2 0.7 1.45 2.22 -0.97 B34-HSM-13 150.4 0.022847 0.001042 0.282203 0.000018 -20.1 -16.9 0.6 1.48 2.27 -0.97 B34-HSM-14 150.5 0.021699 0.000963 0.282262 0.000018 -18.0 -14.8 0.7 1.39 2.14 -0.97 B34-HSM-15 150.1 0.030340 0.001324 0.282189 0.000022 -20.6 -17.5 0.8 1.51 2.31 -0.96 B34-HSM-16 150.8 0.028744 0.001169 0.282198 0.000020 -20.3 -17.1 0.7 1.49 2.28 -0.96 B34-HSM-17 150.7 0.017027 0.000727 0.282152 0.000020 -21.9 -18.7 0.7 1.54 2.38 -0.98 B34-HSM-18 149.1 0.020268 0.000897 0.282233 0.000019 -19.1 -15.9 0.7 1.43 2.21 -0.97 B34-HSM-19 149.3 0.020957 0.000929 0.282198 0.000019 -20.3 -17.1 0.7 1.48 2.28 -0.97 B34-HSM-20 150.7 0.017157 0.000768 0.282193 0.000020 -20.5 -17.2 0.7 1.48 2.29 -0.98 B64/HSM-2 145.8 0.062678 0.001776 0.282215 0.000019 -19.7 -16.7 0.7 1.49 2.25 -0.9 B64/HSM-3 146.0 0.086674 0.002499 0.282147 0.000015 -22.1 -19.1 0.5 1.62 2.41 -0.92 B64/HSM-4 146.1 0.086041 0.002449 0.282005 0.000017 -27.1 -24.2 0.6 1.82 2.72 -0.93 B64/HSM-5 146.0 0.075861 0.002098 0.282129 0.000018 -22.7 -19.7 0.6 1.63 2.45 -0.94 B64/HSM-6 146.2 0.068784 0.001907 0.282071 0.000016 -24.8 -21.8 0.6 1.70 2.58 -0.94 B64/HSM-9 146.6 0.078074 0.002465 0.282079 0.000017 -24.5 -21.6 0.6 1.72 2.56 -0.93 B64/HSM-10 146.0 0.081658 0.002413 0.282142 0.000018 -22.3 -19.3 0.6 1.62 2.42 -0.93 B64/HSM-11 145.9 0.103577 0.002919 0.282068 0.000015 -24.9 -22.0 0.5 1.76 2.59 -0.91 B64/HSM-12 146.2 0.093207 0.002458 0.282132 0.000019 -22.6 -19.7 0.7 1.64 2.44 -0.93 B64/HSM-13 145.9 0.082043 0.002161 0.282132 0.000019 -22.6 -19.7 0.7 1.63 2.44 -0.93 B64/HSM-15 146.2 0.077833 0.002103 0.282053 0.000017 -25.4 -22.4 0.6 1.74 2.62 -0.94 B64/HSM-16 145.9 0.086980 0.002270 0.282044 0.000020 -25.7 -22.8 0.7 1.76 2.64 -0.93 B64/HSM-18 145.9 0.070262 0.001851 0.282046 0.000017 -25.7 -22.7 0.6 1.74 2.63 -0.94 B64/HSM-19 145.8 0.082071 0.002452 0.282169 0.000022 -21.3 -18.4 0.8 1.59 2.36 -0.93 B64/HSM-20 145.9 0.106288 0.002679 0.282184 0.000017 -20.8 -17.9 0.6 1.58 2.33 -0.92 B64/HSM-21 145.7 0.080087 0.002110 0.282086 0.000015 -24.2 -21.3 0.5 1.69 2.54 -0.94 B64/HSM-22 145.7 0.059791 0.001771 0.282127 0.000015 -22.8 -19.8 0.5 1.62 2.45 -0.95 B64/HSM-23 146.1 0.071882 0.001942 0.282068 0.000016 -24.9 -21.9 0.6 1.71 2.58 -0.94 B64/HSM-24 145.6 0.073187 0.001883 0.282101 0.000015 -23.7 -20.7 0.5 1.66 2.51 -0.94 B33HSM-1 143.8 0.059567 0.002304 0.282063 0.000022 -25.1 -22.1 0.8 1.73 2.59 -0.93 B33HSM-2 145.6 0.051845 0.002094 0.282027 0.000019 -26.3 -23.3 0.7 1.77 2.67 -0.94 B33HSM-3 143.0 0.087118 0.003313 0.282110 0.000019 -23.4 -20.6 0.7 1.71 2.50 -0.90 B33HSM-4 143.5 0.057238 0.002296 0.281986 0.000020 -27.8 -24.9 0.7 1.84 2.77 -0.93 B33HSM-5 143.2 0.047320 0.001895 0.282005 0.000018 -27.1 -24.2 0.6 1.80 2.72 -0.94 B33HSM-6 143.9 0.055502 0.002218 0.282012 0.000018 -26.9 -23.9 0.6 1.80 2.71 -0.93 B33HSM-7 145.1 0.050196 0.002038 0.282026 0.000016 -26.4 -23.4 0.6 1.77 2.68 -0.94 B33HSM-8 146.1 0.045996 0.001832 0.282156 0.000020 -21.8 -18.8 0.7 1.58 2.38 -0.94 B33HSM-9 144.0 0.013993 0.000564 0.281782 0.000022 -35.0 -31.9 0.8 2.04 3.21 -0.98 B33HSM-10 145.1 0.050278 0.002057 0.282014 0.000018 -26.8 -23.8 0.6 1.79 2.70 -0.94 B33HSM-11 145.7 0.064744 0.002488 0.282112 0.000020 -23.3 -20.4 0.7 1.67 2.49 -0.93 B33HSM-12 146.1 0.082368 0.003161 0.282032 0.000021 -26.2 -23.3 0.7 1.82 2.67 -0.90 B33HSM-13 146.2 0.043282 0.001750 0.282080 0.000018 -24.5 -21.4 0.6 1.68 2.55 -0.95 B33HSM-14 145.7 0.056086 0.002168 0.282102 0.000022 -23.7 -20.7 0.8 1.67 2.51 -0.93 B33HSM-15 146.4 0.047132 0.001883 0.282026 0.000022 -26.4 -23.4 0.8 1.77 2.67 -0.94 B33HSM-16 146.4 0.041251 0.001646 0.282093 0.000020 -24.0 -21.0 0.7 1.66 2.52 -0.95 B33HSM-17 146.8 0.053522 0.002131 0.282018 0.000019 -26.7 -23.7 0.7 1.79 2.69 -0.94 B33HSM-18 145.3 0.049323 0.001949 0.282022 0.000017 -26.5 -23.5 0.6 1.77 2.68 -0.94 B33HSM-19 145.2 0.064493 0.002550 0.282027 0.000018 -26.3 -23.4 0.6 1.80 2.68 -0.92 B33HSM-20 146.2 0.040575 0.001599 0.282082 0.000023 -24.4 -21.4 0.8 1.67 2.55 -0.95 注:εHf(t)={[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000;TDM1=1/λ×ln{1+ [(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM]};TDM2=1/λ×ln{1+[(176Hf/177Hf)s, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;s=sample, (176Hf/177Hf)CHUR, 0=0.282772,(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)DM=0.28325,其中t=锆石结晶年龄,λ=1.867×10-11a-1,(176Lu/177Hf)C=0. -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrial Zircons.Nature, 399(6733):252-255.doi: 10.1038/20426 [2] Ames, L., Zhou, G.Z., Xiong, B.C., 1996.Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China.Tectonics, 15(2):472-489.doi: 10.1029/95tc02552 [3] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [4] Bao, Z.W., Li, C.J., Qi, J.P., 2009.SHRIMP Zircon U-Pb Age of the Gabbro Dyke in the Luanchuan Pb-Zn-Ag Orefield, East Qinling Orogen and Its Constraint on Mineralization Time.Acta Petrologica Sinica, 25(11):2951-2956 (in Chinese with English abstract). http://www.oalib.com/paper/1472707 [5] Bao, Z.W., Wang, Y.C., Zhao, T.P., et al., 2014.Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China.Ore Geology Reviews, 57:132-153.doi: 10.1016/j.oregeorev.2013.09.008 [6] Bodnar, R.J., 2009.Heavy Metals or Punk Rocks? Science, 323(5915):724-725.doi: 10.1126/science.1166394 [7] Bolhar, R., Weaver, S.D., Whitehouse, M.J., et al., 2008.Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand).Earth and Planetary Science Letters, 268(3-4):312-324.doi: 10.1016/j.epsl.2008.01.022 [8] Chappell, B.W., White, A.J.R., 2001.Two Contrasting Granite Types:25 Years Later.Australian Journal of Earth Sciences, 48(4):489-499.doi: 10.1046/j.1440-0952.2001.00882.x [9] Chen, J.F, Xie, Z., Liu, S.S., et al., 1995.Cooling Age of Dabie Orogen, China, Determined by 40Ar-39Ar and Fission Track Techniques.Science in China (Series B), 38(6):749-757. https://www.researchgate.net/publication/230239117_A_Study_of_the_Rhenium-Osmium_Geochronometry_of_Molybdenites1 [10] Chen, L.H., Zhou, X.H., 2003.Ultramafic Xenoliths in Mesozoic Diorite in West Shandong Province.Science in China (Series D), 33(8):489-499(in Chinese). https://www.researchgate.net/profile/Li-Hui_Chen/publication/225894710_Ultramafic_xenoliths_in_Mesozoic_diorite_in_west_Shandong_Province/links/02e7e53082a3e30c6a000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail [11] Chen, R.X., Zheng, Y.F., Zhao, Z.F., et al., 2007.Zircon U-Pb Age and Hf Isotope Evidence for Contrasting Origin of Bimodal Protoliths for Ultrahigh-Pressure Metamorphic Rocks from the Chinese Continental Scientific Drilling Project.Journal of Metamorphic Geology, 25(8):873-894.doi: 10.1111/j.1525-1314.2007.00735.x [12] Chiu, H.Y., Chung, S.L., Wu, F.Y., et al., 2009.Zircon U-Pb and Hf Isotopic Constraints from Eastern Transhimalayan Batholiths on the Precollisional Magmatic and Tectonic Evolution in Southern Tibet.Tectonophysics, 477(1-2):3-19.doi: 10.1016/j.tecto.2009.02.034 [13] Coleman, D.S., Gray, W., Glazner, A.F., 2004.Rethinking the Emplacement and Evolution of Zoned Plutons:Geochronologic Evidence for Incremental Assembly of the Tuolumne Intrusive Suite California.Geology, 32(5):433-436.doi: 10.1130/g20220.1 [14] Compston, W., Williams, I.S., Kirschvink, J.L., et al., 1992.Zircon U-Pb Ages for the Early Cambrian Time-Scale.Journal of the Geological Society, 149(2):171-184.doi: 10.1144/gsjgs.149.2.0171 [15] Connelly, J.N., 2001.Degree of Preservation of Igneous Zonation in Zircon as a Signpost for Concordancy in U/Pb Geochronology.Chemical Geology, 172(1-2):25-39.doi: 10.1016/s0009-2541(00)00234-5 [16] Diwu, C.R., Sun, Y., Lin, C.L., et al., 2007.Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China.Acta Petrologica Sinica, 23(2):253-262 (in Chinese with English abstract). https://www.researchgate.net/publication/280015308_Zircon_U-Pb_ages_and_Hf_isotopes_and_their_geological_significance_of_Yiyang_TTG_gneisses_from_Henan_province_China [17] Diwu, C.R., Sun, Y., Lin, C.L., et al., 2010.LA-(MC)-ICPMS U-Pb Zircon Geochronology and Lu-Hf Isotope Compositions of the Taihua Complex on the Southern Margin of the North China Craton.Chinese Science Bulletin, 55(21):2112-2128 (in Chinese). http://www.academia.edu/13671205/Detrital_zircons_reveal_no_Jurassic_plateau_in_the_eastern_North_China_Craton [18] Dong, Z.C., Gu, P.Y., Chen, R.M., 2015.Geochronology, Geochemistry and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai.Earth Science, 40(1):130-144 (in Chinese with English abstract). https://www.researchgate.net/publication/287397509_Geochronology_geochemistry_and_Hf_isotope_characteristics_of_yanchangbeishan_granodiorite_of_lenghu_area_in_Qinghai [19] Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158.doi: 10.1016/j.gca.2006.06.1383 [20] Feng, Z.H., Wang, C.Z., Wang, B.H., 2009.Granite Magma Ascent and Emplacement Mechanisms and Their Relation to Mineralization Process.Journal of Guilin University of Technology, 29(2):183-194 (in Chinese with English abstract). https://www.researchgate.net/profile/Chunzeng_Wang/publication/226378053_The_emplacement_mechanisms_and_growth_styles_of_the_Guposhan-Huashan_batholith_in_western_Nanling_Range_South_China/links/552581980cf295bf160ea99f.pdf [21] Ge, X.Y., Li, X.H., Chen, Z.G., et al., 2002.Geochemical Characteristics and Petrogenesis of Yanshannian High-Sr/Low-Y Intermediate-Felsic Igneous Rocks from Eastern China:Constrains on Crustal Thickness of Eastern China.Chinese Science Bulletin, 47(6):474-480 (in Chinese). https://www.researchgate.net/publication/225633284_Geochemistry_and_petrogenesis_of_Jurassic_high_Srlow_Y_granitoids_in_eastern_China_Constrains_on_crustal_thickness [22] Glazner, A.F., Bartley, J.M., Coleman, D.S., et al., 2004.Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers? GSA Today, 14(4):4-11.doi: 10.1130/1052-5173(2004)014 < 0004:apaomo > 2.0.co; 2 [23] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282.doi: 10.1016/j.precamres.2003.12.011 [24] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8 [25] Grove, T.L., Donnelly-Nolan, J.M., Housh, T., 1997.Magmatic Processes that Generated the Rhyolite of Glass Mountain, Medicine Lake Volcano, N.California.Contributions to Mineralogy and Petrology, 127(3):205-223.doi: 10.1007/s004100050276 [26] Harrison, T.M., Armstrong, R.L., Naeser, C.W., et al., 1979.Geochronology and Thermal History of the Coast Plutonic Complex, near Prince Rupert British Columbia.Canadian Journal of Earth Sciences, 16(3):400-410.doi: 10.1139/e79-038 [27] Harrison, T.M., Watson, E.B., 1984.The Behavior of Apatite during Crustal Anatexis:Equilibrium and Kinetic Considerations.Geochimica et Cosmochimica Acta, 48(7):1467-1477.doi: 10.1016/0016-7037(84)90403-4 [28] Haschke, M., Ahmadian, J., Murata, M., et al., 2010.Copper Mineralization Prevented by Arc-Root Delamination during Alpine-Himalayan Collision in Central Iran.Economic Geology, 105(4):855-865.doi: 10.2113/gsecongeo.105.4.855 [29] He, Y.Q., Chen, F.Q., 2013.Geological Characteristics and Ore Indicators of the Huoshenmiao Mo Deposit in Luanchuan County.Mining Technology, 13(3):115-118(in Chinese). https://www.researchgate.net/publication/303166257_Geological_characteristics_and_molybdenite_Re-Os_isotopic_dating_of_Huangshuian_carbonatite_vein-type_Mo_Pb_deposit_in_Songxian_County_Henan_Province [30] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.oalib.com/paper/1472292 [31] Hua, R.M., Zhang, W.L., Chen, P.R., et al., 2013.Relationship between Caledonian Granitoids and Large-Scale Mineralization in South China.Geological Journal of China Universities, 19(1):1-11 (in Chinese with English abstract). [32] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69.doi: 10.1016/j.chemgeo.2004.06.017 [33] Jiao, E.Z., 2007.Geological Characteristics of the Huoshenmiao Mo(Pb) Deposit in Luanchuan.Express Information of Mining Industry, 7(7):64-65 (in Chinese). [34] Jing, H.X., Sun, D.Y., Gou, J., 2015.Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block.Earth Science, 40(1):130-144 (in Chinese with English abstract). [35] Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983.doi: 10.1126/science.1136154 [36] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391.doi: 10.1093/petroj/38.3.371 [37] Le Maitre, R.W., 1976.The Chemical Variability of Some Common Igneous Rocks.Journal of Petrology, 17(4):589-598.doi: 10.1093/petrology/17.4.589 [38] Li, H.K., Zhu, S.X., Xiang, Z.Q., et al., 2010.Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing Beijing, Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton.Acta Petrologica Sinica, 26(7):2131-2140 (in Chinese with English abstract). [39] Li, S.G., Ge, N.J., Liu, D.L., et al., 1989.Sm-Nd Isotope Ages of the C-Type Eclogite from the Dabie Group in the North Dabieshan Area and Its Tectonic Significance.China Science Bulletin, 34(7):522-525 (in Chinese). https://www.researchgate.net/profile/Shuguang_Li9/citations?sorting=recent&page=5 [40] Li, X.H., Li, W.X., Li, Z.X., 2007.Re-Discussion on Genetic Type of Nanling Granitoid and Its Tectonic Significance.Chinese Science Bulletin, 52(9):981-991 (in Chinese). [41] Li, X.H., Li, W.X., Wang, X.C., et al., 2009.Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China:In Situ Zircon Hf-O Isotopic Constraints.Science in China (Series D), 39(7):872-887(in Chinese). https://espace.curtin.edu.au/handle/20.500.11937/35805 [42] Li, Y.F., Mao, J.W., Bai, F.J., et al., 2003.Re-Os Isotopic Dating of Molybdenites in the Nannihu Molybdenum (Tungsten) Orefield in the Eastern Qinling and Its Geological Significance.Geological Review, 49(6):652-659 (in Chinese with English abstract). [43] Li, Y.F., Mao, J.W., Hu, H.B., et al., 2005.Geology, Gistribution, Types and Tectonic Settings of Mesozoic Molybdenum Deposits in East Qinling Area.Mineral Deposits, 24(3):292-304 (in Chinese with English abstract). https://www.researchgate.net/publication/293088238_Geology_distribution_types_and_tectonic_settings_of_Mesozoic_epithermal_gold_deposits_in_East_China [44] Liu, Y.S, Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 [45] Lu, K.X., Chen, X.E., Wang, X., et al., 2008.Geological Characteristics and Genesis of the Heijiazhuang Mo Deposit in Luanchuan.West-China Exploration Engineering, 20(10):144-146(in Chinese). https://www.researchgate.net/publication/305159835_Geological_characteristics_and_new_prospecting_discovery_of_the_jinduicheng_superlarge_porphyry_molybdenum_deposit [46] Ludwig, K.R., 2003.User's Manual for Isoplot/Ex, Verson 3.00.A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, 4:1-70. https://www.researchgate.net/publication/301951506_User's_Manual_for_IsoplotEx_rev_300_A_Geochronological_Toolkit_for_Microsoft_Excel [47] Lü, W.D., Zhao, C.H., Sun, W.Z., et al., 2006.Geological Characteristics and Genesis of Nanniu Lead Zinc Polymetallic Ore Field in West Henan.Mineral Sources and Geology, 20(3):219-226 (in Chinese with English abstract). http://www.bookmetrix.com/detail/chapter/ed9c869c-82b6-4b2e-b3cd-f4807b7c3b9f [48] Mao, J.W., Xie, G.Q., Bierlein, F., et al., 2008.Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt.Geochimica et Cosmochimica Acta, 72(18):4607-4626.doi: 10.1016/j.gca.2008.06.027 [49] Mao, J.W., Xie, G.Q., Pirajno, F., et al., 2010.Late Jurassic-Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central-Eastern China:SHRIMP Zircon U-Pb Ages and Tectonic Implications.Australian Journal of Earth Sciences, 57(1):51-78.doi: 10.1080/08120090903416203 [50] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005.Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings.Acta Petrologica Sinica, 21(1):169-188 (in Chinese with English abstract). https://www.researchgate.net/publication/305531894_Mesozoic_large-scale_metallogenic_pulses_in_North_China_and_corresponding_geodynamic_settings [51] Mao, J.W., Ye, H.S., Wang, R.T., et al., 2009.Mineral Deposit Model of Mesozoic Porphyry Mo and Vein-Type Pb-Zn-Ag Ore Deposits in the Eastern Qinling, Central China and Its Implication for Prospecting.Geological Bulletin of China, 28(1):72-79(in Chinese with English abstract). https://www.researchgate.net/publication/279601984_Mineral_deposit_model_of_Mesozoic_porphyry_Mo_and_vein-type_Pb-Zn-Ag_ore_deposits_in_the_eastern_Qinling_Central_China_and_its_implication_for_prospecting [52] Martin, H., Bonin, B., Capdevila, R., et al., 1994.The Kuiqi Peralkaline Granitic Complex (SE China):Petrology and Geochemistry.Journal of Petrology, 35(4):983-1015.doi: 10.1093/petrology/35.4.983 [53] Meinhold, G., 2010.Rutile and Its Application in Earth Sciences.Earth Science Review, 102(1-2):1-28.doi: 10.1016/j.earscirev.2010.06.001 [54] Miller, C.F., 1985.Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources? The Journal of Geology, 93(6):673-689.doi: 10.1086/628995 [55] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31:529-532.doi: 10.1130/0091-7613(2003)031 < 0529:hacgio > 2.0.co; 2 [56] Ni, Z.Y., Wang, R.M., Tong, Y., et al., 2003.207Pb/206Pb Age of Zircon and 40Ar/39Ar of Amphibole from Plagioelase Amphibolite in the Taihua Group, Luoning, Henan, China.Geological Review, 49(4):361-366(in Chinese with English abstract). https://www.researchgate.net/publication/236133916_Geochronology_and_petrogenesis_of_gray_gneisses_from_the_Taihua_Complex_at_Xiong'er_in_the_southern_segment_of_the_Trans-North_China_Orogen_Implications_for_tectonic_transformation_in_the_Early_Paleop [57] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745 [58] Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Acta Petrologica Sinica, 24(11):2468-2484 (in Chinese with English abstract). https://www.researchgate.net/publication/263690721_Petrogenesis_of_the_Taiwushan_granite_pluton_in_Fujian_Province_Constraints_from_zircon_U-Pb_ages_and_Hf_isotopes [59] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931.doi: 10.1093/petrology/36.4.891 [60] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263.doi: 10.1016/0024-4937(89)90028-5 [61] Rowley, D.B., Xue, F., Turker, R.D., et al., 1997.Ages of Ultrahigh Pressure Metamorphism and Protolith Orthogneisses from the Eastern Dabie Shan:U/Pb Zircon Geochemistry.Earth and Planetary Science Letters, 151(3-4):191-203.doi: 10.1016/S0012-821X(97)81848-1 [62] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Process.Geological Society, London, Special Publications, 42:313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [63] Tera, F., Wasserburg, G.J., 1972.U-Th-Pb Systematics in Three Apollo 14 Basalts and the Problem of Initial Pb in Lunar Rocks.Earth and Planetary Science Letters, 14(3):281-304.doi: 10.1016/0012-821x(72)90128-8 [64] Vervoort, J.D., Patchett, P.J., Gehrels, G.E., et al., 1996.Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes.Nature, 379(65-66):624-627.doi: 10.1038/379624a0 [65] Wang, S., Ye, H.S., Yang, Y.Q., et al., 2014a.Molybdenite Re-Os Isochron Age of the Huoshenmiao Mo Deposit in Luanchuan of Henan Province and Its Geological Implications.Geological Bulletin of China, 33(9):1430-1438 (in Chinese with English abstract). https://www.researchgate.net/publication/277964344_Molybdenite_Re-Os_Isochron_Age_of_the_Huoshenmiao_Mo_Deposit_in_Luanchuan_Henan_Province_and_Its_Geological_Implications [66] Wang, S., Ye, H.S., Yang, Y.Q., et al., 2014b.Ore Forming Fluids of Huoshenmiao Mo Deposit, Western Henan.Mineral Deposits, 33(9):1430-1438 (in Chinese with English abstract). [67] Wang, X.L., Jiang, S.Y., Dai, B.Z., et al., 2011.Age, Geochemistry and Tectonic Setting of the Neoproterozoic (ca 830 Ma) Gabbros on the Southern Margin of the North China Craton.Precambrian Research, 190(1-4):35-47.doi: 10.1016/j.precamres.2011.08.004 [68] Wang, X.X., Wang, T., Qi, Q.J., et al., 2011.Temporal-Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China.Actor Petrologica Sinica, 27(6):1573-1593 (in Chinese with English abstract). https://www.researchgate.net/publication/282283293_Temporal-spatial_variations_origin_and_their_tectonic_significance_of_the_Late_Mesozoic_granites_in_the_Qinling_Central_China [69] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821x(83)90211-x [70] Winther, K.T., Newton, R.C., 1991.Experimental Melting of Hydrous Low-Ktholeiite:Evidence on the Origin of Archaean Cratons.Bulletin of the Geological Society of Denmark, 39(6):213-228. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.485.8313&rep=rep1&type=pdf [71] Wolf, M.B., Wyllie, P.J., 1994.Dehydration-Melting of Amphibolite at 10 kbar:The Effects of Temperature and Time.Contributions to Mineralogy and Petrology, 115(4):369-383.doi: 10.1007/bf00320972 [72] Wu, F.Y., Li, X.H., Yang, J.F., et al., 2007a.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). [73] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671 [74] Wu, F.Y., Zhao, G.C., Wilde, S.A., et al., 2005.Nd Isotopic Constraints on Crustal Formation in the North China Craton.Journal of Asian Earth Sciences, 24(5):523-545.doi: 10.1016/j.jseaes.2003.10.011 [75] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569.doi: 10.1007/bf03184122 [76] Xiang, J.F., Mao, J.W., Pei, R.F., et al., 2012.New Geochronological Data of Granites and Ores from the Nannihu-Sandaozhuang Mo (W) Deposit.Geology in China, 39(2):458-473 (in Chinese with English abstract). https://www.researchgate.net/publication/279558008_New_geochronological_data_of_granites_and_ores_from_the_NannihuSandaozhuang_MoW_deposit [77] Xiao, E., Hu, J., Zhang, Z.Z., et al., 2012.Petrogeochemistry, Zircon U-Pb Dating and Lu-Hf Isotopic Compositions of the Haoping and Jinshanmiao Granites from the Huashan Complex Batholith in Eastern Qinling Orogen.Acta Petrologica Sinica, 28(12):4031-4046 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW401.002.htm [78] Xin, Z.G., 2010.Geological Characteristics and Prospecting Message of Heijiazhuang Mo Deposit in Luanchuan.West-China Exploration Engineering, 22(5):101-102(in Chinese). [79] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014 [80] Xiong, X.L., Liu, X.C., Zhu, Z.M., et al., 2011.Adakite and Craton Destruction of North China:Basis on Experimental Petrology and Geochemistry.Science in China (Series D), 41(5):654-667 (in Chinese). http://www.academia.edu/13671242/Destruction_of_the_North_China_Craton_Induced_by_Ridge_Subductions [81] Xu, X.S., Lu, W.M., He, Z.Y., 2007.Age and Generation of Fogang Granite Batholith and Wushi Diorite-Horblende Gabbro Body.Science in China (Series D), 37(1):27-38 (in Chinese). http://mall.cnki.net/magazine/Article/JDXG200702005.htm [82] Xu, Z.W., Ren, Q.J., 1988.Characteristics of Magmatic Evolution of Shibaogou, Huoshenmiao and Daping Granitoids in Luanchuan County, Henan Province.Journal of Nanjing University (Earth Science Edition), 1:95-103 (in Chinese with English abstract). [83] Yang, C.H., Xu, W.L., Yang, D.B., et al., 2008.Petrogenesis of Shangyu Gabbro-Diorites in Western Shandong:Geochronological and Geochanical Evidence.Science in China (Series D), 51(4):481-492 (in Chinese). doi: 10.1007/s11430-008-0029-0 [84] Yang, R.Y., Xu, Z.W., Lu, X.C., et al., 1996.The Contrasting Study between Mineralized and Barren Stocks of the Molybdenum Ore Belt in East Qinling.Journal of Mineralogy and Petrology, 16(3):49-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS603.008.htm [85] Yang, R.Y., Xu, Z.W., Ren, Q.J., 1997.Ages and Magma Sources of Shibaogou and Huoshenmiao Complexesin East Qinling.Bullietin of Mineralogy Petrology and Geochemistry, 16(1):17-20 (in Chinese with English abstract). [86] Yang, Y., Wang, X.X., Ke, C.H., et al., 2012.Zircon U-Pb Age, Geochemistry and Hf Isotopic Compositions of Shibaogou Granitoid Pluton in the Nannihu Ore District, Western Henan Province.Geology