• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    豫西火神庙岩体锆石U-Pb年代学、地球化学及Hf同位素组成

    王赛 叶会寿 杨永强 张兴康 苏慧敏 杨晨英

    王赛, 叶会寿, 杨永强, 张兴康, 苏慧敏, 杨晨英, 2016. 豫西火神庙岩体锆石U-Pb年代学、地球化学及Hf同位素组成. 地球科学, 41(2): 293-316. doi: 10.3799/dqkx.2016.022
    引用本文: 王赛, 叶会寿, 杨永强, 张兴康, 苏慧敏, 杨晨英, 2016. 豫西火神庙岩体锆石U-Pb年代学、地球化学及Hf同位素组成. 地球科学, 41(2): 293-316. doi: 10.3799/dqkx.2016.022
    Wang Sai, Ye Huishou, Yang Yongqiang, Zhang Xingkang, Su Huimin, Yang Chenying, 2016. Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan. Earth Science, 41(2): 293-316. doi: 10.3799/dqkx.2016.022
    Citation: Wang Sai, Ye Huishou, Yang Yongqiang, Zhang Xingkang, Su Huimin, Yang Chenying, 2016. Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan. Earth Science, 41(2): 293-316. doi: 10.3799/dqkx.2016.022

    豫西火神庙岩体锆石U-Pb年代学、地球化学及Hf同位素组成

    doi: 10.3799/dqkx.2016.022
    基金项目: 

    国土资源部公益性行业基金项目 No.200911007-08

    国家自然科学基金项目 No.41272104

    国家科技支撑计划项目 No.2011BAB04B06

    详细信息
      作者简介:

      王赛(1989-),男,硕士研究生,主要从事斑岩-矽卡岩型钼矿床成矿理论方面的研究.E-mail: wangsainb@163.com

      通讯作者:

      叶会寿,E-mail: yehuishou@163.com

    • 中图分类号: P581

    Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan

    • 摘要: 火神庙岩体位于华北陆块南缘栾川矿集区西部,为一杂岩体,该岩体与火神庙钼矿床密切相关.目前,人们对火神庙岩体的研究程度较低,严重制约了对火神庙钼矿床成因的认识.系统开展了年代学、地球化学和Hf同位素组成研究.结果表明,石英闪长岩、二长花岗岩和花岗斑岩的形成年龄分别为150.3±0.6Ma、146.0±0.6Ma和145.1±0.5Ma,为栾川矿集区晚侏罗世第2次大规模岩浆活动的产物.火神庙杂岩体属于I型花岗岩,是不同源区部分熔融形成的岩浆上升就位的结果.石英闪长岩是富集岩石圈地幔部分熔融的产物;二长花岗岩和花岗斑岩是富集岩石圈地幔部分熔融形成的镁铁质岩浆与太华群TTG岩系部分熔融形成的长英质岩浆混合后上升就位的结果.

       

    • 图  1  栾川钼多金属矿集区地质简图

      1.新元古界-早古生界陶湾群含砾灰岩、大理岩、千枚岩和石英岩;2.新元古界栾川群碎屑岩、碳酸盐岩和碱性火山岩;3.中元古界-新元古界宽坪群大理岩和基性火山岩;4.中元古界官道口群碎屑岩和含燧石条带大理岩;5.早白垩世花岗岩;6.晚侏罗世花岗斑岩;7.断裂;8.斑岩-矽卡岩型钼矿床;9.矽卡岩型多金属硫铁矿床;10.热液脉型铅锌银矿床;a.太行山断裂带;b.三门峡-宝丰断裂带;c.栾川断裂带;d.商丹断裂带;e.南漳断裂带;据叶会寿等(2006)修改

      Fig.  1.  Geological sketch of the Luanchuan ore district

      图  2  火神庙岩体地质简图

      1.三川组大理岩;2.花岗斑岩;3.二长花岗岩;4.石英闪长岩;5.矽卡岩型钼矿体;6.年代学及Hf同位素分析样品及编号;7.地球化学分析样品及编号

      Fig.  2.  Geological sketch of the Huoshenmiao pluton

      图  3  火神庙岩体岩相学特征

      a.石英闪长岩;b.石英闪长岩的中细粒粒状结构和斜长石聚片双晶;c.石英闪长岩中的斜长石环带结构;d.石英闪长岩中的角闪石简单双晶;e.二长花岗岩;f.二长花岗岩的中细粒粒状结构和斜长石聚片双晶;g.花岗斑岩;h.花岗斑岩的斑状结构;i.花岗斑岩中的石英发生溶蚀;Qz.石英;Pl.斜长石;Am.角闪石;Bi.黑云母;Kfs.钾长石

      Fig.  3.  Petrography of the Huoshenmiao pluton

      图  4  火神庙岩体锆石CL图像

      小圈为U-Pb分析点,大圈为Hf同位素分析点,内部数字为分析点号,图像外部数字为U-Pb年龄(上方)和εHf(t)值(下方)

      Fig.  4.  CL images of Zircons from the Huoshenmiao pluton

      图  5  火神庙岩体石英闪长岩(a)、花岗斑岩(b)和二长花岗岩(c)锆石U-Pb年龄谐和图及二长花岗岩锆石U-Pb年龄的Tera-Wasserburg图解(d)

      Fig.  5.  Zircon U-Pb concordia diagram for quartz diorite (a), granite porphyry (b) and monzo-granite(c) of the Huoshenmiao pluton and the Tera-Wasserburg plot for Monzo-granite (d)

      图  6  火神庙岩体A/CNK-A/NK图解(a)及SiO2-K2O图解(b)

      Peccerillo and Taylor(1976)Rickwood(1989)

      Fig.  6.  SiO2-K2O diagrams (a) and A/CNK-A/NK (b) of the granites from the Huoshenmiao pluton

      图  7  火神庙岩体微量元素原始地幔标准化蛛网图和稀土元素球粒陨石标准化图

      标准值据Sun and McDonough(1989)

      Fig.  7.  Primitive mantle normalized trace element spider diagrams and chondrite normalized REE patterns of the granites from the Huoshenmiao pluton

      图  8  火神庙岩体锆石Hf同位素组成εHf(t)和两阶段模式年龄TDM2柱状图

      Fig.  8.  Zircon Hf isotopic compositions and TDM2 of the Huoshenmiao pluton

      图  9  火神庙岩体地球化学判别图解

      Fig.  9.  Geochemical discrimination diagrams for the Huoshenmiao pluton

      图  10  火神庙岩体岩浆形成温度判别图

      熊小林等(2011)

      Fig.  10.  The diagram of temperature of the Huoshenmiao pluton

      图  11  火神庙岩体岩浆形成压力判别图解

      熊小林等(2011)