in China, 39(6):1525-1542 (in Chinese with English abstract). https://www.researchgate.net/publication/279558364_Zircon_U-Pb_age_geochemistry_and_Hf_isotopic_compositions_of_Shibaogou_granitoid_pluton_in_the_Nannihu_ore_district_western_Henan_Province [87] Ye, H.S., Mao, J.W., Li, Y.F., 2006.Characteristics and Metallogenic Mechanism of Mo-W and Pb-Zn-Ag Deposits in Nannihu Ore Field, Western Henan Province.Geoscience, 20(1):165-174 (in Chinese with English abstract). https://www.researchgate.net/publication/301262734_Three_Dimensional_Quantitative_Extraction_and_Integration_for_Geosciences_Information_A_Case_Study_of_Nannihu_Mo_Deposit_Area [88] Zhang, Q., Jin, W.J., Li, C.D., et al., 2011.Granitic Rocks and Their Formation Depth in the Crust.Geotectonica et Metallogenia, 35(2):259-269 (in Chinese with English abstract). [89] Zheng, J.P., Sun, M., Lu, F.X., et al., 2005.Xinyang Mafic Granulitic Xenoliths and Its Significance for the Early Mesozoic Lower Crustal Nature on the South Margin of the North China Craton.Acta Petrologica Sinica, 21(1):91-98 (in Chinese with English abstract). [90] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos, 96(1-2):127-150.doi: 10.1016/j.lithos.2006.10.003 [91] Zheng, Y.F., Zhao, Z.F., Chen, Y.X., 2013.Continental Subduction Channel Processes:Plate Interface Interacting during Continental Collision.Chinese Science Bulletin, 58(23):2233-2239 (in Chinese). https://www.researchgate.net/publication/258845485_Continental_Subduction_Channel_ProcessesPlate_Interface_Interacting_during_Continental_Collision [92] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009.Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Science in China (SeriesD), 58(23):2233-2239 (in Chinese). [93] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442 [94] 包志伟, 李创举, 祁进平, 2009.东秦岭栾川铅锌银矿田辉长岩锆石SHRIMP U-Pb年龄及成矿时代.岩石学报, 25(11):2951-2956. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911026.htm [95] 陈立辉, 周新华, 2003.鲁西中生代闪长岩中的深源超镁铁质岩捕虏体及其富硅交代特征.中国科学(D辑):地球科学, 33(8):734-744. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308003.htm [96] 第五春荣, 孙勇, 林慈銮, 等, 2007.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学.岩石学报, 23(2):253-262. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702007.htm [97] 第五春荣, 孙勇, 林慈銮, 等, 2010.河南鲁山地区太华杂岩LA-(MC)-ICPMS锆石U-Pb年代学及Hf同位素组成.科学通报, 55(21):2112-2123. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021010.htm [98] 董增产, 辜平阳, 陈锐明, 等, 2015.柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征.地球科学, 40(1):130-144. http://www.earth-science.net/WebPage/Article.aspx?id=3013 [99] 冯佐海, 王春增, 王葆华, 2009.花岗岩侵位机制与成矿作用.桂林工学院学报, 29(2):183-194. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200902005.htm [100] 葛小月, 李献华, 陈志刚, 等, 2002.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报, 47(6):474-480. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200206021.htm [101] 何亚清, 陈凤群, 2013.栾川县火神庙钼矿地质特征及找矿标志.采矿技术, 13(3):115-118. http://www.cnki.com.cn/Article/CJFDTOTAL-SJCK201303043.htm [102] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [103] 华仁民, 张文兰, 陈培荣, 等, 2013.初论华南加里东花岗岩与大规模成矿作用的关系.高校地质学报, 19(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301002.htm [104] 焦二中, 2007.栾川火神庙矿区铅钼矿床地质特征.矿业快报, 7(7):64-65. http://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200707023.htm [105] 敬海鑫, 孙德有, 苟军, 等, 2015.兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征.地球科学, 40(6):982-994. http://www.earth-science.net/WebPage/Article.aspx?id=3099 [106] 李怀坤, 朱士兴, 相振群, 等, 2010.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报, 26(7):2131-2140. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm [107] 李曙光, 葛宁洁, 刘德良, 等, 1989.大别山北翼大别群中C型榴辉岩的Sm-Nd同位素年龄及其构造意义.科学通报, 34(7):522-525. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198907012.htm [108] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9):981-991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm [109] 李献华, 李武显, 王选策, 等, 2009.