      Fig.  11.  The diagram of pressure of the Huoshenmiao pluton

      表  1  火神庙岩体LA-MC-ICPMS错石U-Pb年龄测定结果

      Table  1.   LA-MC-ICPMS zircon U-Pb data of the Huoshenmiao pluton

      样品号Pb(10-6)U(10-6)232Th/238U同位素比值同位素年龄(Ma)
      207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
      B34HSM193500.7000.04960.00210.16250.00700.02370.00021789715371511
      B34HSM293460.7500.04910.00200.16030.00670.02370.00021549615161511
      B34HSM-3155751.0200.04940.00160.16110.00540.02360.00021687715251511
      B34HSM-4124710.8500.04980.00320.16100.01020.02340.0002188148152101492
      B34HSM-5114360.8000.04940.00250.16100.00840.02360.000216811915281511
      B34HSM-683240.8500.04960.00590.16180.01940.02370.0003176277152181512
      B34HSM-7114330.7500.04950.00190.16060.00670.02350.00021709015161502
      B34HSM-8124600.9800.04980.00140.16170.00460.02350.00021876415241501
      B34HSM-9114430.7200.04930.00130.16010.00430.02360.00021626115141501
      B34HSM-1062450.7100.04960.00220.16120.00710.02360.000217810115271501
      B34HSM-1183330.6600.04970.00240.16140.00790.02350.000218311215271501
      B34HSM-12114350.7000.04940.00130.16060.00440.02360.00021686215141501
      B34HSM-13114190.6700.04990.00150.16250.00510.02360.00021917015351502
      B34HSM-14103630.7500.04990.00130.16260.00440.02360.00021916115341511
      B34HSM-15134880.9400.04910.00130.15950.00440.02360.00021526215041501
      B34HSM-16135120.8600.04960.00150.16170.00550.02370.00031747115251512
      B34HSM-17103950.6400.04920.00200.16060.00690.02370.00021599715161511
      B34HSM-1872960.5800.04960.00180.16010.00600.02340.00021778515161491
      B34HSM-19114270.6600.04980.00150.16090.00500.02340.00021867015151491
      B34HSM-2062300.5400.04940.00240.16110.00800.02370.000216711515281511
      B34HSM-21114540.7300.04970.00140.15980.00470.02330.00021836715141481
      B34HSM-22114530.7300.04910.00130.16030.00430.02370.00021546215141511
      B34HSM-23104180.6800.04930.00130.16100.00440.02370.00021616115241511
      B34HSM-2483210.6200.04940.00180.16160.00610.02370.00021698715261511
      B64jHSM-1305270.5850.09620.00250.75210.05120.05670.00291551485693935618
      B64jHSM-2135670.5930.05410.00140.17050.00440.02290.00013745816041461
      B64jHSM-3114460.9370.05920.00130.18680.00420.02290.00015734817441461
      B64jHSM-4124800.8080.05020.00090.15860.00290.02290.00012044214931461
      B64jHSM-5114600.8830.06710.00280.21190.00890.02290.00028418619581461
      B64jHSM-6114620.8900.06160.00400.19500.01380.02290.0002662140181131461
      B64jHSM-7114201.0370.06350.00110.21480.00400.02450.00017253719841561
      B64jHSM-8334660.6920.09350.00090.86270.02670.06690.00171497186322041811
      B64jHSM-993781.2350.05440.00120.17250.00400.02300.00013884816241471
      B64jHSM-10135510.6400.05130.00070.16190.00220.02290.00012533115221461
      B64jHSM-11135540.6250.05170.00080.16300.00260.02290.00012703715321461
      B64jHSM-1293381.4280.05480.00070.17330.00220.02290.00014032816221461
      B64jHSM-1393461.3800.07510.00190.23700.00610.02290.000110715221661461
      B64jHSM-14495040.4610.08660.00091.13710.03430.09530.00251351207712358715
      B64jHSM-1583261.5450.04940.00190.15610.00610.02290.00011658914761461
      B64jHSM-1693930.3170.05870.00120.18510.00390.02290.00015544317241461
      B64jHSM-1794520.0630.05830.00060.18200.00190.02260.00015432217021441
      B64jHSM-18145730.5810.05540.00100.17480.00330.02290.00014294016431461
      B64jHSM-1982911.8290.05310.00130.16730.00420.02290.00013325515741461
      B64jHSM-20145850.5570.05550.00090.17520.00300.02290.00014333716431461
      B64jHSM-21135400.6580.05470.00090.17240.00270.02290.00014013616231461
      B64jHSM-2293671.3090.05100.00110.16070.00340.02290.00012414815131461
      B64jHSM-23125070.7380.05770.00120.18240.00410.02290.00015194817041461
      B64jHSM-24103961.1420.06760.00120.21290.00410.02280.00018573619641461
      B33HSM-172462.3000.04910.00210.15250.00670.02260.000115010214461441
      B33HSM-231151.4400.04850.00930.15260.02890.02280.0002122450144271462
      B33HSM-3166261.7300.04890.00070.15130.00200.02240.00011443214321431
      B33HSM-441641.7000.04920.00190.15270.00600.02250.00011589214461441
      B33HSM-5104161.4200.04910.00090.15210.00290.02250.00011524414431431
      B33HSM-6103861.7400.04890.00090.15230.00280.02260.00011454214431441
      B33HSM-793182.4200.04870.00130.15280.00390.02280.00011346114441451
      B33HSM-82910771.9900.04890.00070.15440.00200.02290.00011413314621461
      B33HSM-9197051.7300.04920.00080.15330.00240.02260.00011583714521441
      B33HSM-10195962.5700.04880.00080.15330.00250.02280.00011393814521451
      B33HSM-1172681.5000.04910.00170.15470.00540.02290.00011518114651461
      B33HSM-12113841.5600.04890.00110.15440.00350.02290.00011415414631461
      B33HSM-13102862.2700.04860.00130.15380.00400.02290.00011296114541461
      B33HSM-14165391.4000.04890.00120.15430.00380.02290.00011455714641461
      B33HSM-15175281.5100.04800.00080.15200.00250.02300.00011004014421461
      B33HSM-16194662.7900.04880.00090.15440.00280.02300.00011414314631461
      B33HSM-17102532.3900.04880.00180.15510.00560.02300.00011408414651471
      B33HSM-1831060.9700.04890.00310.15370.00990.02280.000214315014591451
      B33HSM-19165161.3900.04880.00070.15340.00220.02280.00011403414521451
      B33HSM-20227611.0900.04890.00080.15460.00250.02290.00011433814621461
      B33HSM-21165551.3200.04850.00070.15230.00200.02280.00011223214421451
      B33HSM-22124191.2500.04900.00120.15370.00380.02270.00011485714541451
      B33HSM-23144931.3100.04940.00090.15400.00260.02260.00011674014521441
      B33HSM-2482282.4300.04880.00160.15220.00510.02260.00011367614451441
      B33HSM-25103671.0200.04910.00150.15490.00460.02290.00011526914641461
      B33HSM-2672281.4700.04880.00170.15410.00550.02290.00011388314551461
      下载: 导出CSV

      表  2  火神庙岩体主量(%)测定结果

      Table  2.   Major elements (%)data of the Huoshenmiao pluton

      样品号石英闪长岩二长花岗岩花岗斑岩
      B1/HSMB22/HSMB24/HSMB25/HSMB6B10B19B28B9/HSMB11/HSMB33/HSMB65/HSM
      SiO261.9656.7956.8760.8471.1070.4071.9069.7070.9170.3672.4071.10
      TiO20.500.750.750.530.210.210.190.230.160.160.140.16
      Al2O316.1316.8817.9717.5715.1015.7514.9015.9014.0914.4914.6014.95
      TFe2O34.158.026.625.160.970.911.321.391.121.171.311.26
      MnO0.130.180.130.110.040.030.030.040.080.130.090.07
      MgO1.492.732.331.830.160.150.170.190.170.160.180.19
      CaO4.445.755.714.581.051.441.001.571.621.700.961.59
      Na2O4.563.884.184.123.623.943.493.533.053.824.203.66
      K2O4.803.102.923.336.785.566.756.555.665.755.025.07
      P2O50.280.610.580.350.080.090.070.080.040.040.020.03
      LOI0.951.201.040.910.820.500.670.732.001.670.351.31
      TATAL99.3999.8999.1099.3399.9398.98100.4999.9198.9099.4599.3099.40
      K2O+Na2O9.366.987.107.4510.409.5010.2410.088.719.579.228.73
      K2O/Na2O1.050.800.700.811.871.411.931.861.861.511.201.39
      A/CNK0.780.830.880.940.991.041.001.011.000.931.041.04
      A/NK1.271.731.791.691.131.261.141.231.261.161.181.30
      σ4.623.533.633.113.853.293.633.812.723.352.892.71
      DI765960679390939090919289
      Mg#464445452828232426242426
      Tzr736735733762791795777797769765776781
      注:A/CNK=(Al2O3)/(CaO+K2O+Na2O)摩尔数分数比;A/NK=(Al2O3)/(K2O+Na2O)摩尔数分数比;里特曼指数δ=(K2O+Na2O)2/(SiO2-43);Mg#=100×(MgO/40.31)/(MgO/40.31+TFe2O3×0.8998/71.85×0.85);全岩锆饱和温度TZr=12900/(lnDZr+0.85M+2.95)-273.15,DZr=49600/w(Zr),M=(2Ca+K+Na)/(Si×Al),w(Zr)为岩石中Zr的质量分数;熔体组成参数FM=(1/Si)[Na+K+2(Ca+Mg+Fe)]/Al.
      下载: 导出CSV

      表  3  火神庙岩体微量和稀土元素(10-6)测定结果

      Table  3.   Trace elements (10-6) data of the Huoshenmiao pluton

      样品号石英闪长岩二长花岗岩花岗斑岩
      B1/HSMB22/HSMB24/HSMB25/HSMB6B10B19B28B9/HSMB11/HSMB33/HSMB65/HSM
      Li6.675.813.325.124.001.902.001.906.979.732.107.90
      Be2.151.822.651.682.822.451.712.234.002.212.692.72
      Sc12.459.245.938.591.801.701.701.702.832.051.401.60
      V140.1145.078.587.318.013.015.09.012.08.75.07.0
      Cr6.309.458.727.571.001.002.001.005.433.521.473.66
      Co15.1814.4913.6410.401.001.201.601.401.070.711.300.90
      Ni4.036.344.203.392.201.401.702.701.481.191.300.70
      Cu15.342.8613.995.234.401.0014.603.205.388.7711.804.30
      Zn252.1144.7101.886.450.024.0103.044.052.753.555.063.0
      Ga32.731.326.931.321.219.618.018.819.021.717.918.0
      Rb9888165129140120142146285192148141
      Sr1377165210621433406552448502152190138156
      Y20.418.916.220.617.013.712.214.413.913.615.212.1
      Zr176154177177187185156201238151168180
      Cd0.860.770.470.610.190.110.260.170.270.260.210.26
      In0.090.070.090.070.070.060.050.070.040.030.040.03
      Nb31.228.833.232.839.734.428.139.450.533.137.935.6
      Cs4.435.093.804.732.381.871.581.831.931.261.221.19
      Ba2367310836003155220019801475205016781537512823
      La76.462.253.472.022.723.926.616.150.549.539.047.7
      Ce149.6116.297.8132.264.357.453.640.487.782.970.286.0
      Pr16.1211.969.0612.647.237.456.355.817.737.377.789.61
      Nd52.845.231.645.524.225.121.221.724.923.525.429.1
      Sm9.288.175.417.763.973.753.273.944.293.954.044.16
      Eu2.192.171.481.890.901.000.931.130.780.770.810.84
      Gd6.905.863.995.752.882.812.642.803.112.983.353.32
      Tb0.870.730.500.740.460.430.390.440.440.410.520.52
      Dy4.643.912.814.102.682.402.112.652.692.463.362.90
      Ho0.880.720.550.800.530.510.430.560.560.510.640.61
      Er2.431.941.612.291.691.531.271.521.751.601.891.85
      Tm0.330.250.240.320.220.220.160.230.290.280.320.30
      Yb1.761.691.631.731.531.561.331.661.881.652.182.12
      Lu0.320.230.250.300.280.250.210.270.330.290.330.33
      Hf3.663.183.873.855.104.703.905.106.253.905.905.70
      Ta1.421.291.821.852.982.242.032.612.661.702.031.92
      Pb69.959.057.348.629.138.042.420.451.635.347.352.0
      Bi0.050.050.130.070.080.070.060.060.120.110.090.07
      Th13.311.318.018.124.820.917.120.624.923.524.523.8
      U3.122.443.853.632.281.312.431.335.284.184.945.21
      ∑REE32526121028813412812099187178160189
      LREE30624619927212311911689176168147177
      HREE18.3415.1311.3816.2210.279.718.5410.1311.0510.1912.5911.95
      LREE/HREE17161717121213916161215
      (La/Yb)N28302727111114719221316
      δEu0.800.910.930.830.780.900.940.990.620.660.650.67
      Sr/Y66688770244037351114913
      Y/Yb9.911.611.211.911.18.89.28.77.48.37.05.7
      (Ho/Yb)N1.011.501.281.391.040.980.971.010.890.930.880.86
      Nb/La0.620.410.460.461.751.441.062.451.000.670.970.75
      注:δEu=2EuN/(SmN+GdN).
      下载: 导出CSV

      表  4  火神庙岩体的锆石Hf同位素分析结果

      Table  4.   Hf isotopic data of zircon from the Huoshenmiao pluton

      测点号年龄(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σεHf(0)εHf(t)2σTDM1(Ga)TDM2(Ga)fLu/Hf
      B34-HSM-1151.20.0185910.0008440.2821640.000020-21.5-18.30.71.532.36-0.97
      B34-HSM-2150.80.0206920.0009380.2822000.000018-20.2-17.00.61.482.28-0.97
      B34-HSM-3150.70.0243270.0010900.2822080.000021-19.9-16.70.81.472.26-0.97
      B34-HSM-4149.30.0196850.0008860.2821990.000017-20.3-17.10.61.482.28-0.97
      B34-HSM-5150.60.0246720.0011100.2822390.000017-18.8-15.60.61.432.19-0.97
      B34-HSM-6150.80.0212760.0009770.2822400.000017-18.8-15.60.61.432.19-0.97
      B34-HSM-7150.00.0244710.0010760.2822080.000020-20.0-16.80.71.482.26-0.97
      B34-HSM-8150.00.0176050.0007830.2822220.000018-19.5-16.30.61.442.23-0.98
      B34-HSM-9150.10.0246080.0011040.2821860.000020-20.7-17.50.71.512.31-0.97
      B34-HSM-10150.10.0140420.0006410.2821270.000019-22.8-19.60.71.572.44-0.98
      B34-HSM-11150.00.0180520.0008070.2822380.000018-18.9-15.70.61.422.20-0.98
      B34-HSM-12150.10.0211760.0009700.2822250.000020-19.3-16.20.71.452.22-0.97
      B34-HSM-13150.40.0228470.0010420.2822030.000018-20.1-16.90.61.482.27-0.97
      B34-HSM-14150.50.0216990.0009630.2822620.000018-18.0-14.80.71.392.14-0.97
      B34-HSM-15150.10.0303400.0013240.2821890.000022-20.6-17.50.81.512.31-0.96
      B34-HSM-16150.80.0287440.0011690.2821980.000020-20.3-17.10.71.492.28-0.96
      B34-HSM-17150.70.0170270.0007270.2821520.000020-21.9-18.70.71.542.38-0.98
      B34-HSM-18149.10.0202680.0008970.2822330.000019-19.1-15.90.71.432.21-0.97
      B34-HSM-19149.30.0209570.0009290.2821980.000019-20.3-17.10.71.482.28-0.97
      B34-HSM-20150.70.0171570.0007680.2821930.000020-20.5-17.20.71.482.29-0.98
      B64/HSM-2145.80.0626780.0017760.2822150.000019-19.7-16.70.71.492.25-0.9
      B64/HSM-3146.00.0866740.0024990.2821470.000015-22.1-19.10.51.622.41-0.92
      B64/HSM-4146.10.0860410.0024490.2820050.000017-27.1-24.20.61.822.72-0.93
      B64/HSM-5146.00.0758610.0020980.2821290.000018-22.7-19.70.61.632.45-0.94
      B64/HSM-6146.20.0687840.0019070.2820710.000016-24.8-21.80.61.702.58-0.94
      B64/HSM-9146.60.0780740.0024650.2820790.000017-24.5-21.60.61.722.56-0.93
      B64/HSM-10146.00.0816580.0024130.2821420.000018-22.3-19.30.61.622.42-0.93
      B64/HSM-11145.90.1035770.0029190.2820680.000015-24.9-22.00.51.762.59-0.91
      B64/HSM-12146.20.0932070.0024580.2821320.000019-22.6-19.70.71.642.44-0.93
      B64/HSM-13145.90.0820430.0021610.2821320.000019-22.6-19.70.71.632.44-0.93
      B64/HSM-15146.20.0778330.0021030.2820530.000017-25.4-22.40.61.742.62-0.94
      B64/HSM-16145.90.0869800.0022700.2820440.000020-25.7-22.80.71.762.64-0.93
      B64/HSM-18145.90.0702620.0018510.2820460.000017-25.7-22.70.61.742.63-0.94
      B64/HSM-19145.80.0820710.0024520.2821690.000022-21.3-18.40.81.592.36-0.93
      B64/HSM-20145.90.1062880.0026790.2821840.000017-20.8-17.90.61.582.33-0.92
      B64/HSM-21145.70.0800870.0021100.2820860.000015-24.2-21.30.51.692.54-0.94
      B64/HSM-22145.70.0597910.0017710.2821270.000015-22.8-19.80.51.622.45-0.95
      B64/HSM-23146.10.0718820.0019420.2820680.000016-24.9-21.90.61.712.58-0.94
      B64/HSM-24145.60.0731870.0018830.2821010.000015-23.7-20.70.51.662.51-0.94
      B33HSM-1143.80.0595670.0023040.2820630.000022-25.1-22.10.81.732.59-0.93
      B33HSM-2145.60.0518450.0020940.2820270.000019-26.3-23.30.71.772.67-0.94
      B33HSM-3143.00.0871180.0033130.2821100.000019-23.4-20.60.71.712.50-0.90
      B33HSM-4143.50.0572380.0022960.2819860.000020-27.8-24.90.71.842.77-0.93
      B33HSM-5143.20.0473200.0018950.2820050.000018-27.1-24.20.61.802.72-0.94
      B33HSM-6143.90.0555020.0022180.2820120.000018-26.9-23.90.61.802.71-0.93
      B33HSM-7145.10.0501960.0020380.2820260.000016-26.4-23.40.61.772.68-0.94
      B33HSM-8146.10.0459960.0018320.2821560.000020-21.8-18.80.71.582.38-0.94
      B33HSM-9144.00.0139930.0005640.2817820.000022-35.0-31.90.82.043.21-0.98
      B33HSM-10145.10.0502780.0020570.2820140.000018-26.8-23.80.61.792.70-0.94
      B33HSM-11145.70.0647440.0024880.2821120.000020-23.3-20.40.71.672.49-0.93
      B33HSM-12146.10.0823680.0031610.2820320.000021-26.2-23.30.71.822.67-0.90
      B33HSM-13146.20.0432820.0017500.2820800.000018-24.5-21.40.61.682.55-0.95
      B33HSM-14145.70.0560860.0021680.2821020.000022-23.7-20.70.81.672.51-0.93
      B33HSM-15146.40.0471320.0018830.2820260.000022-26.4-23.40.81.772.67-0.94
      B33HSM-16146.40.0412510.0016460.2820930.000020-24.0-21.00.71.662.52-0.95
      B33HSM-17146.80.0535220.0021310.2820180.000019-26.7-23.70.71.792.69-0.94
      B33HSM-18145.30.0493230.0019490.2820220.000017-26.5-23.50.61.772.68-0.94
      B33HSM-19145.20.0644930.0025500.2820270.000018-26.3-23.40.61.802.68-0.92
      B33HSM-20146.20.0405750.0015990.2820820.000023-24.4-21.40.81.672.55-0.95
      注:εHf(t)={[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000;TDM1=1/λ×ln{1+ [(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM]};TDM2=1/λ×ln{1+[(176Hf/177Hf)s, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;s=sample, (176Hf/177Hf)CHUR, 0=0.282772,(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)DM=0.28325,其中t=锆石结晶年龄,λ=1.867×10-11a-1,(176Lu/177Hf)C=0.
      下载: 导出CSV
    • [1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrial Zircons.Nature, 399(6733):252-255.doi: 10.1038/20426
      [2] Ames, L., Zhou, G.Z., Xiong, B.C., 1996.Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China.Tectonics, 15(2):472-489.doi: 10.1029/95tc02552
      [3] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      [4] Bao, Z.W., Li, C.J., Qi, J.P., 2009.SHRIMP Zircon U-Pb Age of the Gabbro Dyke in the Luanchuan Pb-Zn-Ag Orefield, East Qinling Orogen and Its Constraint on Mineralization Time.Acta Petrologica Sinica, 25(11):2951-2956 (in Chinese with English abstract). http://www.oalib.com/paper/1472707
      [5] Bao, Z.W., Wang, Y.C., Zhao, T.P., et al., 2014.Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China.Ore Geology Reviews, 57:132-153.doi: 10.1016/j.oregeorev.2013.09.008
      [6] Bodnar, R.J., 2009.Heavy Metals or Punk Rocks? Science, 323(5915):724-725.doi: 10.1126/science.1166394
      [7] Bolhar, R., Weaver, S.D., Whitehouse, M.J., et al., 2008.Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand).Earth and Planetary Science Letters, 268(3-4):312-324.doi: 10.1016/j.epsl.2008.01.022
      [8] Chappell, B.W., White, A.J.R., 2001.Two Contrasting Granite Types:25 Years Later.Australian Journal of Earth Sciences, 48(4):489-499.doi: 10.1046/j.1440-0952.2001.00882.x
      [9] Chen, J.F, Xie, Z., Liu, S.S., et al., 1995.Cooling Age of Dabie Orogen, China, Determined by 40Ar-39Ar and Fission Track Techniques.Science in China (Series B), 38(6):749-757. https://www.researchgate.net/publication/230239117_A_Study_of_the_Rhenium-Osmium_Geochronometry_of_Molybdenites1
      [10] Chen, L.H., Zhou, X.H., 2003.Ultramafic Xenoliths in Mesozoic Diorite in West Shandong Province.Science in China (Series D), 33(8):489-499(in Chinese). https://www.researchgate.net/profile/Li-Hui_Chen/publication/225894710_Ultramafic_xenoliths_in_Mesozoic_diorite_in_west_Shandong_Province/links/02e7e53082a3e30c6a000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
      [11] Chen, R.X., Zheng, Y.F., Zhao, Z.F., et al., 2007.Zircon U-Pb Age and Hf Isotope Evidence for Contrasting Origin of Bimodal Protoliths for Ultrahigh-Pressure Metamorphic Rocks from the Chinese Continental Scientific Drilling Project.Journal of Metamorphic Geology, 25(8):873-894.doi: 10.1111/j.1525-1314.2007.00735.x
      [12] Chiu, H.Y., Chung, S.L., Wu, F.Y., et al., 2009.Zircon U-Pb and Hf Isotopic Constraints from Eastern Transhimalayan Batholiths on the Precollisional Magmatic and Tectonic Evolution in Southern Tibet.Tectonophysics, 477(1-2):3-19.doi: 10.1016/j.tecto.2009.02.034
      [13] Coleman, D.S., Gray, W., Glazner, A.F., 2004.Rethinking the Emplacement and Evolution of Zoned Plutons:Geochronologic Evidence for Incremental Assembly of the Tuolumne Intrusive Suite California.Geology, 32(5):433-436.doi: 10.1130/g20220.1
      [14] Compston, W., Williams, I.S., Kirschvink, J.L., et al., 1992.Zircon U-Pb Ages for the Early Cambrian Time-Scale.Journal of the Geological Society, 149(2):171-184.doi: 10.1144/gsjgs.149.2.0171
      [15] Connelly, J.N., 2001.Degree of Preservation of Igneous Zonation in Zircon as a Signpost for Concordancy in U/Pb Geochronology.Chemical Geology, 172(1-2):25-39.doi: 10.1016/s0009-2541(00)00234-5
      [16] Diwu, C.R., Sun, Y., Lin, C.L., et al., 2007.Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China.Acta Petrologica Sinica, 23(2):253-262 (in Chinese with English abstract). https://www.researchgate.net/publication/280015308_Zircon_U-Pb_ages_and_Hf_isotopes_and_their_geological_significance_of_Yiyang_TTG_gneisses_from_Henan_province_China
      [17] Diwu, C.R., Sun, Y., Lin, C.L., et al., 2010.LA-(MC)-ICPMS U-Pb Zircon Geochronology and Lu-Hf Isotope Compositions of the Taihua Complex on the Southern Margin of the North China Craton.Chinese Science Bulletin, 55(21):2112-2128 (in Chinese). http://www.academia.edu/13671205/Detrital_zircons_reveal_no_Jurassic_plateau_in_the_eastern_North_China_Craton
      [18] Dong, Z.C., Gu, P.Y., Chen, R.M., 2015.Geochronology, Geochemistry and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai.Earth Science, 40(1):130-144 (in Chinese with English abstract). https://www.researchgate.net/publication/287397509_Geochronology_geochemistry_and_Hf_isotope_characteristics_of_yanchangbeishan_granodiorite_of_lenghu_area_in_Qinghai
      [19] Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158.doi: 10.1016/j.gca.2006.06.1383
      [20] Feng, Z.H., Wang, C.Z., Wang, B.H., 2009.Granite Magma Ascent and Emplacement Mechanisms and Their Relation to Mineralization Process.Journal of Guilin University of Technology, 29(2):183-194 (in Chinese with English abstract). https://www.researchgate.net/profile/Chunzeng_Wang/publication/226378053_The_emplacement_mechanisms_and_growth_styles_of_the_Guposhan-Huashan_batholith_in_western_Nanling_Range_South_China/links/552581980cf295bf160ea99f.pdf
      [21] Ge, X.Y., Li, X.H., Chen, Z.G., et al., 2002.Geochemical Characteristics and Petrogenesis of Yanshannian High-Sr/Low-Y Intermediate-Felsic Igneous Rocks from Eastern China:Constrains on Crustal Thickness of Eastern China.Chinese Science Bulletin, 47(6):474-480 (in Chinese). https://www.researchgate.net/publication/225633284_Geochemistry_and_petrogenesis_of_Jurassic_high_Srlow_Y_granitoids_in_eastern_China_Constrains_on_crustal_thickness
      [22] Glazner, A.F., Bartley, J.M., Coleman, D.S., et al., 2004.Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers? GSA Today, 14(4):4-11.doi: 10.1130/1052-5173(2004)014 < 0004:apaomo > 2.0.co; 2
      [23] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282.doi: 10.1016/j.precamres.2003.12.011
      [24] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8
      [25] Grove, T.L., Donnelly-Nolan, J.M., Housh, T., 1997.Magmatic Processes that Generated the Rhyolite of Glass Mountain, Medicine Lake Volcano, N.California.Contributions to Mineralogy and Petrology, 127(3):205-223.doi: 10.1007/s004100050276
      [26] Harrison, T.M., Armstrong, R.L., Naeser, C.W., et al., 1979.Geochronology and Thermal History of the Coast Plutonic Complex, near Prince Rupert British Columbia.Canadian Journal of Earth Sciences, 16(3):400-410.doi: 10.1139/e79-038
      [27] Harrison, T.M., Watson, E.B., 1984.The Behavior of Apatite during Crustal Anatexis:Equilibrium and Kinetic Considerations.Geochimica et Cosmochimica Acta, 48(7):1467-1477.doi: 10.1016/0016-7037(84)90403-4
      [28] Haschke, M., Ahmadian, J., Murata, M., et al., 2010.Copper Mineralization Prevented by Arc-Root Delamination during Alpine-Himalayan Collision in Central Iran.Economic Geology, 105(4):855-865.doi: 10.2113/gsecongeo.105.4.855
      [29] He, Y.Q., Chen, F.Q., 2013.Geological Characteristics and Ore Indicators of the Huoshenmiao Mo Deposit in Luanchuan County.Mining Technology, 13(3):115-118(in Chinese). https://www.researchgate.net/publication/303166257_Geological_characteristics_and_molybdenite_Re-Os_isotopic_dating_of_Huangshuian_carbonatite_vein-type_Mo_Pb_deposit_in_Songxian_County_Henan_Province
      [30] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.oalib.com/paper/1472292
      [31] Hua, R.M., Zhang, W.L., Chen, P.R., et al., 2013.Relationship between Caledonian Granitoids and Large-Scale Mineralization in South China.Geological Journal of China Universities, 19(1):1-11 (in Chinese with English abstract).
      [32] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69.doi: 10.1016/j.chemgeo.2004.06.017
      [33] Jiao, E.Z., 2007.Geological Characteristics of the Huoshenmiao Mo(Pb) Deposit in Luanchuan.Express Information of Mining Industry, 7(7):64-65 (in Chinese).
      [34] Jing, H.X., Sun, D.Y., Gou, J., 2015.Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block.Earth Science, 40(1):130-144 (in Chinese with English abstract).
      [35] Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983.doi: 10.1126/science.1136154
      [36] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391.doi: 10.1093/petroj/38.3.371
      [37] Le Maitre, R.W., 1976.The Chemical Variability of Some Common Igneous Rocks.Journal of Petrology, 17(4):589-598.doi: 10.1093/petrology/17.4.589
      [38] Li, H.K., Zhu, S.X., Xiang, Z.Q., et al., 2010.Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing Beijing, Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton.Acta Petrologica Sinica, 26(7):2131-2140 (in Chinese with English abstract).
      [39] Li, S.G., Ge, N.J., Liu, D.L., et al., 1989.Sm-Nd Isotope Ages of the C-Type Eclogite from the Dabie Group in the North Dabieshan Area and Its Tectonic Significance.China Science Bulletin, 34(7):522-525 (in Chinese). https://www.researchgate.net/profile/Shuguang_Li9/citations?sorting=recent&page=5
      [40] Li, X.H., Li, W.X., Li, Z.X., 2007.Re-Discussion on Genetic Type of Nanling Granitoid and Its Tectonic Significance.Chinese Science Bulletin, 52(9):981-991 (in Chinese).
      [41] Li, X.H., Li, W.X., Wang, X.C., et al., 2009.Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China:In Situ Zircon Hf-O Isotopic Constraints.Science in China (Series D), 39(7):872-887(in Chinese). https://espace.curtin.edu.au/handle/20.500.11937/35805
      [42] Li, Y.F., Mao, J.W., Bai, F.J., et al., 2003.Re-Os Isotopic Dating of Molybdenites in the Nannihu Molybdenum (Tungsten) Orefield in the Eastern Qinling and Its Geological Significance.Geological Review, 49(6):652-659 (in Chinese with English abstract).
      [43] Li, Y.F., Mao, J.W., Hu, H.B., et al., 2005.Geology, Gistribution, Types and Tectonic Settings of Mesozoic Molybdenum Deposits in East Qinling Area.Mineral Deposits, 24(3):292-304 (in Chinese with English abstract). https://www.researchgate.net/publication/293088238_Geology_distribution_types_and_tectonic_settings_of_Mesozoic_epithermal_gold_deposits_in_East_China
      [44] Liu, Y.S, Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082
      [45] Lu, K.X., Chen, X.E., Wang, X., et al., 2008.Geological Characteristics and Genesis of the Heijiazhuang Mo Deposit in Luanchuan.West-China Exploration Engineering, 20(10):144-146(in Chinese). https://www.researchgate.net/publication/305159835_Geological_characteristics_and_new_prospecting_discovery_of_the_jinduicheng_superlarge_porphyry_molybdenum_deposit
      [46] Ludwig, K.R., 2003.User's Manual for Isoplot/Ex, Verson 3.00.A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, 4:1-70. https://www.researchgate.net/publication/301951506_User's_Manual_for_IsoplotEx_rev_300_A_Geochronological_Toolkit_for_Microsoft_Excel
      [47] Lü, W.D., Zhao, C.H., Sun, W.Z., et al., 2006.Geological Characteristics and Genesis of Nanniu Lead Zinc Polymetallic Ore Field in West Henan.Mineral Sources and Geology, 20(3):219-226 (in Chinese with English abstract). http://www.bookmetrix.com/detail/chapter/ed9c869c-82b6-4b2e-b3cd-f4807b7c3b9f
      [48] Mao, J.W., Xie, G.Q., Bierlein, F., et al., 2008.Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt.Geochimica et Cosmochimica Acta, 72(18):4607-4626.doi: 10.1016/j.gca.2008.06.027
      [49] Mao, J.W., Xie, G.Q., Pirajno, F., et al., 2010.Late Jurassic-Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central-Eastern China:SHRIMP Zircon U-Pb Ages and Tectonic Implications.Australian Journal of Earth Sciences, 57(1):51-78.doi: 10.1080/08120090903416203
      [50] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005.Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings.Acta Petrologica Sinica, 21(1):169-188 (in Chinese with English abstract). https://www.researchgate.net/publication/305531894_Mesozoic_large-scale_metallogenic_pulses_in_North_China_and_corresponding_geodynamic_settings
      [51] Mao, J.W., Ye, H.S., Wang, R.T., et al., 2009.Mineral Deposit Model of Mesozoic Porphyry Mo and Vein-Type Pb-Zn-Ag Ore Deposits in the Eastern Qinling, Central China and Its Implication for Prospecting.Geological Bulletin of China, 28(1):72-79(in Chinese with English abstract). https://www.researchgate.net/publication/279601984_Mineral_deposit_model_of_Mesozoic_porphyry_Mo_and_vein-type_Pb-Zn-Ag_ore_deposits_in_the_eastern_Qinling_Central_China_and_its_implication_for_prospecting
      [52] Martin, H., Bonin, B., Capdevila, R., et al., 1994.The Kuiqi Peralkaline Granitic Complex (SE China):Petrology and Geochemistry.Journal of Petrology, 35(4):983-1015.doi: 10.1093/petrology/35.4.983
      [53] Meinhold, G., 2010.Rutile and Its Application in Earth Sciences.Earth Science Review, 102(1-2):1-28.doi: 10.1016/j.earscirev.2010.06.001
      [54] Miller, C.F., 1985.Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources? The Journal of Geology, 93(6):673-689.doi: 10.1086/628995
      [55] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31:529-532.doi: 10.1130/0091-7613(2003)031 < 0529:hacgio > 2.0.co; 2
      [56] Ni, Z.Y., Wang, R.M., Tong, Y., et al., 2003.207Pb/206Pb Age of Zircon and 40Ar/39Ar of Amphibole from Plagioelase Amphibolite in the Taihua Group, Luoning, Henan, China.Geological Review, 49(4):361-366(in Chinese with English abstract). https://www.researchgate.net/publication/236133916_Geochronology_and_petrogenesis_of_gray_gneisses_from_the_Taihua_Complex_at_Xiong'er_in_the_southern_segment_of_the_Trans-North_China_Orogen_Implications_for_tectonic_transformation_in_the_Early_Paleop
      [57] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745
      [58] Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Acta Petrologica Sinica, 24(11):2468-2484 (in Chinese with English abstract). https://www.researchgate.net/publication/263690721_Petrogenesis_of_the_Taiwushan_granite_pluton_in_Fujian_Province_Constraints_from_zircon_U-Pb_ages_and_Hf_isotopes
      [59] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931.doi: 10.1093/petrology/36.4.891
      [60] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263.doi: 10.1016/0024-4937(89)90028-5
      [61] Rowley, D.B., Xue, F., Turker, R.D., et al., 1997.Ages of Ultrahigh Pressure Metamorphism and Protolith Orthogneisses from the Eastern Dabie Shan:U/Pb Zircon Geochemistry.Earth and Planetary Science Letters, 151(3-4):191-203.doi: 10.1016/S0012-821X(97)81848-1
      [62] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Process.Geological Society, London, Special Publications, 42:313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [63] Tera, F., Wasserburg, G.J., 1972.U-Th-Pb Systematics in Three Apollo 14 Basalts and the Problem of Initial Pb in Lunar Rocks.Earth and Planetary Science Letters, 14(3):281-304.doi: 10.1016/0012-821x(72)90128-8
      [64] Vervoort, J.D., Patchett, P.J., Gehrels, G.E., et al., 1996.Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes.Nature, 379(65-66):624-627.doi: 10.1038/379624a0
      [65] Wang, S., Ye, H.S., Yang, Y.Q., et al., 2014a.Molybdenite Re-Os Isochron Age of the Huoshenmiao Mo Deposit in Luanchuan of Henan Province and Its Geological Implications.Geological Bulletin of China, 33(9):1430-1438 (in Chinese with English abstract). https://www.researchgate.net/publication/277964344_Molybdenite_Re-Os_Isochron_Age_of_the_Huoshenmiao_Mo_Deposit_in_Luanchuan_Henan_Province_and_Its_Geological_Implications
      [66] Wang, S., Ye, H.S., Yang, Y.Q., et al., 2014b.Ore Forming Fluids of Huoshenmiao Mo Deposit, Western Henan.Mineral Deposits, 33(9):1430-1438 (in Chinese with English abstract).
      [67] Wang, X.L., Jiang, S.Y., Dai, B.Z., et al., 2011.Age, Geochemistry and Tectonic Setting of the Neoproterozoic (ca 830 Ma) Gabbros on the Southern Margin of the North China Craton.Precambrian Research, 190(1-4):35-47.doi: 10.1016/j.precamres.2011.08.004
      [68] Wang, X.X., Wang, T., Qi, Q.J., et al., 2011.Temporal-Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China.Actor Petrologica Sinica, 27(6):1573-1593 (in Chinese with English abstract). https://www.researchgate.net/publication/282283293_Temporal-spatial_variations_origin_and_their_tectonic_significance_of_the_Late_Mesozoic_granites_in_the_Qinling_Central_China
      [69] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821x(83)90211-x
      [70] Winther, K.T., Newton, R.C., 1991.Experimental Melting of Hydrous Low-Ktholeiite:Evidence on the Origin of Archaean Cratons.Bulletin of the Geological Society of Denmark, 39(6):213-228. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.485.8313&rep=rep1&type=pdf
      [71] Wolf, M.B., Wyllie, P.J., 1994.Dehydration-Melting of Amphibolite at 10 kbar:The Effects of Temperature and Time.Contributions to Mineralogy and Petrology, 115(4):369-383.doi: 10.1007/bf00320972
      [72] Wu, F.Y., Li, X.H., Yang, J.F., et al., 2007a.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract).
      [73] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671
      [74] Wu, F.Y., Zhao, G.C., Wilde, S.A., et al., 2005.Nd Isotopic Constraints on Crustal Formation in the North China Craton.Journal of Asian Earth Sciences, 24(5):523-545.doi: 10.1016/j.jseaes.2003.10.011
      [75] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569.doi: 10.1007/bf03184122
      [76] Xiang, J.F., Mao, J.W., Pei, R.F., et al., 2012.New Geochronological Data of Granites and Ores from the Nannihu-Sandaozhuang Mo (W) Deposit.Geology in China, 39(2):458-473 (in Chinese with English abstract). https://www.researchgate.net/publication/279558008_New_geochronological_data_of_granites_and_ores_from_the_NannihuSandaozhuang_MoW_deposit
      [77] Xiao, E., Hu, J., Zhang, Z.Z., et al., 2012.Petrogeochemistry, Zircon U-Pb Dating and Lu-Hf Isotopic Compositions of the Haoping and Jinshanmiao Granites from the Huashan Complex Batholith in Eastern Qinling Orogen.Acta Petrologica Sinica, 28(12):4031-4046 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW401.002.htm
      [78] Xin, Z.G., 2010.Geological Characteristics and Prospecting Message of Heijiazhuang Mo Deposit in Luanchuan.West-China Exploration Engineering, 22(5):101-102(in Chinese).
      [79] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014
      [80] Xiong, X.L., Liu, X.C., Zhu, Z.M., et al., 2011.Adakite and Craton Destruction of North China:Basis on Experimental Petrology and Geochemistry.Science in China (Series D), 41(5):654-667 (in Chinese). http://www.academia.edu/13671242/Destruction_of_the_North_China_Craton_Induced_by_Ridge_Subductions
      [81] Xu, X.S., Lu, W.M., He, Z.Y., 2007.Age and Generation of Fogang Granite Batholith and Wushi Diorite-Horblende Gabbro Body.Science in China (Series D), 37(1):27-38 (in Chinese). http://mall.cnki.net/magazine/Article/JDXG200702005.htm
      [82] Xu, Z.W., Ren, Q.J., 1988.Characteristics of Magmatic Evolution of Shibaogou, Huoshenmiao and Daping Granitoids in Luanchuan County, Henan Province.Journal of Nanjing University (Earth Science Edition), 1:95-103 (in Chinese with English abstract).
      [83] Yang, C.H., Xu, W.L., Yang, D.B., et al., 2008.Petrogenesis of Shangyu Gabbro-Diorites in Western Shandong:Geochronological and Geochanical Evidence.Science in China (Series D), 51(4):481-492 (in Chinese). doi: 10.1007/s11430-008-0029-0
      [84] Yang, R.Y., Xu, Z.W., Lu, X.C., et al., 1996.The Contrasting Study between Mineralized and Barren Stocks of the Molybdenum Ore Belt in East Qinling.Journal of Mineralogy and Petrology, 16(3):49-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS603.008.htm
      [85] Yang, R.Y., Xu, Z.W., Ren, Q.J., 1997.Ages and Magma Sources of Shibaogou and Huoshenmiao Complexesin East Qinling.Bullietin of Mineralogy Petrology and Geochemistry, 16(1):17-20 (in Chinese with English abstract).
      [86] Yang, Y., Wang, X.X., Ke, C.H., et al., 2012.Zircon U-Pb Age, Geochemistry and Hf Isotopic Compositions of Shibaogou Granitoid Pluton in the Nannihu Ore District, Western Henan Province.Geology in China, 39(6):1525-1542 (in Chinese with English abstract). https://www.researchgate.net/publication/279558364_Zircon_U-Pb_age_geochemistry_and_Hf_isotopic_compositions_of_Shibaogou_granitoid_pluton_in_the_Nannihu_ore_district_western_Henan_Province
      [87] Ye, H.S., Mao, J.W., Li, Y.F., 2006.Characteristics and Metallogenic Mechanism of Mo-W and Pb-Zn-Ag Deposits in Nannihu Ore Field, Western Henan Province.Geoscience, 20(1):165-174 (in Chinese with English abstract). https://www.researchgate.net/publication/301262734_Three_Dimensional_Quantitative_Extraction_and_Integration_for_Geosciences_Information_A_Case_Study_of_Nannihu_Mo_Deposit_Area
      [88] Zhang, Q., Jin, W.J., Li, C.D., et al., 2011.Granitic Rocks and Their Formation Depth in the Crust.Geotectonica et Metallogenia, 35(2):259-269 (in Chinese with English abstract).
      [89] Zheng, J.P., Sun, M., Lu, F.X., et al., 2005.Xinyang Mafic Granulitic Xenoliths and Its Significance for the Early Mesozoic Lower Crustal Nature on the South Margin of the North China Craton.Acta Petrologica Sinica, 21(1):91-98 (in Chinese with English abstract).
      [90] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos, 96(1-2):127-150.doi: 10.1016/j.lithos.2006.10.003
      [91] Zheng, Y.F., Zhao, Z.F., Chen, Y.X., 2013.Continental Subduction Channel Processes:Plate Interface Interacting during Continental Collision.Chinese Science Bulletin, 58(23):2233-2239 (in Chinese). https://www.researchgate.net/publication/258845485_Continental_Subduction_Channel_ProcessesPlate_Interface_Interacting_during_Continental_Collision
      [92] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009.Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Science in China (SeriesD), 58(23):2233-2239 (in Chinese).
      [93] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442
      [94] 包志伟, 李创举, 祁进平, 2009.东秦岭栾川铅锌银矿田辉长岩锆石SHRIMP U-Pb年龄及成矿时代.岩石学报, 25(11):2951-2956. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911026.htm
      [95] 陈立辉, 周新华, 2003.鲁西中生代闪长岩中的深源超镁铁质岩捕虏体及其富硅交代特征.中国科学(D辑):地球科学, 33(8):734-744. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308003.htm
      [96] 第五春荣, 孙勇, 林慈銮, 等, 2007.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学.岩石学报, 23(2):253-262. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702007.htm
      [97] 第五春荣, 孙勇, 林慈銮, 等, 2010.河南鲁山地区太华杂岩LA-(MC)-ICPMS锆石U-Pb年代学及Hf同位素组成.科学通报, 55(21):2112-2123. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021010.htm
      [98] 董增产, 辜平阳, 陈锐明, 等, 2015.柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征.地球科学, 40(1):130-144. http://www.earth-science.net/WebPage/Article.aspx?id=3013
      [99] 冯佐海, 王春增, 王葆华, 2009.花岗岩侵位机制与成矿作用.桂林工学院学报, 29(2):183-194. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200902005.htm
      [100] 葛小月, 李献华, 陈志刚, 等, 2002.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报, 47(6):474-480. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200206021.htm
      [101] 何亚清, 陈凤群, 2013.栾川县火神庙钼矿地质特征及找矿标志.采矿技术, 13(3):115-118. http://www.cnki.com.cn/Article/CJFDTOTAL-SJCK201303043.htm
      [102] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      [103] 华仁民, 张文兰, 陈培荣, 等, 2013.初论华南加里东花岗岩与大规模成矿作用的关系.高校地质学报, 19(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301002.htm
      [104] 焦二中, 2007.栾川火神庙矿区铅钼矿床地质特征.矿业快报, 7(7):64-65. http://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200707023.htm
      [105] 敬海鑫, 孙德有, 苟军, 等, 2015.兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征.地球科学, 40(6):982-994. http://www.earth-science.net/WebPage/Article.aspx?id=3099
      [106] 李怀坤, 朱士兴, 相振群, 等, 2010.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报, 26(7):2131-2140. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm
      [107] 李曙光, 葛宁洁, 刘德良, 等, 1989.大别山北翼大别群中C型榴辉岩的Sm-Nd同位素年龄及其构造意义.科学通报, 34(7):522-525. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198907012.htm
      [108] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9):981-991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm
      [109] 李献华, 李武显, 王选策, 等, 2009.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约.中国科学(D辑), 39(7):872-887. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907003.htm
      [110] 李永峰, 毛景文, 白凤军, 等, 2003.东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义.地质论评, 49(6):652-659. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200306015.htm
      [111] 李永峰, 毛景文, 胡华斌, 等, 2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质, 24(3):292-304. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200503008.htm
      [112] 卢克学, 程相恩, 王夏, 等, 2008.栾川黑家庄钼矿区矿床地质特征及成因探讨.西部探矿工程, 20(10):144-146. doi: 10.3969/j.issn.1004-5716.2008.10.054
      [113] 吕文德, 赵春和, 孙卫志, 等, 2006.豫西南泥湖多金属矿田铅锌矿地质特征与成因研究.矿产与地质, 20(3):219-226. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200603003.htm
      [114] 毛景文, 谢桂青, 张作衡, 等, 2005.中国北方大规模成矿作用的期次及其地球动力学背景.岩石学报, 21(1):169-188. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
      [115] 毛景文, 叶会寿, 王瑞廷, 等, 2009.东秦岭中生代钼铅锌银多金属矿床成矿模型及其找矿评价.地质通报, 28(1):72-79. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901010.htm
      [116] 倪志耀, 王仁民, 童英, 等, 2003.河南洛宁太华岩群斜长角闪岩的锆石207Pb/206Pb和角闪石40Ar/39Ar年龄.地质论评, 49(4):361-366. http://www.geojournals.cn/georev/ch/reader/view_abstract.aspx?file_no=20030463&flag=1
      [117] 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm
      [118] 王赛, 叶会寿, 杨永强, 等, 2014a.河南栾川火神庙钼矿床辉钼矿Re-Os年龄及其地质意义.地质通报, 33(9):1430-1438. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201409018.htm
      [119] 王赛, 叶会寿, 杨永强, 等, 2014b.豫西火神庙矽卡岩型钼矿床成矿流体研究.矿床地质, 33(6):1233-1250. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406007.htm
      [120] 王晓霞, 王涛, 齐秋菊, 等, 2011.秦岭晚中生代花岗岩时空分布、成因演变及构造意义.岩石学报, 27 (6):1573-1593. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106002.htm
      [121] 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm
      [122] 吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [123] 向君峰, 毛景文, 裴荣富, 等, 2012.南泥湖-三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义.中国地质, 39(2) :458-473. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202016.htm
      [124] 肖娥, 胡建, 张遵忠, 等, 2012.东秦岭花山复式岩基中蒿坪与金山庙花岗岩体岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素组成.岩石学报, 28(12):4031-4046. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212019.htm
      [125] 辛志刚, 2010.栾川黑家庄钼矿区成矿地质特征及找矿启示.西部探矿工程, 22(5):101-102. http://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201005039.htm
      [126] 熊小林, 刘星成, 朱志敏, 等, 2011.华北埃达克质岩与克拉通破坏:实验岩石学和地球化学依据.中国科学(D辑), 41(5):654-667. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105005.htm
      [127] 徐夕生, 鲁为敏, 贺振宇, 2007.佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源.中国科学(D辑), 37(1):27-38. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701002.htm
      [128] 徐兆文, 任启江, 1988.河南栾川石宝沟、火神庙和大坪岩体岩浆演化特征及其与钼矿化关系.南京大学学报, 1:95-103.
      [129] 杨承海, 许文良, 杨德彬, 等, 2008.鲁西上峪辉长-闪长岩的成因:年代学与岩石地球化学证据.中国科学(D辑), 38(1):44-45. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200801005.htm
      [130] 杨荣勇, 徐兆文, 陆现彩, 等, 1996.东秦岭钼矿带成矿岩体与非成矿岩体的对比研究.矿物岩石, 16(3):49-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS603.008.htm
      [131] 杨荣勇, 徐兆文, 任启江, 1997.东秦岭地区石宝沟和火神庙岩体的时代及岩浆物质来源.矿物地球化学通报, 16(1) :17-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH701.004.htm
      [132] 杨阳, 王晓霞, 柯昌辉, 等, 2012.豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、地球化学及Hf同位素组成.中国地质, 39(6):1525-1542. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201206004.htm
      [133] 叶会寿, 毛景文, 李永峰, 等, 2006.豫西南泥湖矿体钼钨及铅锌银矿床地质特征及其成矿机理探讨.现代地质, 20(1):165-174. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200601018.htm
      [134] 张旗, 金惟俊, 李承东, 等, 2011.花岗岩与地壳厚度关系探讨.大地构造与成矿学, 35(2):259-269. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102012.htm
      [135] 郑建平, 孙敏, 路凤香, 等, 2005.信阳基性麻粒捕虏体及其华北南缘早中生代下地壳性质.岩石学报, 21(1):91-98. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501010.htm
      [136] 郑永飞, 赵子福, 陈伊翔, 2013.大陆俯冲隧道过程:大陆碰撞过程中的板块界面相互作用.科学通报, 58(23):2233-2239. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323000.htm
      [137] 朱弟成, 莫宣学, 王立全, 等, 2009.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学(D辑), 39(7):833-848. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm
    • 加载中
    图(11) / 表(4)
    计量
    • 文章访问数:  3482
    • HTML全文浏览量:  1165
    • PDF下载量:  13
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-07-21
    • 刊出日期:  2016-02-15

    目录

      /

      返回文章
      返回