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约.中国科学(D辑), 39(7):872-887. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907003.htm [110] 李永峰, 毛景文, 白凤军, 等, 2003.东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义.地质论评, 49(6):652-659. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200306015.htm [111] 李永峰, 毛景文, 胡华斌, 等, 2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质, 24(3):292-304. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200503008.htm [112] 卢克学, 程相恩, 王夏, 等, 2008.栾川黑家庄钼矿区矿床地质特征及成因探讨.西部探矿工程, 20(10):144-146. doi: 10.3969/j.issn.1004-5716.2008.10.054 [113] 吕文德, 赵春和, 孙卫志, 等, 2006.豫西南泥湖多金属矿田铅锌矿地质特征与成因研究.矿产与地质, 20(3):219-226. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200603003.htm [114] 毛景文, 谢桂青, 张作衡, 等, 2005.中国北方大规模成矿作用的期次及其地球动力学背景.岩石学报, 21(1):169-188. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [115] 毛景文, 叶会寿, 王瑞廷, 等, 2009.东秦岭中生代钼铅锌银多金属矿床成矿模型及其找矿评价.地质通报, 28(1):72-79. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901010.htm [116] 倪志耀, 王仁民, 童英, 等, 2003.河南洛宁太华岩群斜长角闪岩的锆石207Pb/206Pb和角闪石40Ar/39Ar年龄.地质论评, 49(4):361-366. http://www.geojournals.cn/georev/ch/reader/view_abstract.aspx?file_no=20030463&flag=1 [117] 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm [118] 王赛, 叶会寿, 杨永强, 等, 2014a.河南栾川火神庙钼矿床辉钼矿Re-Os年龄及其地质意义.地质通报, 33(9):1430-1438. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201409018.htm [119] 王赛, 叶会寿, 杨永强, 等, 2014b.豫西火神庙矽卡岩型钼矿床成矿流体研究.矿床地质, 33(6):1233-1250. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406007.htm [120] 王晓霞, 王涛, 齐秋菊, 等, 2011.秦岭晚中生代花岗岩时空分布、成因演变及构造意义.岩石学报, 27 (6):1573-1593. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106002.htm [121] 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm [122] 吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [123] 向君峰, 毛景文, 裴荣富, 等, 2012.南泥湖-三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义.中国地质, 39(2) :458-473. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202016.htm [124] 肖娥, 胡建, 张遵忠, 等, 2012.东秦岭花山复式岩基中蒿坪与金山庙花岗岩体岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素组成.岩石学报, 28(12):4031-4046. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212019.htm [125] 辛志刚, 2010.栾川黑家庄钼矿区成矿地质特征及找矿启示.西部探矿工程, 22(5):101-102. http://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201005039.htm [126] 熊小林, 刘星成, 朱志敏, 等, 2011.华北埃达克质岩与克拉通破坏:实验岩石学和地球化学依据.中国科学(D辑), 41(5):654-667. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105005.htm [127] 徐夕生, 鲁为敏, 贺振宇, 2007.佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源.中国科学(D辑), 37(1):27-38. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701002.htm [128] 徐兆文, 任启江, 1988.河南栾川石宝沟、火神庙和大坪岩体岩浆演化特征及其与钼矿化关系.南京大学学报, 1:95-103. [129] 杨承海, 许文良, 杨德彬, 等, 2008.鲁西上峪辉长-闪长岩的成因:年代学与岩石地球化学证据.中国科学(D辑), 38(1):44-45. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200801005.htm [130] 杨荣勇, 徐兆文, 陆现彩, 等, 1996.东秦岭钼矿带成矿岩体与非成矿岩体的对比研究.矿物岩石, 16(3):49-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS603.008.htm [131] 杨荣勇, 徐兆文, 任启江, 1997.东秦岭地区石宝沟和火神庙岩体的时代及岩浆物质来源.矿物地球化学通报, 16(1) :17-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH701.004.htm [132] 杨阳, 王晓霞, 柯昌辉, 等, 2012.豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、地球化学及Hf同位素组成.中国地质, 39(6):1525-1542. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201206004.htm [133] 叶会寿, 毛景文, 李永峰, 等, 2006.豫西南泥湖矿体钼钨及铅锌银矿床地质特征及其成矿机理探讨.现代地质, 20(1):165-174. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200601018.htm [134] 张旗, 金惟俊, 李承东, 等, 2011.花岗岩与地壳厚度关系探讨.大地构造与成矿学, 35(2):259-269. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102012.htm [135] 郑建平, 孙敏, 路凤香, 等, 2005.信阳基性麻粒捕虏体及其华北南缘早中生代下地壳性质.岩石学报, 21(1):91-98. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501010.htm [136] 郑永飞, 赵子福, 陈伊翔, 2013.大陆俯冲隧道过程:大陆碰撞过程中的板块界面相互作用.科学通报, 58(23):2233-2239. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323000.htm [137] 朱弟成, 莫宣学, 王立全, 等, 2009.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学(D辑), 39(7):833-848. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm