Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan
-
摘要: 火神庙岩体位于华北陆块南缘栾川矿集区西部,为一杂岩体,该岩体与火神庙钼矿床密切相关.目前,人们对火神庙岩体的研究程度较低,严重制约了对火神庙钼矿床成因的认识.系统开展了年代学、地球化学和Hf同位素组成研究.结果表明,石英闪长岩、二长花岗岩和花岗斑岩的形成年龄分别为150.3±0.6Ma、146.0±0.6Ma和145.1±0.5Ma,为栾川矿集区晚侏罗世第2次大规模岩浆活动的产物.火神庙杂岩体属于I型花岗岩,是不同源区部分熔融形成的岩浆上升就位的结果.石英闪长岩是富集岩石圈地幔部分熔融的产物;二长花岗岩和花岗斑岩是富集岩石圈地幔部分熔融形成的镁铁质岩浆与太华群TTG岩系部分熔融形成的长英质岩浆混合后上升就位的结果.Abstract: The Huoshenmiao pluton located in the west of the Luanchuan ore district, southern margin of the North China Craton (NCC) is mainly composed of quartz diorite, monzo-granite and granite porphyry. The Huoshenmiao pluton is closely related to the Huoshenmiao Mo deposit. While the degree of research on the Huoshenmiao pluton is very low, which seriously restrict the understanding of the genesis of the Huoshenmiao Mo deposit. Three types of rock including quartz diorite, monzo-granite and granite porphyry has been researched by zircon U-Pb chronology, geochemistry and Hf isotope. The forming ages of quartz diorite, monzo-granite and granite porphyry are 150.3±0.6Ma, 146.0±0.6Ma and 145.1±0.5Ma respectively, and are products of the second magmatism of the Luanchuan ore district, Late Jurassic. Geochemistry and zircon Hf isotope show that the Huoshenmiao pluton belongs to I-type granite, and it results from ascending magma formed by partial melting of different source regions. The quartz diorite stems from remelting of the enriched mantle, while the monzo-granite and granite porphyry are the products of mafic magma derived from remelting of the enriched mantle mixed with felsic magma derived from remelting of the Taihua TTG.
-
Key words:
- zircon U-Pb chronology /
- geochemistry /
- Hf isotope /
- Huoshenmiao pluton /
- West Henan
-
华北陆块南缘东秦岭钼矿带东部的栾川矿集区是中国最重要的钼多金属矿集区之一(吕文德等,2006;叶会寿等2006),研究人员已在矿集区中东部的南泥湖、上房沟、石宝沟等花岗斑岩体周围发现了众多的斑岩-矽卡岩型钼(钨)矿床、矽卡岩型多金属硫铁矿床和热液脉型铅锌银矿床,探明钼资源储量达300×104t、铅锌达700×104t、银达8000t,但矿集区西部的找矿工作一直没有取得重大进展.近年来,随着中国地质调查局地质调查项目的开展,在栾川矿集区西部火神庙岩体周围发现了火神庙钼矿床,查明钼资源储量5万余吨,平均品位0.12%(辛志刚,2010),它的发现显示了矿集区西部具有巨大的找矿潜力,为在该地区寻找钼多金属矿产提供了依据.矿床地质特征研究显示火神庙钼矿床与火神庙岩体密切相关,为一矽卡岩型钼矿床(焦二中,2007;卢克学等,2008;辛志刚,2010;何亚清和陈凤群,2013;王赛等, 2014a, 2014b).然而,目前火神庙岩体的研究程度较低,徐兆文和任启江(1988)报道了火神庙岩体二长(石英)闪长岩和二长花岗岩的地球化学特征,尚缺少花岗斑岩地球化学特征的报道;杨荣勇等(1997)测得火神庙岩体全岩Rb-Sr等时线年龄为162.8±6.2Ma,由于全岩Rb-Sr同位素体系的局限性(封闭温度较低(650±50℃;Harrison et al., 1979),亚固相扩散和热液蚀变均可导致Rb-Sr同位素体系重置)等条件的影响,导致该年龄误差较大,不能对火神庙岩体的形成时代进行较好的约束,其与王赛等(2014a)报道的辉钼矿Re-Os同位素等时线年龄(145.7±3.9Ma)差距也较大(>10Ma),远超过一般成矿系统的持续时间(Bodnar,2009),因此这一较大的年龄差严重制约了对火神庙钼矿床成因的认识.本文在前人研究的基础上,结合野外地质调查,进一步厘定了火神庙岩体的岩石组成,并对不同类型岩石进行了系统的年代学、地球化学及Hf同位素组成研究,旨在精确厘定火神庙岩体的形成时代、探讨火神庙岩体的成因,并为进一步确定火神庙钼矿床的成因提供依据.
1. 栾川矿集区地质
栾川矿集区位于华北陆块南缘栾川断裂带与马超营断裂带之间的栾川台缘褶皱带内(图 1).区内出露地层主要有中元古界官道口群、新元古界栾川群和新元古界-早古生界陶湾群.官道口群主要由中浅变质滨浅海相碎屑岩和含燧石条带白云质大理岩组成;栾川群主要包括碎屑岩、碳酸盐岩和碱性火山岩;陶湾群主要由含砾灰岩、大理岩、千枚岩和石英岩组成.
图 1 栾川钼多金属矿集区地质简图1.新元古界-早古生界陶湾群含砾灰岩、大理岩、千枚岩和石英岩;2.新元古界栾川群碎屑岩、碳酸盐岩和碱性火山岩;3.中元古界-新元古界宽坪群大理岩和基性火山岩;4.中元古界官道口群碎屑岩和含燧石条带大理岩;5.早白垩世花岗岩;6.晚侏罗世花岗斑岩;7.断裂;8.斑岩-矽卡岩型钼矿床;9.矽卡岩型多金属硫铁矿床;10.热液脉型铅锌银矿床;a.太行山断裂带;b.三门峡-宝丰断裂带;c.栾川断裂带;d.商丹断裂带;e.南漳断裂带;据叶会寿等(2006)修改Fig. 1. Geological sketch of the Luanchuan ore district矿集区内发育一系列倒转褶皱和逆掩推覆断层(吕文德等,2006).褶皱构造主要有杨树凹-白沙洞向斜、银河沟背斜、增河口向斜、黄背岭-石宝沟背斜和核桃岔向斜(叶会寿等,2006).断裂构造按走向可分为NWW向和NE向2组,NWW向断裂有栾川断裂、庙子断裂以及一系列自北向南推覆的逆冲断裂,其延伸长、规模大,是矿集区内的主要断裂;NE向断裂呈近等间距“行列式”分布(杨阳等,2012),主要有黄背岭-南泥湖-马圈断裂带和石宝沟-庄科断裂带.
矿集区内岩浆多期次侵位,主要发育有新元古代变辉长岩(830Ma,Wang et al., 2011)和晚侏罗世花岗斑岩.晚侏罗世花岗斑岩,如南泥湖、上房沟、石宝沟、黄背岭等,主要分布于NWW向与NE向断裂交汇处,具有数量多、规模小(出露面积<3km2)、分异程度高的特点,在时间、空间和成因上与钼多金属矿化密切相关(李永峰等, 2003, 2005;吕文德等,2006;叶会寿等,2006;毛景文等,2009).年代学、地球化学及同位素研究显示花岗斑岩具有高硅、富钾、碱性-钙碱性以及准铝质-弱过铝质的特点,属I型花岗岩,主要形成于古老地壳物质的部分熔融、并有少量地幔组分的参与,形成于中生代晚侏罗世挤压向伸展转换的构造环境(毛景文等,2005;包志伟等,2009;Mao et al., 2010;王晓霞等,2011;杨阳等,2012).
矿集区内发育大量斑岩-矽卡岩型钼矿床、矽卡岩型多金属硫铁矿床和热液脉型铅锌银矿床,它们围绕花岗斑岩体由内向外规律性分布:钼矿床(如南泥湖-三道庄、上房沟、火神庙等)主要赋存于花岗岩体内及外接触带中;多金属硫铁矿床(如骆驼山、银和沟等)主要赋存于花岗岩体外接触带的层状矽卡岩中;铅锌银矿床(如冷水北沟、杨树凹、百炉沟、银洞沟等)主要赋存于花岗岩体外围围岩NE向断裂带中,为栾川矿集区晚侏罗世同一构造-岩浆-流体活动的产物(叶会寿等,2006;毛景文等,2009).
2. 岩体地质及岩相学特征
火神庙岩体位于栾川矿集区西部、石家沟-火神庙背斜的北翼,呈小岩珠侵位于三川组大理岩中,在平面上呈近EW向眼球状产出,长约650m,宽约300m,出露面积约0.2km2(杨荣勇等,1997).火神庙岩体为一杂岩体,主要由石英闪长岩、二长花岗岩和花岗斑岩组成.石英闪长岩出露于火神庙岩体的外围,构成了火神庙岩体的主体;花岗斑岩呈带状出露于火神庙岩体的中部;二长花岗岩呈椭圆状出露于火神庙岩体的中心、包裹于花岗斑岩中,钼矿体则主要赋存于火神庙岩体东南部花岗斑岩与三川组大理岩接触带的矽卡岩中(图 2).
石英闪长岩(图 3a):深灰色,中细粒花岗结构(图 3b),块状构造,主要矿物有斜长石(50%~70%)、角闪石(15%~20%)和石英(5%~10%),次要矿物有钾长石(3%~5%)、黑云母(2%~4%)和辉石(1%~2%).斜长石,半自形-自形板柱状,粒径为2~6mm,发育聚片双晶(图 3b)、卡钠复合双晶和环带结构(图 3c),部分发生微弱绢云母化;角闪石,半自形-自形长柱状,粒径为1~4mm,可见角闪石简单双晶(图 3d),部分发生微弱的绿泥石化;石英,他形粒状,粒径为0.5~2.0mm,主要分布于其他矿物颗粒之间;钾长石,半自形-他形板状,粒径为2~3mm,发育卡式双晶,部分发生微弱的高岭土化;黑云母,褐绿色,半自形-自形鳞片状,粒径为0.5~2.0mm;辉石,粒状,粒径为0.5~1.0mm,发育不完全解理.副矿物有锆石、磷灰石、磁铁矿、钛铁矿等.
二长花岗岩(图 3e):灰白色-肉红色,中细粒花岗结构(图 3f),块状构造,主要矿物有钾长石(30%~40%)、石英(25%~35%)和斜长石(20%~30%),次要矿物为黑云母(1%~2%).钾长石,半自形-他形板柱状,粒径为1~3mm,见卡式双晶,部分发生微弱高岭土化;石英,他形粒状,粒径为0.5~1.5mm,主要分布于其他矿物颗粒之间;斜长石,半自形-自形板状,粒径为1~3mm,见聚片双晶(图 3f)和卡钠复合双晶,部分发生微弱绢云母化;黑云母,褐色,半自形鳞片状,粒径为0.5~1.0mm.副矿物有锆石、磷灰石、磁铁矿、钛铁矿等.
花岗斑岩(图 3g):灰白色,斑状结构(图 3h和3i),块状构造.斑晶为钾长石、斜长石和石英,含量约为15%~25%,粒径为0.5~2.0mm.钾长石斑晶,半自形-他形板柱状,发育卡式双晶,部分发生微弱高岭土化;斜长石斑晶,半自形-他形板状,发育聚片双晶,部分发生微弱的绢云母化;石英斑晶,他形粒状,普遍被基质交代,发生溶蚀现象(图 3i).基质为隐晶质,成分与斑晶相同.副矿物有锆石、磷灰石、磁铁矿、钛铁矿等.
3. 样品采集与分析方法
用于LA-(MC)-ICPMS锆石U-Pb定年、地球化学及Hf同位素分析的石英闪长岩、二长花岗岩和花岗斑岩分别来自于火神庙岩体3个不同类型的岩石,具体采样位置见图 2.锆石分选工作是在北京天和信矿业技术开发有限公司完成的,阴极发光(cathode luminescence,简称CL)照相是在西北大学大陆动力学国家重点实验室完成的.LA-(MC)-ICPMS锆石U-Pb定年是在中国地质调查局天津地质矿产研究所同位素实验室完成的,仪器配置和实验流程见李怀坤等(2010).实验过程中采用锆石标样GJ1进行U、Pb同位素分馏校正(Jackson et al., 2004),并通过208Pb校正法对普通铅进行校正(Andersen, 2002),同时利用NIST612作为外标计算锆石的U、Th、Pb含量,最后利用ICPMSDataCal程序(Liu et al., 2010)和Isoplot程序(Ludwig, 2003)对数据进行处理.
样品主量、微量及稀土元素的分析测试工作是在广州澳实矿物实验室完成的.主量元素由荷兰PANalytical公司生产的Axios仪器利用熔片X射线荧光光谱法进行测定,并采用等离子光谱和化学法测定进行互相检测.微量及稀土元素利用美国PerkinElmer公司生产的Elan9000电感耦合等离子质谱仪(ICP-MS)进行测定.主量元素的分析精度和准确度优于5%,微量及稀土元素的分析精度和准确度优于10%.
锆石Hf同位素测试是在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室进行的,仪器配置和实验流程见侯可军等(2007).实验过程中采用锆石标样GJ1作为参考物质(Jackson et al., 2004),其176Hf/177Hf加权平均值为0.281997±12(n=24),与文献报道值(0.282015±19,Elhlou et al., 2006;0.282008±25,侯可军等,2007)在误差范围内基本一致.
4. 分析结果
4.1 LA-(MC)-ICPMS锆石U-Pb定年
对火神庙岩体石英闪长岩(样品编号:B34/HSM)、二长花岗岩(B64/HSM)和花岗斑岩(B33/HSM)进行了锆石U-Pb年代学研究,具体结果见表 1,所测锆石的CL图像、测点位置及相应的U-Pb年龄见图 4,年龄谐和图见图 5.
表 1 火神庙岩体LA-MC-ICPMS错石U-Pb年龄测定结果Table Supplementary Table LA-MC-ICPMS zircon U-Pb data of the Huoshenmiao pluton样品号 Pb(10-6) U(10-6) 232Th/238U 同位素比值 同位素年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ B34HSM1 9 350 0.700 0.0496 0.0021 0.1625 0.0070 0.0237 0.0002 178 97 153 7 151 1 B34HSM2 9 346 0.750 0.0491 0.0020 0.1603 0.0067 0.0237 0.0002 154 96 151 6 151 1 B34HSM-3 15 575 1.020 0.0494 0.0016 0.1611 0.0054 0.0236 0.0002 168 77 152 5 151 1 B34HSM-4 12 471 0.850 0.0498 0.0032 0.1610 0.0102 0.0234 0.0002 188 148 152 10 149 2 B34HSM-5 11 436 0.800 0.0494 0.0025 0.1610 0.0084 0.0236 0.0002 168 119 152 8 151 1 B34HSM-6 8 324 0.850 0.0496 0.0059 0.1618 0.0194 0.0237 0.0003 176 277 152 18 151 2 B34HSM-7 11 433 0.750 0.0495 0.0019 0.1606 0.0067 0.0235 0.0002 170 90 151 6 150 2 B34HSM-8 12 460 0.980 0.0498 0.0014 0.1617 0.0046 0.0235 0.0002 187 64 152 4 150 1 B34HSM-9 11 443 0.720 0.0493 0.0013 0.1601 0.0043 0.0236 0.0002 162 61 151 4 150 1 B34HSM-10 6 245 0.710 0.0496 0.0022 0.1612 0.0071 0.0236 0.0002 178 101 152 7 150 1 B34HSM-11 8 333 0.660 0.0497 0.0024 0.1614 0.0079 0.0235 0.0002 183 112 152 7 150 1 B34HSM-12 11 435 0.700 0.0494 0.0013 0.1606 0.0044 0.0236 0.0002 168 62 151 4 150 1 B34HSM-13 11 419 0.670 0.0499 0.0015 0.1625 0.0051 0.0236 0.0002 191 70 153 5 150 2 B34HSM-14 10 363 0.750 0.0499 0.0013 0.1626 0.0044 0.0236 0.0002 191 61 153 4 151 1 B34HSM-15 13 488 0.940 0.0491 0.0013 0.1595 0.0044 0.0236 0.0002 152 62 150 4 150 1 B34HSM-16 13 512 0.860 0.0496 0.0015 0.1617 0.0055 0.0237 0.0003 174 71 152 5 151 2 B34HSM-17 10 395 0.640 0.0492 0.0020 0.1606 0.0069 0.0237 0.0002 159 97 151 6 151 1 B34HSM-18 7 296 0.580 0.0496 0.0018 0.1601 0.0060 0.0234 0.0002 177 85 151 6 149 1 B34HSM-19 11 427 0.660 0.0498 0.0015 0.1609 0.0050 0.0234 0.0002 186 70 151 5 149 1 B34HSM-20 6 230 0.540 0.0494 0.0024 0.1611 0.0080 0.0237 0.0002 167 115 152 8 151 1 B34HSM-21 11 454 0.730 0.0497 0.0014 0.1598 0.0047 0.0233 0.0002 183 67 151 4 148 1 B34HSM-22 11 453 0.730 0.0491 0.0013 0.1603 0.0043 0.0237 0.0002 154 62 151 4 151 1 B34HSM-23 10 418 0.680 0.0493 0.0013 0.1610 0.0044 0.0237 0.0002 161 61 152 4 151 1 B34HSM-24 8 321 0.620 0.0494 0.0018 0.1616 0.0061 0.0237 0.0002 169 87 152 6 151 1 B64jHSM-1 30 527 0.585 0.0962 0.0025 0.7521 0.0512 0.0567 0.0029 1551 48 569 39 356 18 B64jHSM-2 13 567 0.593 0.0541 0.0014 0.1705 0.0044 0.0229 0.0001 374 58 160 4 146 1 B64jHSM-3 11 446 0.937 0.0592 0.0013 0.1868 0.0042 0.0229 0.0001 573 48 174 4 146 1 B64jHSM-4 12 480 0.808 0.0502 0.0009 0.1586 0.0029 0.0229 0.0001 204 42 149 3 146 1 B64jHSM-5 11 460 0.883 0.0671 0.0028 0.2119 0.0089 0.0229 0.0002 841 86 195 8 146 1 B64jHSM-6 11 462 0.890 0.0616 0.0040 0.1950 0.0138 0.0229 0.0002 662 140 181 13 146 1 B64jHSM-7 11 420 1.037 0.0635 0.0011 0.2148 0.0040 0.0245 0.0001 725 37 198 4 156 1 B64jHSM-8 33 466 0.692 0.0935 0.0009 0.8627 0.0267 0.0669 0.0017 1497 18 632 20 418 11 B64jHSM-9 9 378 1.235 0.0544 0.0012 0.1725 0.0040 0.0230 0.0001 388 48 162 4 147 1 B64jHSM-10 13 551 0.640 0.0513 0.0007 0.1619 0.0022 0.0229 0.0001 253 31 152 2 146 1 B64jHSM-11 13 554 0.625 0.0517 0.0008 0.1630 0.0026 0.0229 0.0001 270 37 153 2 146 1 B64jHSM-12 9 338 1.428 0.0548 0.0007 0.1733 0.0022 0.0229 0.0001 403 28 162 2 146 1 B64jHSM-13 9 346 1.380 0.0751 0.0019 0.2370 0.0061 0.0229 0.0001 1071 52 216 6 146 1 B64jHSM-14 49 504 0.461 0.0866 0.0009 1.1371 0.0343 0.0953 0.0025 1351 20 771 23 587 15 B64jHSM-15 8 326 1.545 0.0494 0.0019 0.1561 0.0061 0.0229 0.0001 165 89 147 6 146 1 B64jHSM-16 9 393 0.317 0.0587 0.0012 0.1851 0.0039 0.0229 0.0001 554 43 172 4 146 1 B64jHSM-17 9 452 0.063 0.0583 0.0006 0.1820 0.0019 0.0226 0.0001 543 22 170 2 144 1 B64jHSM-18 14 573 0.581 0.0554 0.0010 0.1748 0.0033 0.0229 0.0001 429 40 164 3 146 1 B64jHSM-19 8 291 1.829 0.0531 0.0013 0.1673 0.0042 0.0229 0.0001 332 55 157 4 146 1 B64jHSM-20 14 585 0.557 0.0555 0.0009 0.1752 0.0030 0.0229 0.0001 433 37 164 3 146 1 B64jHSM-21 13 540 0.658 0.0547 0.0009 0.1724 0.0027 0.0229 0.0001 401 36 162 3 146 1 B64jHSM-22 9 367 1.309 0.0510 0.0011 0.1607 0.0034 0.0229 0.0001 241 48 151 3 146 1 B64jHSM-23 12 507 0.738 0.0577 0.0012 0.1824 0.0041 0.0229 0.0001 519 48 170 4 146 1 B64jHSM-24 10 396 1.142 0.0676 0.0012 0.2129 0.0041 0.0228 0.0001 857 36 196 4 146 1 B33HSM-1 7 246 2.300 0.0491 0.0021 0.1525 0.0067 0.0226 0.0001 150 102 144 6 144 1 B33HSM-2 3 115 1.440 0.0485 0.0093 0.1526 0.0289 0.0228 0.0002 122 450 144 27 146 2 B33HSM-3 16 626 1.730 0.0489 0.0007 0.1513 0.0020 0.0224 0.0001 144 32 143 2 143 1 B33HSM-4 4 164 1.700 0.0492 0.0019 0.1527 0.0060 0.0225 0.0001 158 92 144 6 144 1 B33HSM-5 10 416 1.420 0.0491 0.0009 0.1521 0.0029 0.0225 0.0001 152 44 144 3 143 1 B33HSM-6 10 386 1.740 0.0489 0.0009 0.1523 0.0028 0.0226 0.0001 145 42 144 3 144 1 B33HSM-7 9 318 2.420 0.0487 0.0013 0.1528 0.0039 0.0228 0.0001 134 61 144 4 145 1 B33HSM-8 29 1077 1.990 0.0489 0.0007 0.1544 0.0020 0.0229 0.0001 141 33 146 2 146 1 B33HSM-9 19 705 1.730 0.0492 0.0008 0.1533 0.0024 0.0226 0.0001 158 37 145 2 144 1 B33HSM-10 19 596 2.570 0.0488 0.0008 0.1533 0.0025 0.0228 0.0001 139 38 145 2 145 1 B33HSM-11 7 268 1.500 0.0491 0.0017 0.1547 0.0054 0.0229 0.0001 151 81 146 5 146 1 B33HSM-12 11 384 1.560 0.0489 0.0011 0.1544 0.0035 0.0229 0.0001 141 54 146 3 146 1 B33HSM-13 10 286 2.270 0.0486 0.0013 0.1538 0.0040 0.0229 0.0001 129 61 145 4 146 1 B33HSM-14 16 539 1.400 0.0489 0.0012 0.1543 0.0038 0.0229 0.0001 145 57 146 4 146 1 B33HSM-15 17 528 1.510 0.0480 0.0008 0.1520 0.0025 0.0230 0.0001 100 40 144 2 146 1 B33HSM-16 19 466 2.790 0.0488 0.0009 0.1544 0.0028 0.0230 0.0001 141 43 146 3 146 1 B33HSM-17 10 253 2.390 0.0488 0.0018 0.1551 0.0056 0.0230 0.0001 140 84 146 5 147 1 B33HSM-18 3 106 0.970 0.0489 0.0031 0.1537 0.0099 0.0228 0.0002 143 150 145 9 145 1 B33HSM-19 16 516 1.390 0.0488 0.0007 0.1534 0.0022 0.0228 0.0001 140 34 145 2 145 1 B33HSM-20 22 761 1.090 0.0489 0.0008 0.1546 0.0025 0.0229 0.0001 143 38 146 2 146 1 B33HSM-21 16 555 1.320 0.0485 0.0007 0.1523 0.0020 0.0228 0.0001 122 32 144 2 145 1 B33HSM-22 12 419 1.250 0.0490 0.0012 0.1537 0.0038 0.0227 0.0001 148 57 145 4 145 1 B33HSM-23 14 493 1.310 0.0494 0.0009 0.1540 0.0026 0.0226 0.0001 167 40 145 2 144 1 B33HSM-24 8 228 2.430 0.0488 0.0016 0.1522 0.0051 0.0226 0.0001 136 76 144 5 144 1 B33HSM-25 10 367 1.020 0.0491 0.0015 0.1549 0.0046 0.0229 0.0001 152 69 146 4 146 1 B33HSM-26 7 228 1.470 0.0488 0.0017 0.1541 0.0055 0.0229 0.0001 138 83 145 5 146 1 CL图像显示所测锆石多呈柱状或长柱状,自形程度较高,颗粒较大,长为100~300μm,宽为50~100μm,长宽比为2:1~4:1,锆石U含量为106×10-6~1077×10-6,Th/U比值为0.32~2.79,平均为1.14,具有岩浆锆石高Th/U比值(>0.4) 的特征(Wu and Zheng, 2004),并发育清晰的震荡韵律环带,显示其为岩浆成因(Connely, 2001).
对石英闪长岩和花岗斑岩分别进行了24个和26个点的锆石U-Pb同位素分析,年龄谐和图显示所获锆石U-Pb年龄具有很高的谐和度(图 5a和5b),所有测点均投影在谐和线上,表明所测锆石未受后期热液的影响.由于235U和238U的半衰期和丰度存在差异,导致在年轻锆石中放射性成因207Pb的丰度比206Pb低一个数量级,因此对于年龄较小(<1Ga)的锆石,采用206Pb/238U年龄更为准确(Composton et al., 1992; Griffin et al., 2004).对所获得的206Pb/238U年龄进行加权平均计算,得到石英闪长岩LA-(MC)-ICPMS锆石U-Pb年龄为150.3±0.6Ma(MSWD=0.22)、花岗斑岩LA-(MC)-ICPMS锆石U-Pb年龄为145.1±0.5Ma(MSWD=2.0).
对二长花岗岩进行了24个点的锆石U-Pb同位素分析,其中B64/HSM-17的Th/U比值为0.063,与变质锆石相当,所以其206Pb/238U年龄无法代表岩体的形成年龄;由于B64/HSM-1、B64/HSM-8和B64/HSM-14的Pb含量较高,且206Pb/238U年龄变化较大、精度较低,故舍去;B64/HSM-7所获206Pb/238U年龄为156±1Ma,与矿集区内南泥湖、石宝沟岩体较老的年龄相当(毛景文等,2005;向君峰等,2012;杨阳等,2012),可能记录了该地区一次更早的岩浆侵位事件;其余19个点的206Pb/238U年龄基本一致,获得加权平均年龄为146.0±0.4Ma(MSWD=0.08),但年龄谐和图显示所获锆石U-Pb年龄谐和度较低(图 5c),除少数点位于谐和线上外,多数锆石均发生不同程度的铅丢失,沿不一致线分布,不一致线的上交点年龄为146.0±0.6Ma(MSWD=0.08),与利用Tera-Wasserburg图解(图 5d;Tera and Wasserburg, 1972)获得不一致线的下交点年龄(146.0±0.6Ma,MSWD=0.09) 完全一致,显示测年结果具有很高的可靠性,因此笔者认为二长花岗岩的LA-(MC)-ICPMS锆石U-Pb年龄为146.0±0.6Ma(MSWD=0.09).
4.2 岩石地球化学
对火神庙岩体石英闪长岩(B22/HSM、B24/HSM、B1/HSM和B25/HSM)、二长花岗岩(B6、B10、B19和B28) 和花岗斑岩(B9/HSM、B11/HSM、B33/HSM和B65/HSM)进行了主量、微量和稀土元素分析,主量元素分析结果见表 2,微量和稀土元素分析结果见表 3.
表 2 火神庙岩体主量(%)测定结果Table Supplementary Table Major elements (%)data of the Huoshenmiao pluton样品号 石英闪长岩 二长花岗岩 花岗斑岩 B1/HSM B22/HSM B24/HSM B25/HSM B6 B10 B19 B28 B9/HSM B11/HSM B33/HSM B65/HSM SiO2 61.96 56.79 56.87 60.84 71.10 70.40 71.90 69.70 70.91 70.36 72.40 71.10 TiO2 0.50 0.75 0.75 0.53 0.21 0.21 0.19 0.23 0.16 0.16 0.14 0.16 Al2O3 16.13 16.88 17.97 17.57 15.10 15.75 14.90 15.90 14.09 14.49 14.60 14.95 TFe2O3 4.15 8.02 6.62 5.16 0.97 0.91 1.32 1.39 1.12 1.17 1.31 1.26 MnO 0.13 0.18 0.13 0.11 0.04 0.03 0.03 0.04 0.08 0.13 0.09 0.07 MgO 1.49 2.73 2.33 1.83 0.16 0.15 0.17 0.19 0.17 0.16 0.18 0.19 CaO 4.44 5.75 5.71 4.58 1.05 1.44 1.00 1.57 1.62 1.70 0.96 1.59 Na2O 4.56 3.88 4.18 4.12 3.62 3.94 3.49 3.53 3.05 3.82 4.20 3.66 K2O 4.80 3.10 2.92 3.33 6.78 5.56 6.75 6.55 5.66 5.75 5.02 5.07 P2O5 0.28 0.61 0.58 0.35 0.08 0.09 0.07 0.08 0.04 0.04 0.02 0.03 LOI 0.95 1.20 1.04 0.91 0.82 0.50 0.67 0.73 2.00 1.67 0.35 1.31 TATAL 99.39 99.89 99.10 99.33 99.93 98.98 100.49 99.91 98.90 99.45 99.30 99.40 K2O+Na2O 9.36 6.98 7.10 7.45 10.40 9.50 10.24 10.08 8.71 9.57 9.22 8.73 K2O/Na2O 1.05 0.80 0.70 0.81 1.87 1.41 1.93 1.86 1.86 1.51 1.20 1.39 A/CNK 0.78 0.83 0.88 0.94 0.99 1.04 1.00 1.01 1.00 0.93 1.04 1.04 A/NK 1.27 1.73 1.79 1.69 1.13 1.26 1.14 1.23 1.26 1.16 1.18 1.30 σ 4.62 3.53 3.63 3.11 3.85 3.29 3.63 3.81 2.72 3.35 2.89 2.71 DI 76 59 60 67 93 90 93 90 90 91 92 89 Mg# 46 44 45 45 28 28 23 24 26 24 24 26 Tzr 736 735 733 762 791 795 777 797 769 765 776 781 注:A/CNK=(Al2O3)/(CaO+K2O+Na2O)摩尔数分数比;A/NK=(Al2O3)/(K2O+Na2O)摩尔数分数比;里特曼指数δ=(K2O+Na2O)2/(SiO2-43);Mg#=100×(MgO/40.31)/(MgO/40.31+TFe2O3×0.8998/71.85×0.85);全岩锆饱和温度TZr=12900/(lnDZr+0.85M+2.95)-273.15,DZr=49600/w(Zr),M=(2Ca+K+Na)/(Si×Al),w(Zr)为岩石中Zr的质量分数;熔体组成参数FM=(1/Si)[Na+K+2(Ca+Mg+Fe)]/Al. 表 3 火神庙岩体微量和稀土元素(10-6)测定结果Table Supplementary Table Trace elements (10-6) data of the Huoshenmiao pluton样品号 石英闪长岩 二长花岗岩 花岗斑岩 B1/HSM B22/HSM B24/HSM B25/HSM B6 B10 B19 B28 B9/HSM B11/HSM B33/HSM B65/HSM Li 6.67 5.81 3.32 5.12 4.00 1.90 2.00 1.90 6.97 9.73 2.10 7.90 Be 2.15 1.82 2.65 1.68 2.82 2.45 1.71 2.23 4.00 2.21 2.69 2.72 Sc 12.45 9.24 5.93 8.59 1.80 1.70 1.70 1.70 2.83 2.05 1.40 1.60 V 140.1 145.0 78.5 87.3 18.0 13.0 15.0 9.0 12.0 8.7 5.0 7.0 Cr 6.30 9.45 8.72 7.57 1.00 1.00 2.00 1.00 5.43 3.52 1.47 3.66 Co 15.18 14.49 13.64 10.40 1.00 1.20 1.60 1.40 1.07 0.71 1.30 0.90 Ni 4.03 6.34 4.20 3.39 2.20 1.40 1.70 2.70 1.48 1.19 1.30 0.70 Cu 15.34 2.86 13.99 5.23 4.40 1.00 14.60 3.20 5.38 8.77 11.80 4.30 Zn 252.1 144.7 101.8 86.4 50.0 24.0 103.0 44.0 52.7 53.5 55.0 63.0 Ga 32.7 31.3 26.9 31.3 21.2 19.6 18.0 18.8 19.0 21.7 17.9 18.0 Rb 98 88 165 129 140 120 142 146 285 192 148 141 Sr 1377 1652 1062 1433 406 552 448 502 152 190 138 156 Y 20.4 18.9 16.2 20.6 17.0 13.7 12.2 14.4 13.9 13.6 15.2 12.1 Zr 176 154 177 177 187 185 156 201 238 151 168 180 Cd 0.86 0.77 0.47 0.61 0.19 0.11 0.26 0.17 0.27 0.26 0.21 0.26 In 0.09 0.07 0.09 0.07 0.07 0.06 0.05 0.07 0.04 0.03 0.04 0.03 Nb 31.2 28.8 33.2 32.8 39.7 34.4 28.1 39.4 50.5 33.1 37.9 35.6 Cs 4.43 5.09 3.80 4.73 2.38 1.87 1.58 1.83 1.93 1.26 1.22 1.19 Ba 2367 3108 3600 3155 2200 1980 1475 2050 1678 1537 512 823 La 76.4 62.2 53.4 72.0 22.7 23.9 26.6 16.1 50.5 49.5 39.0 47.7 Ce 149.6 116.2 97.8 132.2 64.3 57.4 53.6 40.4 87.7 82.9 70.2 86.0 Pr 16.12 11.96 9.06 12.64 7.23 7.45 6.35 5.81 7.73 7.37 7.78 9.61 Nd 52.8 45.2 31.6 45.5 24.2 25.1 21.2 21.7 24.9 23.5 25.4 29.1 Sm 9.28 8.17 5.41 7.76 3.97 3.75 3.27 3.94 4.29 3.95 4.04 4.16 Eu 2.19 2.17 1.48 1.89 0.90 1.00 0.93 1.13 0.78 0.77 0.81 0.84 Gd 6.90 5.86 3.99 5.75 2.88 2.81 2.64 2.80 3.11 2.98 3.35 3.32 Tb 0.87 0.73 0.50 0.74 0.46 0.43 0.39 0.44 0.44 0.41 0.52 0.52 Dy 4.64 3.91 2.81 4.10 2.68 2.40 2.11 2.65 2.69 2.46 3.36 2.90 Ho 0.88 0.72 0.55 0.80 0.53 0.51 0.43 0.56 0.56 0.51 0.64 0.61 Er 2.43 1.94 1.61 2.29 1.69 1.53 1.27 1.52 1.75 1.60 1.89 1.85 Tm 0.33 0.25 0.24 0.32 0.22 0.22 0.16 0.23 0.29 0.28 0.32 0.30 Yb 1.76 1.69 1.63 1.73 1.53 1.56 1.33 1.66 1.88 1.65 2.18 2.12 Lu 0.32 0.23 0.25 0.30 0.28 0.25 0.21 0.27 0.33 0.29 0.33 0.33 Hf 3.66 3.18 3.87 3.85 5.10 4.70 3.90 5.10 6.25 3.90 5.90 5.70 Ta 1.42 1.29 1.82 1.85 2.98 2.24 2.03 2.61 2.66 1.70 2.03 1.92 Pb 69.9 59.0 57.3 48.6 29.1 38.0 42.4 20.4 51.6 35.3 47.3 52.0 Bi 0.05 0.05 0.13 0.07 0.08 0.07 0.06 0.06 0.12 0.11 0.09 0.07 Th 13.3 11.3 18.0 18.1 24.8 20.9 17.1 20.6 24.9 23.5 24.5 23.8 U 3.12 2.44 3.85 3.63 2.28 1.31 2.43 1.33 5.28 4.18 4.94 5.21 ∑REE 325 261 210 288 134 128 120 99 187 178 160 189 LREE 306 246 199 272 123 119 116 89 176 168 147 177 HREE 18.34 15.13 11.38 16.22 10.27 9.71 8.54 10.13 11.05 10.19 12.59 11.95 LREE/HREE 17 16 17 17 12 12 13 9 16 16 12 15 (La/Yb)N 28 30 27 27 11 11 14 7 19 22 13 16 δEu 0.80 0.91 0.93 0.83 0.78 0.90 0.94 0.99 0.62 0.66 0.65 0.67 Sr/Y 66 68 87 70 24 40 37 35 11 14 9 13 Y/Yb 9.9 11.6 11.2 11.9 11.1 8.8 9.2 8.7 7.4 8.3 7.0 5.7 (Ho/Yb)N 1.01 1.50 1.28 1.39 1.04 0.98 0.97 1.01 0.89 0.93 0.88 0.86 Nb/La 0.62 0.41 0.46 0.46 1.75 1.44 1.06 2.45 1.00 0.67 0.97 0.75 注:δEu=2EuN/(SmN+GdN). 4.2.1 主量元素
火神庙岩体中,石英闪长岩SiO2含量较低(SiO2=56.79%~61.96%),镁、铁、钙含量较高(MgO=1.49%~2.73%、Fe2O3=4.15%~8.02%、CaO=4.44%~5.75%),与一般中偏酸性岩浆岩的镁、铁、钙含量相当(华仁民等,2013),全碱含量较高(K2O+Na2O=6.98%~9.36%),富钠(Na2O=3.88%~4.56%,K2O=2.92%~4.80%,Na2O/K2O=0.95~1.43),里特曼指数σ=3.11~4.62,Al2O3含量较高(Al2O3=16.13%~17.97%),铝饱和指数A/CNK=0.78~0.94,属准铝质系列和高钾钙碱性-钾玄岩系列岩石(图 6).
与石英闪长岩相比,二长花岗岩SiO2含量明显升高(SiO2=69.70%~71.90%),与世界范围内花岗岩的平均值(69.26%~71.63%)相当(Le Maitre, 1976),镁、铁、钙含量急剧降低(MgO=0.17%~0.19%、Fe2O3=0.97%~1.39%、CaO=1.05%~1.57%),全碱含量进一步升高(K2O+Na2O=9.50%~10.40%),富钾(K2O=5.56%~6.78%,Na2O=3.49%~3.94%,K2O/Na2O=1.41~1.93),里特曼指数σ=3.29~3.85,Al2O3含量略有降低(Al2O3=14.90%~15.90%),铝饱和指数A/CNK=0.99~1.04,属准铝质-弱过铝质系列和钾玄岩系列岩石(图 6).
花岗斑岩主量元素特征与二长花岗岩基本一致,具有高硅(SiO2=70.36%~72.40%)、高碱(K2O+Na2O=8.71%~9.57%)、富钾(K2O=5.02%~5.75%、Na2O=3.05%~4.20%、K2O/Na2O=1.20~1.86)、富铝(Al2O3=14.09%~14.95%)、贫镁、铁、钙(MgO=0.16%~0.19%、Fe2O3=1.12%~1.31%、CaO=0.96%~1.70%)的特征,里特曼指数σ=2.71~3.35,铝饱和指数A/CNK=0.93~1.04,属准铝质-弱过铝质系列和钾玄岩系列岩石(图 6).
4.2.2 微量元素
火神庙岩体中,石英闪长岩、二长花岗岩和花岗斑岩的原始地幔标准化微量元素配分曲线均呈现出富集大离子亲石元素、亏损高场强元素的右倾特征(图 7),并具有较为一致的Rb(88×10-6~285×10-6)、Th(11.27×10-6~24.85×10-6)、Nb(28.10×10-6~50.47×10-6)、Ta(1.29×10-6~2.98×10-6)、Zr(151×10-6~238×10-6)、Hf(3.18×10-6~6.25×10-6)及差异明显的Ba(512×10-6~3600×10-6)、Sr(138×10-6~1652×10-6)、P(87×10-6~2663×10-6)和Ti(839×10-6~4496×10-6)含量,从石英闪长岩→二长花岗岩→花岗斑岩,Ba、Sr、P和Ti含量逐渐降低.微量元素原始地幔标准化蛛网图显示石英闪长岩相对富集Ba、U、K和Sr,相对亏损Rb、Th、Nb、Ta、Hf和Ti;二长花岗岩相对富集Rb、Ba、Th、K和Hf,相对亏损U、Ta、P和Ti;花岗斑岩则表现为Rb、Th、U、K和Hf的相对富集以及Ba、Ta、Sr、P和Ti的相对亏损.总体而言,二长花岗岩和花岗斑岩微量元素特征基本一致,但与石英闪长岩具有明显的差异.
4.2.3 稀土元素
火神庙岩体中,石英闪长岩、二长花岗岩和花岗斑岩的球粒陨石标准化稀土元素配分曲线均呈现出轻稀土富集、重稀土亏损的右倾特征,但稀土总量、轻重稀土分馏程度和Eu异常等不尽相同(图 7).石英闪长岩稀土总量较高,∑REE=210×10-6~325×10-6,轻重稀土分馏明显,LREE/HREE=16~17、(La/Yb)N=27~30,负Eu异常微弱,δEu=0.80~0.93.与石英闪长岩相比,二长花岗稀土总量显著降低,∑REE=99×10-6~133×10-6,轻重稀土分馏程度显著降低,LREE/HREE=9~13、(La/Yb)N=7~14,负Eu异常微弱,δEu=0.78~0.99.花岗斑岩稀土元素总量较二长花岗岩略有升高,∑REE=160×10-6~189×10-6,轻重稀土分馏程度略有升高,LREE/HREE=12~16、(La/Yb)N=13~22,负Eu异常中等,δEu=0.62~0.67.
4.3 锆石Hf同位素
在进行LA-(MC)-ICPMS锆石U-Pb定年后,又在锆石U-Pb年龄分析点处进行了Hf同位素分析,具体结果见表 4,测点位置及相应的εHf(t)值见图 4.
表 4 火神庙岩体的锆石Hf同位素分析结果Table Supplementary Table Hf isotopic data of zircon from the Huoshenmiao pluton测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1(Ga) TDM2(Ga) fLu/Hf B34-HSM-1 151.2 0.018591 0.000844 0.282164 0.000020 -21.5 -18.3 0.7 1.53 2.36 -0.97 B34-HSM-2 150.8 0.020692 0.000938 0.282200 0.000018 -20.2 -17.0 0.6 1.48 2.28 -0.97 B34-HSM-3 150.7 0.024327 0.001090 0.282208 0.000021 -19.9 -16.7 0.8 1.47 2.26 -0.97 B34-HSM-4 149.3 0.019685 0.000886 0.282199 0.000017 -20.3 -17.1 0.6 1.48 2.28 -0.97 B34-HSM-5 150.6 0.024672 0.001110 0.282239 0.000017 -18.8 -15.6 0.6 1.43 2.19 -0.97 B34-HSM-6 150.8 0.021276 0.000977 0.282240 0.000017 -18.8 -15.6 0.6 1.43 2.19 -0.97 B34-HSM-7 150.0 0.024471 0.001076 0.282208 0.000020 -20.0 -16.8 0.7 1.48 2.26 -0.97 B34-HSM-8 150.0 0.017605 0.000783 0.282222 0.000018 -19.5 -16.3 0.6 1.44 2.23 -0.98 B34-HSM-9 150.1 0.024608 0.001104 0.282186 0.000020 -20.7 -17.5 0.7 1.51 2.31 -0.97 B34-HSM-10 150.1 0.014042 0.000641 0.282127 0.000019 -22.8 -19.6 0.7 1.57 2.44 -0.98 B34-HSM-11 150.0 0.018052 0.000807 0.282238 0.000018 -18.9 -15.7 0.6 1.42 2.20 -0.98 B34-HSM-12 150.1 0.021176 0.000970 0.282225 0.000020 -19.3 -16.2 0.7 1.45 2.22 -0.97 B34-HSM-13 150.4 0.022847 0.001042 0.282203 0.000018 -20.1 -16.9 0.6 1.48 2.27 -0.97 B34-HSM-14 150.5 0.021699 0.000963 0.282262 0.000018 -18.0 -14.8 0.7 1.39 2.14 -0.97 B34-HSM-15 150.1 0.030340 0.001324 0.282189 0.000022 -20.6 -17.5 0.8 1.51 2.31 -0.96 B34-HSM-16 150.8 0.028744 0.001169 0.282198 0.000020 -20.3 -17.1 0.7 1.49 2.28 -0.96 B34-HSM-17 150.7 0.017027 0.000727 0.282152 0.000020 -21.9 -18.7 0.7 1.54 2.38 -0.98 B34-HSM-18 149.1 0.020268 0.000897 0.282233 0.000019 -19.1 -15.9 0.7 1.43 2.21 -0.97 B34-HSM-19 149.3 0.020957 0.000929 0.282198 0.000019 -20.3 -17.1 0.7 1.48 2.28 -0.97 B34-HSM-20 150.7 0.017157 0.000768 0.282193 0.000020 -20.5 -17.2 0.7 1.48 2.29 -0.98 B64/HSM-2 145.8 0.062678 0.001776 0.282215 0.000019 -19.7 -16.7 0.7 1.49 2.25 -0.9 B64/HSM-3 146.0 0.086674 0.002499 0.282147 0.000015 -22.1 -19.1 0.5 1.62 2.41 -0.92 B64/HSM-4 146.1 0.086041 0.002449 0.282005 0.000017 -27.1 -24.2 0.6 1.82 2.72 -0.93 B64/HSM-5 146.0 0.075861 0.002098 0.282129 0.000018 -22.7 -19.7 0.6 1.63 2.45 -0.94 B64/HSM-6 146.2 0.068784 0.001907 0.282071 0.000016 -24.8 -21.8 0.6 1.70 2.58 -0.94 B64/HSM-9 146.6 0.078074 0.002465 0.282079 0.000017 -24.5 -21.6 0.6 1.72 2.56 -0.93 B64/HSM-10 146.0 0.081658 0.002413 0.282142 0.000018 -22.3 -19.3 0.6 1.62 2.42 -0.93 B64/HSM-11 145.9 0.103577 0.002919 0.282068 0.000015 -24.9 -22.0 0.5 1.76 2.59 -0.91 B64/HSM-12 146.2 0.093207 0.002458 0.282132 0.000019 -22.6 -19.7 0.7 1.64 2.44 -0.93 B64/HSM-13 145.9 0.082043 0.002161 0.282132 0.000019 -22.6 -19.7 0.7 1.63 2.44 -0.93 B64/HSM-15 146.2 0.077833 0.002103 0.282053 0.000017 -25.4 -22.4 0.6 1.74 2.62 -0.94 B64/HSM-16 145.9 0.086980 0.002270 0.282044 0.000020 -25.7 -22.8 0.7 1.76 2.64 -0.93 B64/HSM-18 145.9 0.070262 0.001851 0.282046 0.000017 -25.7 -22.7 0.6 1.74 2.63 -0.94 B64/HSM-19 145.8 0.082071 0.002452 0.282169 0.000022 -21.3 -18.4 0.8 1.59 2.36 -0.93 B64/HSM-20 145.9 0.106288 0.002679 0.282184 0.000017 -20.8 -17.9 0.6 1.58 2.33 -0.92 B64/HSM-21 145.7 0.080087 0.002110 0.282086 0.000015 -24.2 -21.3 0.5 1.69 2.54 -0.94 B64/HSM-22 145.7 0.059791 0.001771 0.282127 0.000015 -22.8 -19.8 0.5 1.62 2.45 -0.95 B64/HSM-23 146.1 0.071882 0.001942 0.282068 0.000016 -24.9 -21.9 0.6 1.71 2.58 -0.94 B64/HSM-24 145.6 0.073187 0.001883 0.282101 0.000015 -23.7 -20.7 0.5 1.66 2.51 -0.94 B33HSM-1 143.8 0.059567 0.002304 0.282063 0.000022 -25.1 -22.1 0.8 1.73 2.59 -0.93 B33HSM-2 145.6 0.051845 0.002094 0.282027 0.000019 -26.3 -23.3 0.7 1.77 2.67 -0.94 B33HSM-3 143.0 0.087118 0.003313 0.282110 0.000019 -23.4 -20.6 0.7 1.71 2.50 -0.90 B33HSM-4 143.5 0.057238 0.002296 0.281986 0.000020 -27.8 -24.9 0.7 1.84 2.77 -0.93 B33HSM-5 143.2 0.047320 0.001895 0.282005 0.000018 -27.1 -24.2 0.6 1.80 2.72 -0.94 B33HSM-6 143.9 0.055502 0.002218 0.282012 0.000018 -26.9 -23.9 0.6 1.80 2.71 -0.93 B33HSM-7 145.1 0.050196 0.002038 0.282026 0.000016 -26.4 -23.4 0.6 1.77 2.68 -0.94 B33HSM-8 146.1 0.045996 0.001832 0.282156 0.000020 -21.8 -18.8 0.7 1.58 2.38 -0.94 B33HSM-9 144.0 0.013993 0.000564 0.281782 0.000022 -35.0 -31.9 0.8 2.04 3.21 -0.98 B33HSM-10 145.1 0.050278 0.002057 0.282014 0.000018 -26.8 -23.8 0.6 1.79 2.70 -0.94 B33HSM-11 145.7 0.064744 0.002488 0.282112 0.000020 -23.3 -20.4 0.7 1.67 2.49 -0.93 B33HSM-12 146.1 0.082368 0.003161 0.282032 0.000021 -26.2 -23.3 0.7 1.82 2.67 -0.90 B33HSM-13 146.2 0.043282 0.001750 0.282080 0.000018 -24.5 -21.4 0.6 1.68 2.55 -0.95 B33HSM-14 145.7 0.056086 0.002168 0.282102 0.000022 -23.7 -20.7 0.8 1.67 2.51 -0.93 B33HSM-15 146.4 0.047132 0.001883 0.282026 0.000022 -26.4 -23.4 0.8 1.77 2.67 -0.94 B33HSM-16 146.4 0.041251 0.001646 0.282093 0.000020 -24.0 -21.0 0.7 1.66 2.52 -0.95 B33HSM-17 146.8 0.053522 0.002131 0.282018 0.000019 -26.7 -23.7 0.7 1.79 2.69 -0.94 B33HSM-18 145.3 0.049323 0.001949 0.282022 0.000017 -26.5 -23.5 0.6 1.77 2.68 -0.94 B33HSM-19 145.2 0.064493 0.002550 0.282027 0.000018 -26.3 -23.4 0.6 1.80 2.68 -0.92 B33HSM-20 146.2 0.040575 0.001599 0.282082 0.000023 -24.4 -21.4 0.8 1.67 2.55 -0.95 注:εHf(t)={[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000;TDM1=1/λ×ln{1+ [(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM]};TDM2=1/λ×ln{1+[(176Hf/177Hf)s, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;s=sample, (176Hf/177Hf)CHUR, 0=0.282772,(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)DM=0.28325,其中t=锆石结晶年龄,λ=1.867×10-11a-1,(176Lu/177Hf)C=0. 由于锆石化学性质稳定,抗风化能力强,Lu/Hf比值低(176Lu/177Hf<0.0005) 且不受部分熔融作用和分离结晶的影响,故锆石Hf同位素组成基本代表了岩体结晶时的初始Hf同位素组成(Griffin et al., 2004; Zheng et al., 2007).因此,近年来锆石Hf同位素组成已成为岩石成因的重要示踪剂,是探讨岩浆起源、演化以及揭示壳幔相互作用过程的最有利工具之一(Griffin et al., 2002;吴福元等,2007b;董增产等,2015).本次研究的所有测点的176Lu/177Hf比值为0.000564~0.003313,表明锆石在岩体形成之后仅发生了极少量放射性成因Hf积累,因此所测定的176Lu/177Hf比值基本代表了岩浆形成时的源区Hf同位素组成.由于所测锆石的fLu/Hf值(-0.98~-0.90) 明显低于镁铁质地壳的fLu/Hf值(-0.34, Amelin et al., 1999)和硅铝质地壳的fLu/Hf值(-0.72, Vervoort et al., 1996),因此锆石Hf同位素两阶段模式年龄(TDM2)能够指示岩石源区物质从地幔中分离出来的时限.
对石英闪长岩(B34/HSM)进行了20个点的Hf同位素分析,结果显示176Hf/177Hf比值为0.282127~0.282262,由对应测点的锆石U-Pb年龄计算得到初始176Hf/177Hf比值为0.282125~0.282260,εHf(t)为-19.6~-14.8,单阶段模式年龄(TDM1)为1.57~1.39Ga,两阶段模式年龄(TDM2)为2.44~2.14Ga.锆石Hf同位素组成εHf(t)和两阶段模式年龄(TDM2)直方图(图 8)显示εHf(t)主体为-17.5~-15.5,TDM2主体为2.30~2.25Ga.
对二长花岗岩(B64/HSM)进行了19个点的Hf同位素分析,结果显示176Hf/177Hf比值为0.282005~0.282214,由对应测点的锆石U-Pb年龄计算得到初始176Hf/177Hf比值为0.281999~0.282210,εHf(t)为-24.2~-16.7,单阶段模式年龄(TDM1)为1.82~1.49Ga,两阶段模式年龄(TDM2)为2.72~2.25Ga.锆石Hf同位素组成εHf(t)和两阶段模式年龄(TDM2)直方图(图 8)显示εHf(t)主体为-22.0~-19.0,TDM2主体为2.65~2.40Ga.
对花岗斑岩(B33/HSM)共进行了20个点的Hf同位素分析,结果显示176Hf/177Hf比值为0.281782~0.282156,由对应测点的锆石U-Pb年龄计算得到初始176Hf/177Hf比值为0.281781~0.282151,εHf(t)为-31.9~-18.8,单阶段模式年龄(TDM1)为2.04~1.58Ga,两阶段模式年龄(TDM2)为3.21~2.38Ga.锆石Hf同位素组成εHf(t)和两阶段模式年龄(TDM2)直方图(图 8)显示εHf(t)主体为-24.0~-20.0,TDM2主体为2.75~2.50Ga.
5. 讨论
5.1 成岩年代学
锆石具有很高的U-Pb同位素体系封闭温度,是确定岩浆结晶年龄的理想对象(Meinhold, 2010).由于本次研究所测锆石均为岩浆锆石,故所获得的LA-(MC)-ICPMS锆石U-Pb年龄可以作为火神庙岩体的形成年龄,因此笔者认为石英闪长岩、二长花岗岩和花岗斑岩的形成年龄分别为150.3±0.6Ma、146.0±0.6Ma和145.1±0.5Ma,与王赛等(2014a)报道的火神庙钼矿床辉钼矿Re-Os同位素等时线年龄(145.7±3.9Ma)相当,因此笔者认为火神庙岩体和火神庙钼矿床均形成于晚侏罗世,应该为同一地质事件的产物.
鉴于栾川矿集区钼多金属的巨量堆积,前人在此进行了大量的成岩、成矿年代学研究(李永峰等, 2003, 2005;毛景文等,2005;Mao et al., 2008, 2010;包志伟等,2009;向君峰等,2012;杨阳等,2012;王赛等,2014a),研究结果显示栾川矿集区在晚侏罗世发生过两次大规模的岩浆侵位事件(约158Ma和约145Ma),如南泥湖岩体(158.2±3.1Ma,毛景文等,2005;145.2±1.5Ma~146.7±1.2Ma,向君峰等,2012)及内部的暗色包体(148.3±0.6Ma,未发表)、上房沟岩体(157.6±2.7Ma,毛景文等,2005)、石宝沟岩体(145.3±1.7Ma~147.2±1.7Ma,包志伟等,2009;156±1Ma~157±1Ma,杨阳等,2012)及西沟辉长岩墙(147.5±1.7Ma,包志伟等,2009);钼成矿作用仅发生在145Ma左右,如南泥湖-三道庄钼矿床(146.1±1.1Ma,向君峰等,2012)、上房沟钼矿床(144.8±2.1Ma,李永峰等,2005)、大王沟钼矿床(145.3±2.9Ma,Mao et al., 2008)和火神庙钼矿床(145.7±3.9Ma,王赛等,2014a).综上笔者认为,火神庙岩体和火神庙钼矿床均为栾川矿集区晚侏罗世第2次大规模岩浆活动的产物.
5.2 岩石类型
岩石矿物学和地球化学特征是判别花岗岩类型的重要手段,但当花岗岩经历了高度结晶分异作用之后,矿物组成和化学成分都趋向于低共熔花岗岩,从而导致岩石类型的判断变得十分困难,此时最可靠的方法是寻找与高分异花岗岩相关的、更多保留有原始矿物学和地球化学特征的偏镁铁质岩石(吴福元等,2007a).
研究显示角闪石、堇青石和碱性暗色矿物分别为判别I型、S型及A型花岗岩重要的矿物学标志(Miller, 1985).石英闪长岩具有较低的硅以及较高的镁、钙、铁含量,表明岩石结晶分异程度较低(分异指数DI=59~76),且内部见大量角闪石,因此说明石英闪长岩属于I型花岗岩.二长花岗岩和花岗斑岩中均未见角闪石,并具有高硅、富碱和贫镁、钙、铁的地球化学特征,显示岩石经历了高度的结晶分异(图 9a),分异指数DI(89~93) 与西藏冈底斯东部的察隅高分异I型花岗岩(82~92) 相当(朱弟成等,2009),但因其与同时代偏镁铁质的I型花岗岩(石英闪长岩)伴生,故笔者认为二长花岗岩和花岗斑岩亦应属于I型花岗岩(吴福元等,2007a),这亦得到了岩石地球化学特征的支持.二长花岗岩和花岗斑岩均为准铝质-弱过铝质岩石(A/CNK=0.93~1.04),P2O5含量极低(<0.09%)、且与SiO2含量呈明显的负相关(图 9b),符合HW磷灰石饱和规则(Harrison and Watson, 1984),具有高分异I型和A型花岗岩的特征(李献华等,2007;敬海鑫等,2015),但利用全岩锆饱和温度计(Watson and Harrison, 1983; Miller et al., 2003)获得的全岩锆饱和温度(777~797℃和765~781℃)与I型花岗岩平均温度(781℃)相当、较A型花岗岩(>800℃)明显偏低(King et al., 1997).上述结果表明,火神庙岩体属于I型花岗岩,与栾川矿集区内的南泥湖、上房沟、石宝沟等花岗斑岩体岩石类型一致(杨阳等,2012;Bao et al., 2014).
5.3 岩浆源区
栾川矿集区内未见晚侏罗世大规模发育的中基性火山岩,且中生代时下地壳基底岩石主要为具有拉斑玄武岩质组分的高压基性麻粒岩、榴辉岩(郑建平等,2005)和太华群TTG岩系,由此表明火神庙岩体既不是地幔玄武岩/玄武安山岩的结晶分异的产物(Grove et al., 1997),也不是受幔源岩浆改造沉积物重熔的产物(Kemp et al., 2007),而更可能是火山岩部分熔融的产物(Chappell and White, 2001;李献华等,2009).研究显示,单个侵入体从岩浆形成到锆石U-Pb同位素体系封闭的时间一般不超过1Ma(Glazner et al., 2004),因此二长花岗岩和花岗斑岩基本一致,但较石英闪长岩差异明显的LA-(MC)-ICPMS锆石U-Pb年龄暗示火神庙岩体是源区部分熔融形成的不同批次岩浆就位的结果(Coleman et al., 2004),这亦得到了地球化学及同位素特征的支持.二长花岗岩和花岗斑岩具有基本一致的地球化学特征和锆石Hf同位素组成,但较石英闪长岩具有明显的差异,且在Th/Sm-Th图上二长花岗岩和花岗斑岩呈现出明显的线性关系(图 9c),表明二长花岗岩和花岗斑岩是同批岩浆结晶形成的(Zhu et al., 2008),而石英闪长岩则是另一批岩浆上升就位的产物.二长花岗岩和花岗斑岩成分的差异是岩浆结晶分异的结果(如花岗斑岩Ba、Sr、Eu、P、Ti较二长花岗岩更为亏损,显示花岗斑岩是由二长花岗岩通过斜长石、钾长石、磷灰石和钛铁矿分离结晶而来),而与石英闪长岩成分的差异则是岩浆源区成分不同的反映(Coleman et al., 2004).
石英闪长岩低SiO2(56.79%~61.96%)、高Mg#(44~46)、富Na2O(Na2O/K2O=0.95~1.43) 及富集大离子亲石元素和轻稀土元素、亏损高场强元素和重稀土元素的地球化学特征表明岩浆源区有壳源物质和岩石圈地幔组分的参与(杨承海等,2008;熊小林等,2011).通常地幔组分参与花岗岩的形成主要有2种机制,即(1) 幔源岩浆底侵形成的镁铁质下地壳部分熔融;(2) 幔源镁铁质岩浆与壳源长英质岩浆混合(邱检生等,2008).石英闪长岩的微量和稀土元素地球化学特征与华北陆块南缘下地壳基性麻粒岩具有明显的差异(郑建平等,2005),且实验岩石学研究已经证明玄武岩部分熔融形成的熔体通常具有低Mg#(<44) 和富Na2O(>4.3%)的特征(Wolf and Wyllie, 1994;Rapp and Waston, 1995),因此石英闪长岩即使是镁铁质下地壳部分熔融的产物也必须有高Mg、低Na的富集地幔新生幔源玄武质岩浆的混入(徐夕生等,2007),但基本一致的锆石Hf同位素组成(εHf(t)=-19.6~-14.8,集中于-17.5~-15.5) 排除了岩浆混合的可能(Bolhar et al., 2008),暗示岩浆源区可能是富集岩石圈地幔(陈立辉和周新华,2003).石英闪长岩与矿集区内同时代的镁铁质暗色包体和辉长岩墙具有基本一致的微量和稀土元素地球化学特征及锆石Hf同位素组成(杨阳等,2012;Bao et al., 2014),因此笔者认为它们拥有相同的岩浆源区,均为富集岩石圈地幔部分熔融的产物,而石英闪长岩较幔源基性岩浆更高的SiO2含量可能是岩浆结晶分异的结果.由于富集岩石圈地幔主要继承了壳源物质的放射性成因同位素特征(郑永飞等,2013),石英闪长岩两阶段锆石Hf同位素模式年龄(TDM2)与大别-苏鲁造山带超高压变火成岩相似(Chen et al., 2007)、明显不同于华北陆壳所具有的太古代两阶段锆石Hf同位素模式年龄(Wu et al., 2005),因此说明混入岩石圈地幔的是俯冲的华南陆壳而不是拆沉的华北陆壳,这亦得到了岩石Pb同位素组成的支持(Bao et al., 2014).
二长花岗岩和花岗斑岩高SiO2(69.70%~72.40%)、低Mg#(23~28)、富K2O(K2O/Na2O=1.20~1.93) 及富集大离子亲石元素和轻稀土元素、亏损高场强元素和重稀土元素的地球化学特征表明其主要来自于下地壳的部分熔融(熊小林等,2011).二长花岗岩和花岗斑岩的微量和稀土元素地球化学特征及Sr同位素初始比值((87Sr/86Sr)i=0.7085,杨荣勇等,1996)与新太古界太华群TTG岩系基本一致(图 7)(第五春荣等,2007;肖娥等,2012),且两阶段锆石Hf同位素模式年龄(TDM2=3.76~2.25Ga,集中于2.75~2.40Ga)与太华群TTG岩系锆石U-Pb年龄相当(倪志耀等,2003;第五春荣等,2010),由此说明二长花岗岩和花岗斑岩是太华群TTG岩系部分熔融的产物,这亦得到了实验岩石学的支持(熊小林等,2011),但将太华群TTG岩系锆石Hf同位素组成(第五春荣等, 2007, 2010)按t=145Ma(二长花岗岩和花岗斑岩的形成年龄)计算的εHf(t)值为-42.1~-64.6,较二长花岗岩和花岗斑岩的锆石εHf(t)值(-16.7~-31.9) 具有明显的差异,表明岩浆源区除太华群TTG岩系外还有其他组分的参与.二长花岗岩和花岗斑岩明显不均一的锆石Hf同位素组成(变化范围达15个ε单位)(Chiu et al., 2009)暗示岩浆熔体处于一个开放的系统(Kemp et al., 2007).由于锆石Hf同位素组成不受岩浆分离结晶和部分熔融的影响,因此锆石Hf同位素组成的不均一性很可能指示了幔源镁铁质岩浆与壳源长英质岩浆的混合(Bolhar et al., 2008),且最高的εHf(t)值(-16.7) 与石英闪长岩相当,由此说明二长花岗岩和花岗斑岩是太华群TTG岩系部分熔融形成的长英质岩浆与富集岩石圈地幔部分熔融形成的镁铁质岩浆混合的产物,但二长花岗岩和花岗斑岩中未见镁铁质暗色微粒包体等指示存在岩浆混合的岩石学证据,这可能是在足够长的时间及地壳深部岩浆房较高的温压条件下,均匀的长英质岩浆与少量镁铁质岩浆发生了完全混合的缘故(Martin et al., 1994).
5.4 岩浆形成的温压条件
5.4.1 温度
由于花岗岩大多是绝热上升就位的,所以岩浆早期结晶时的温度可以近似代表岩浆形成的温度(吴福元等,2007a).全岩锆饱和温度计显示石英闪长岩岩浆形成温度为733~762℃,二长花岗岩岩浆形成温度为777~797℃,花岗斑岩岩浆形成温度为765~781℃(表 2).由于石英闪长岩、二长花岗岩和花岗斑岩中基本未见残留锆石,表明早期岩浆中Zr含量很低(未饱和),因此全岩锆饱和温度仅能代表岩浆形成时的最低温度(Miller et al., 2003),此时岩浆形成温度的估算可以利用熊小林等(2011)提出的长英质熔体TiO2溶解度模型(图 10).二长花岗岩和花岗斑岩Mg#值为23~28,且基本处于TiO2饱和状态(图 10a),利用该模型获得岩浆形成温度为750~850℃(图 10b),综上笔者认为二长花岗岩和花岗斑岩岩浆形成温度为765~850℃.石英闪长岩处于TiO2不饱和状态(图 10a),无法利用该模型计算岩浆形成温度,但因其来自于富集岩石圈地幔,故笔者认为岩浆形成温度更高,即从石英闪长岩→二长花岗岩→花岗斑岩,岩浆形成温度逐渐降低.
5.4.2 压力
岩浆形成压力的判断主要基于熔体与残留相平衡的理论(张旗等,2011).火神庙岩体石英闪长岩、二长花岗岩和花岗斑岩的稀土元素配分曲线均呈现出轻稀土富集、重稀土亏损的右倾特征(图 7),暗示岩浆源区残留有石榴子石和角闪石;石英闪长岩和二长花岗岩高Sr(406×10-6~1652×10-6)和弱负Eu异常(δEu=0.78~0.99) 的地球化学特征暗示岩浆源区残留有少量斜长石,花岗斑岩低Sr(138×10-6~190×10-6)及中等负Eu异常(δEu=0.62~0.67) 的地球化学特征表明岩浆源区残留有较多的斜长石.石英闪长岩Sr/Y比值为66~87、Y/Yb比值为9.9~11.9、(Ho/Yb)N比值为1.01~1.50,表明岩浆源区残留相为石榴子石+角闪石±斜长石;二长花岗岩Sr/Y比值为24~40、Y/Yb比值为8.7~11.1、(Ho/Yb)N比值为0.97~1.04,表明岩浆源区残留相为角闪石±石榴子石±斜长石;花岗斑岩Sr/Y比值为9~14、Y/Yb比值为5.7~8.3、(Ho/Yb)N比值为0.86~0.93,表明岩浆源区残留相为斜长石+角闪石±石榴子石(葛小月等,2002;Haschke et al., 2010).二长花岗岩和花岗斑岩Nb/La比值为0.67~2.45,较华北陆块下地壳(0.2~1.0) 明显偏高,可能是岩浆源区混入了Nb/La比值较高的富集岩石圈地幔组分的缘故,且Nb/La比值随La/Yb比值的增加而降低(图 9c),表明岩浆源区残留有金红石(熊小林等,2011),而起源于富集岩石圈地幔的石英闪长岩Nb/La比值为0.46~0.61,较二长花岗岩和花岗斑岩明显偏低,暗示岩浆源区残留有更多的金红石(熊小林等,2011).根据部分熔融域相平衡关系(图 11),笔者根据Winther and Newton(1991)和Xiong et al.(2005)的研究结果估算火神庙岩体岩浆形成压力约为1.5~1.9GPa,且从石英闪长岩→二长花岗岩→花岗斑岩,岩浆形成压力逐渐降低.
5.5 成岩与成矿
华北陆块与华南陆块在三叠纪发生了强烈的俯冲-碰撞作用,形成了规模巨大的秦岭-大别-苏鲁造山带(李曙光等,1989;Chen et al., 1995; Ames et al., 1996; Rowley et al., 1997).在华南陆块俯冲和折返过程中,温压条件的改变致使陆壳物质在俯冲隧道内发生变质脱水和部分熔融,生成的富水流体和长英质熔体交代上覆华北岩石圈地幔,形成了富集岩石圈地幔(郑永飞等,2013).在晚侏罗世中国东部构造体制大转换引起的伸展背景下(毛景文等,2005),富集岩石圈地幔不仅部分熔融形成了镁铁质岩浆,而且诱发上覆的太华群TTG岩系部分熔融形成了长英质岩浆.由于两种岩浆侵位时间间隔较短,导致长英质岩浆侵位时镁铁质岩浆尚未完全固结,其可以比较容易推挤未固结或半固结的镁铁质岩浆而侵入其中,形成了由“内侵式”主导的“正环带”结构(冯佐海等,2009).镁铁质岩浆不仅结晶分异形成了石英闪长岩,而且与长英质岩浆混合、并经高度结晶分异形成了二长花岗岩和花岗斑岩.在岩浆的结晶分异过程中,岩浆系统的温压条件发生过突变,导致了石英闪长岩中“反环带”斜长石的出现(未发表),这亦可能是稍早形成的二长花岗岩具有典型的花岗结构、而稍晚形成的花岗斑岩出现斑状结构的主要原因.由于辉钼矿Re-Os同位素等时线年龄与二长花岗岩和花岗斑岩的LA-(MC)-ICPMS锆石U-Pb年龄基本一致,且钼矿体主要富存于花岗斑岩与三川组大理岩接触带的矽卡岩中(图 2),因此笔者认为火神庙钼矿床与花岗斑岩密切相关,是混合后的长英质岩浆结晶分异过程中释放出的成矿流体经沸腾作用和水-岩反应形成的(王赛等,2014b).
6. 结论
(1) 火神庙岩体石英闪长岩、二长花岗岩和花岗斑岩的形成年龄分别为150.3±0.6Ma、146.0±0.6Ma和145.1±0.5Ma,为栾川矿集区晚侏罗世第2次大规模岩浆活动的产物.
(2) 火神庙岩体属于I型花岗岩,是不同源区部分熔融形成的岩浆上升就位的结果.石英闪长岩是富集岩石圈地幔部分熔融的产物,二长花岗岩和花岗斑岩是富集岩石圈地幔形成的镁铁质岩浆与太华群TTG岩系部分熔融形成的长英质岩浆混合后就位的结果.
(3) 火神庙岩体不同岩浆形成的温压条件不同,从石英闪长岩→二长花岗岩→花岗斑岩,岩浆形成的温度和压力逐渐降低.
致谢: 室内LA-(MC)-ICPMS锆石U-Pb定年过程中得到中国地质调查局天津地质研究所叶利娟的热心帮助,成文过程中得到了中国科学院地质与地球物理研究所李献华研究员、中国地质大学(北京)朱弟成教授、中国地质科学院向君峰博士的无私指导,在此一并表示衷心感谢. -
图 1 栾川钼多金属矿集区地质简图
1.新元古界-早古生界陶湾群含砾灰岩、大理岩、千枚岩和石英岩;2.新元古界栾川群碎屑岩、碳酸盐岩和碱性火山岩;3.中元古界-新元古界宽坪群大理岩和基性火山岩;4.中元古界官道口群碎屑岩和含燧石条带大理岩;5.早白垩世花岗岩;6.晚侏罗世花岗斑岩;7.断裂;8.斑岩-矽卡岩型钼矿床;9.矽卡岩型多金属硫铁矿床;10.热液脉型铅锌银矿床;a.太行山断裂带;b.三门峡-宝丰断裂带;c.栾川断裂带;d.商丹断裂带;e.南漳断裂带;据叶会寿等(2006)修改
Fig. 1. Geological sketch of the Luanchuan ore district
图 6 火神庙岩体A/CNK-A/NK图解(a)及SiO2-K2O图解(b)
据Peccerillo and Taylor(1976)和Rickwood(1989)
Fig. 6. SiO2-K2O diagrams (a) and A/CNK-A/NK (b) of the granites from the Huoshenmiao pluton
图 7 火神庙岩体微量元素原始地幔标准化蛛网图和稀土元素球粒陨石标准化图
Fig. 7. Primitive mantle normalized trace element spider diagrams and chondrite normalized REE patterns of the granites from the Huoshenmiao pluton
表 1 火神庙岩体LA-MC-ICPMS错石U-Pb年龄测定结果
Table 1. LA-MC-ICPMS zircon U-Pb data of the Huoshenmiao pluton
样品号 Pb(10-6) U(10-6) 232Th/238U 同位素比值 同位素年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ B34HSM1 9 350 0.700 0.0496 0.0021 0.1625 0.0070 0.0237 0.0002 178 97 153 7 151 1 B34HSM2 9 346 0.750 0.0491 0.0020 0.1603 0.0067 0.0237 0.0002 154 96 151 6 151 1 B34HSM-3 15 575 1.020 0.0494 0.0016 0.1611 0.0054 0.0236 0.0002 168 77 152 5 151 1 B34HSM-4 12 471 0.850 0.0498 0.0032 0.1610 0.0102 0.0234 0.0002 188 148 152 10 149 2 B34HSM-5 11 436 0.800 0.0494 0.0025 0.1610 0.0084 0.0236 0.0002 168 119 152 8 151 1 B34HSM-6 8 324 0.850 0.0496 0.0059 0.1618 0.0194 0.0237 0.0003 176 277 152 18 151 2 B34HSM-7 11 433 0.750 0.0495 0.0019 0.1606 0.0067 0.0235 0.0002 170 90 151 6 150 2 B34HSM-8 12 460 0.980 0.0498 0.0014 0.1617 0.0046 0.0235 0.0002 187 64 152 4 150 1 B34HSM-9 11 443 0.720 0.0493 0.0013 0.1601 0.0043 0.0236 0.0002 162 61 151 4 150 1 B34HSM-10 6 245 0.710 0.0496 0.0022 0.1612 0.0071 0.0236 0.0002 178 101 152 7 150 1 B34HSM-11 8 333 0.660 0.0497 0.0024 0.1614 0.0079 0.0235 0.0002 183 112 152 7 150 1 B34HSM-12 11 435 0.700 0.0494 0.0013 0.1606 0.0044 0.0236 0.0002 168 62 151 4 150 1 B34HSM-13 11 419 0.670 0.0499 0.0015 0.1625 0.0051 0.0236 0.0002 191 70 153 5 150 2 B34HSM-14 10 363 0.750 0.0499 0.0013 0.1626 0.0044 0.0236 0.0002 191 61 153 4 151 1 B34HSM-15 13 488 0.940 0.0491 0.0013 0.1595 0.0044 0.0236 0.0002 152 62 150 4 150 1 B34HSM-16 13 512 0.860 0.0496 0.0015 0.1617 0.0055 0.0237 0.0003 174 71 152 5 151 2 B34HSM-17 10 395 0.640 0.0492 0.0020 0.1606 0.0069 0.0237 0.0002 159 97 151 6 151 1 B34HSM-18 7 296 0.580 0.0496 0.0018 0.1601 0.0060 0.0234 0.0002 177 85 151 6 149 1 B34HSM-19 11 427 0.660 0.0498 0.0015 0.1609 0.0050 0.0234 0.0002 186 70 151 5 149 1 B34HSM-20 6 230 0.540 0.0494 0.0024 0.1611 0.0080 0.0237 0.0002 167 115 152 8 151 1 B34HSM-21 11 454 0.730 0.0497 0.0014 0.1598 0.0047 0.0233 0.0002 183 67 151 4 148 1 B34HSM-22 11 453 0.730 0.0491 0.0013 0.1603 0.0043 0.0237 0.0002 154 62 151 4 151 1 B34HSM-23 10 418 0.680 0.0493 0.0013 0.1610 0.0044 0.0237 0.0002 161 61 152 4 151 1 B34HSM-24 8 321 0.620 0.0494 0.0018 0.1616 0.0061 0.0237 0.0002 169 87 152 6 151 1 B64jHSM-1 30 527 0.585 0.0962 0.0025 0.7521 0.0512 0.0567 0.0029 1551 48 569 39 356 18 B64jHSM-2 13 567 0.593 0.0541 0.0014 0.1705 0.0044 0.0229 0.0001 374 58 160 4 146 1 B64jHSM-3 11 446 0.937 0.0592 0.0013 0.1868 0.0042 0.0229 0.0001 573 48 174 4 146 1 B64jHSM-4 12 480 0.808 0.0502 0.0009 0.1586 0.0029 0.0229 0.0001 204 42 149 3 146 1 B64jHSM-5 11 460 0.883 0.0671 0.0028 0.2119 0.0089 0.0229 0.0002 841 86 195 8 146 1 B64jHSM-6 11 462 0.890 0.0616 0.0040 0.1950 0.0138 0.0229 0.0002 662 140 181 13 146 1 B64jHSM-7 11 420 1.037 0.0635 0.0011 0.2148 0.0040 0.0245 0.0001 725 37 198 4 156 1 B64jHSM-8 33 466 0.692 0.0935 0.0009 0.8627 0.0267 0.0669 0.0017 1497 18 632 20 418 11 B64jHSM-9 9 378 1.235 0.0544 0.0012 0.1725 0.0040 0.0230 0.0001 388 48 162 4 147 1 B64jHSM-10 13 551 0.640 0.0513 0.0007 0.1619 0.0022 0.0229 0.0001 253 31 152 2 146 1 B64jHSM-11 13 554 0.625 0.0517 0.0008 0.1630 0.0026 0.0229 0.0001 270 37 153 2 146 1 B64jHSM-12 9 338 1.428 0.0548 0.0007 0.1733 0.0022 0.0229 0.0001 403 28 162 2 146 1 B64jHSM-13 9 346 1.380 0.0751 0.0019 0.2370 0.0061 0.0229 0.0001 1071 52 216 6 146 1 B64jHSM-14 49 504 0.461 0.0866 0.0009 1.1371 0.0343 0.0953 0.0025 1351 20 771 23 587 15 B64jHSM-15 8 326 1.545 0.0494 0.0019 0.1561 0.0061 0.0229 0.0001 165 89 147 6 146 1 B64jHSM-16 9 393 0.317 0.0587 0.0012 0.1851 0.0039 0.0229 0.0001 554 43 172 4 146 1 B64jHSM-17 9 452 0.063 0.0583 0.0006 0.1820 0.0019 0.0226 0.0001 543 22 170 2 144 1 B64jHSM-18 14 573 0.581 0.0554 0.0010 0.1748 0.0033 0.0229 0.0001 429 40 164 3 146 1 B64jHSM-19 8 291 1.829 0.0531 0.0013 0.1673 0.0042 0.0229 0.0001 332 55 157 4 146 1 B64jHSM-20 14 585 0.557 0.0555 0.0009 0.1752 0.0030 0.0229 0.0001 433 37 164 3 146 1 B64jHSM-21 13 540 0.658 0.0547 0.0009 0.1724 0.0027 0.0229 0.0001 401 36 162 3 146 1 B64jHSM-22 9 367 1.309 0.0510 0.0011 0.1607 0.0034 0.0229 0.0001 241 48 151 3 146 1 B64jHSM-23 12 507 0.738 0.0577 0.0012 0.1824 0.0041 0.0229 0.0001 519 48 170 4 146 1 B64jHSM-24 10 396 1.142 0.0676 0.0012 0.2129 0.0041 0.0228 0.0001 857 36 196 4 146 1 B33HSM-1 7 246 2.300 0.0491 0.0021 0.1525 0.0067 0.0226 0.0001 150 102 144 6 144 1 B33HSM-2 3 115 1.440 0.0485 0.0093 0.1526 0.0289 0.0228 0.0002 122 450 144 27 146 2 B33HSM-3 16 626 1.730 0.0489 0.0007 0.1513 0.0020 0.0224 0.0001 144 32 143 2 143 1 B33HSM-4 4 164 1.700 0.0492 0.0019 0.1527 0.0060 0.0225 0.0001 158 92 144 6 144 1 B33HSM-5 10 416 1.420 0.0491 0.0009 0.1521 0.0029 0.0225 0.0001 152 44 144 3 143 1 B33HSM-6 10 386 1.740 0.0489 0.0009 0.1523 0.0028 0.0226 0.0001 145 42 144 3 144 1 B33HSM-7 9 318 2.420 0.0487 0.0013 0.1528 0.0039 0.0228 0.0001 134 61 144 4 145 1 B33HSM-8 29 1077 1.990 0.0489 0.0007 0.1544 0.0020 0.0229 0.0001 141 33 146 2 146 1 B33HSM-9 19 705 1.730 0.0492 0.0008 0.1533 0.0024 0.0226 0.0001 158 37 145 2 144 1 B33HSM-10 19 596 2.570 0.0488 0.0008 0.1533 0.0025 0.0228 0.0001 139 38 145 2 145 1 B33HSM-11 7 268 1.500 0.0491 0.0017 0.1547 0.0054 0.0229 0.0001 151 81 146 5 146 1 B33HSM-12 11 384 1.560 0.0489 0.0011 0.1544 0.0035 0.0229 0.0001 141 54 146 3 146 1 B33HSM-13 10 286 2.270 0.0486 0.0013 0.1538 0.0040 0.0229 0.0001 129 61 145 4 146 1 B33HSM-14 16 539 1.400 0.0489 0.0012 0.1543 0.0038 0.0229 0.0001 145 57 146 4 146 1 B33HSM-15 17 528 1.510 0.0480 0.0008 0.1520 0.0025 0.0230 0.0001 100 40 144 2 146 1 B33HSM-16 19 466 2.790 0.0488 0.0009 0.1544 0.0028 0.0230 0.0001 141 43 146 3 146 1 B33HSM-17 10 253 2.390 0.0488 0.0018 0.1551 0.0056 0.0230 0.0001 140 84 146 5 147 1 B33HSM-18 3 106 0.970 0.0489 0.0031 0.1537 0.0099 0.0228 0.0002 143 150 145 9 145 1 B33HSM-19 16 516 1.390 0.0488 0.0007 0.1534 0.0022 0.0228 0.0001 140 34 145 2 145 1 B33HSM-20 22 761 1.090 0.0489 0.0008 0.1546 0.0025 0.0229 0.0001 143 38 146 2 146 1 B33HSM-21 16 555 1.320 0.0485 0.0007 0.1523 0.0020 0.0228 0.0001 122 32 144 2 145 1 B33HSM-22 12 419 1.250 0.0490 0.0012 0.1537 0.0038 0.0227 0.0001 148 57 145 4 145 1 B33HSM-23 14 493 1.310 0.0494 0.0009 0.1540 0.0026 0.0226 0.0001 167 40 145 2 144 1 B33HSM-24 8 228 2.430 0.0488 0.0016 0.1522 0.0051 0.0226 0.0001 136 76 144 5 144 1 B33HSM-25 10 367 1.020 0.0491 0.0015 0.1549 0.0046 0.0229 0.0001 152 69 146 4 146 1 B33HSM-26 7 228 1.470 0.0488 0.0017 0.1541 0.0055 0.0229 0.0001 138 83 145 5 146 1 表 2 火神庙岩体主量(%)测定结果
Table 2. Major elements (%)data of the Huoshenmiao pluton
样品号 石英闪长岩 二长花岗岩 花岗斑岩 B1/HSM B22/HSM B24/HSM B25/HSM B6 B10 B19 B28 B9/HSM B11/HSM B33/HSM B65/HSM SiO2 61.96 56.79 56.87 60.84 71.10 70.40 71.90 69.70 70.91 70.36 72.40 71.10 TiO2 0.50 0.75 0.75 0.53 0.21 0.21 0.19 0.23 0.16 0.16 0.14 0.16 Al2O3 16.13 16.88 17.97 17.57 15.10 15.75 14.90 15.90 14.09 14.49 14.60 14.95 TFe2O3 4.15 8.02 6.62 5.16 0.97 0.91 1.32 1.39 1.12 1.17 1.31 1.26 MnO 0.13 0.18 0.13 0.11 0.04 0.03 0.03 0.04 0.08 0.13 0.09 0.07 MgO 1.49 2.73 2.33 1.83 0.16 0.15 0.17 0.19 0.17 0.16 0.18 0.19 CaO 4.44 5.75 5.71 4.58 1.05 1.44 1.00 1.57 1.62 1.70 0.96 1.59 Na2O 4.56 3.88 4.18 4.12 3.62 3.94 3.49 3.53 3.05 3.82 4.20 3.66 K2O 4.80 3.10 2.92 3.33 6.78 5.56 6.75 6.55 5.66 5.75 5.02 5.07 P2O5 0.28 0.61 0.58 0.35 0.08 0.09 0.07 0.08 0.04 0.04 0.02 0.03 LOI 0.95 1.20 1.04 0.91 0.82 0.50 0.67 0.73 2.00 1.67 0.35 1.31 TATAL 99.39 99.89 99.10 99.33 99.93 98.98 100.49 99.91 98.90 99.45 99.30 99.40 K2O+Na2O 9.36 6.98 7.10 7.45 10.40 9.50 10.24 10.08 8.71 9.57 9.22 8.73 K2O/Na2O 1.05 0.80 0.70 0.81 1.87 1.41 1.93 1.86 1.86 1.51 1.20 1.39 A/CNK 0.78 0.83 0.88 0.94 0.99 1.04 1.00 1.01 1.00 0.93 1.04 1.04 A/NK 1.27 1.73 1.79 1.69 1.13 1.26 1.14 1.23 1.26 1.16 1.18 1.30 σ 4.62 3.53 3.63 3.11 3.85 3.29 3.63 3.81 2.72 3.35 2.89 2.71 DI 76 59 60 67 93 90 93 90 90 91 92 89 Mg# 46 44 45 45 28 28 23 24 26 24 24 26 Tzr 736 735 733 762 791 795 777 797 769 765 776 781 注:A/CNK=(Al2O3)/(CaO+K2O+Na2O)摩尔数分数比;A/NK=(Al2O3)/(K2O+Na2O)摩尔数分数比;里特曼指数δ=(K2O+Na2O)2/(SiO2-43);Mg#=100×(MgO/40.31)/(MgO/40.31+TFe2O3×0.8998/71.85×0.85);全岩锆饱和温度TZr=12900/(lnDZr+0.85M+2.95)-273.15,DZr=49600/w(Zr),M=(2Ca+K+Na)/(Si×Al),w(Zr)为岩石中Zr的质量分数;熔体组成参数FM=(1/Si)[Na+K+2(Ca+Mg+Fe)]/Al. 表 3 火神庙岩体微量和稀土元素(10-6)测定结果
Table 3. Trace elements (10-6) data of the Huoshenmiao pluton
样品号 石英闪长岩 二长花岗岩 花岗斑岩 B1/HSM B22/HSM B24/HSM B25/HSM B6 B10 B19 B28 B9/HSM B11/HSM B33/HSM B65/HSM Li 6.67 5.81 3.32 5.12 4.00 1.90 2.00 1.90 6.97 9.73 2.10 7.90 Be 2.15 1.82 2.65 1.68 2.82 2.45 1.71 2.23 4.00 2.21 2.69 2.72 Sc 12.45 9.24 5.93 8.59 1.80 1.70 1.70 1.70 2.83 2.05 1.40 1.60 V 140.1 145.0 78.5 87.3 18.0 13.0 15.0 9.0 12.0 8.7 5.0 7.0 Cr 6.30 9.45 8.72 7.57 1.00 1.00 2.00 1.00 5.43 3.52 1.47 3.66 Co 15.18 14.49 13.64 10.40 1.00 1.20 1.60 1.40 1.07 0.71 1.30 0.90 Ni 4.03 6.34 4.20 3.39 2.20 1.40 1.70 2.70 1.48 1.19 1.30 0.70 Cu 15.34 2.86 13.99 5.23 4.40 1.00 14.60 3.20 5.38 8.77 11.80 4.30 Zn 252.1 144.7 101.8 86.4 50.0 24.0 103.0 44.0 52.7 53.5 55.0 63.0 Ga 32.7 31.3 26.9 31.3 21.2 19.6 18.0 18.8 19.0 21.7 17.9 18.0 Rb 98 88 165 129 140 120 142 146 285 192 148 141 Sr 1377 1652 1062 1433 406 552 448 502 152 190 138 156 Y 20.4 18.9 16.2 20.6 17.0 13.7 12.2 14.4 13.9 13.6 15.2 12.1 Zr 176 154 177 177 187 185 156 201 238 151 168 180 Cd 0.86 0.77 0.47 0.61 0.19 0.11 0.26 0.17 0.27 0.26 0.21 0.26 In 0.09 0.07 0.09 0.07 0.07 0.06 0.05 0.07 0.04 0.03 0.04 0.03 Nb 31.2 28.8 33.2 32.8 39.7 34.4 28.1 39.4 50.5 33.1 37.9 35.6 Cs 4.43 5.09 3.80 4.73 2.38 1.87 1.58 1.83 1.93 1.26 1.22 1.19 Ba 2367 3108 3600 3155 2200 1980 1475 2050 1678 1537 512 823 La 76.4 62.2 53.4 72.0 22.7 23.9 26.6 16.1 50.5 49.5 39.0 47.7 Ce 149.6 116.2 97.8 132.2 64.3 57.4 53.6 40.4 87.7 82.9 70.2 86.0 Pr 16.12 11.96 9.06 12.64 7.23 7.45 6.35 5.81 7.73 7.37 7.78 9.61 Nd 52.8 45.2 31.6 45.5 24.2 25.1 21.2 21.7 24.9 23.5 25.4 29.1 Sm 9.28 8.17 5.41 7.76 3.97 3.75 3.27 3.94 4.29 3.95 4.04 4.16 Eu 2.19 2.17 1.48 1.89 0.90 1.00 0.93 1.13 0.78 0.77 0.81 0.84 Gd 6.90 5.86 3.99 5.75 2.88 2.81 2.64 2.80 3.11 2.98 3.35 3.32 Tb 0.87 0.73 0.50 0.74 0.46 0.43 0.39 0.44 0.44 0.41 0.52 0.52 Dy 4.64 3.91 2.81 4.10 2.68 2.40 2.11 2.65 2.69 2.46 3.36 2.90 Ho 0.88 0.72 0.55 0.80 0.53 0.51 0.43 0.56 0.56 0.51 0.64 0.61 Er 2.43 1.94 1.61 2.29 1.69 1.53 1.27 1.52 1.75 1.60 1.89 1.85 Tm 0.33 0.25 0.24 0.32 0.22 0.22 0.16 0.23 0.29 0.28 0.32 0.30 Yb 1.76 1.69 1.63 1.73 1.53 1.56 1.33 1.66 1.88 1.65 2.18 2.12 Lu 0.32 0.23 0.25 0.30 0.28 0.25 0.21 0.27 0.33 0.29 0.33 0.33 Hf 3.66 3.18 3.87 3.85 5.10 4.70 3.90 5.10 6.25 3.90 5.90 5.70 Ta 1.42 1.29 1.82 1.85 2.98 2.24 2.03 2.61 2.66 1.70 2.03 1.92 Pb 69.9 59.0 57.3 48.6 29.1 38.0 42.4 20.4 51.6 35.3 47.3 52.0 Bi 0.05 0.05 0.13 0.07 0.08 0.07 0.06 0.06 0.12 0.11 0.09 0.07 Th 13.3 11.3 18.0 18.1 24.8 20.9 17.1 20.6 24.9 23.5 24.5 23.8 U 3.12 2.44 3.85 3.63 2.28 1.31 2.43 1.33 5.28 4.18 4.94 5.21 ∑REE 325 261 210 288 134 128 120 99 187 178 160 189 LREE 306 246 199 272 123 119 116 89 176 168 147 177 HREE 18.34 15.13 11.38 16.22 10.27 9.71 8.54 10.13 11.05 10.19 12.59 11.95 LREE/HREE 17 16 17 17 12 12 13 9 16 16 12 15 (La/Yb)N 28 30 27 27 11 11 14 7 19 22 13 16 δEu 0.80 0.91 0.93 0.83 0.78 0.90 0.94 0.99 0.62 0.66 0.65 0.67 Sr/Y 66 68 87 70 24 40 37 35 11 14 9 13 Y/Yb 9.9 11.6 11.2 11.9 11.1 8.8 9.2 8.7 7.4 8.3 7.0 5.7 (Ho/Yb)N 1.01 1.50 1.28 1.39 1.04 0.98 0.97 1.01 0.89 0.93 0.88 0.86 Nb/La 0.62 0.41 0.46 0.46 1.75 1.44 1.06 2.45 1.00 0.67 0.97 0.75 注:δEu=2EuN/(SmN+GdN). 表 4 火神庙岩体的锆石Hf同位素分析结果
Table 4. Hf isotopic data of zircon from the Huoshenmiao pluton
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1(Ga) TDM2(Ga) fLu/Hf B34-HSM-1 151.2 0.018591 0.000844 0.282164 0.000020 -21.5 -18.3 0.7 1.53 2.36 -0.97 B34-HSM-2 150.8 0.020692 0.000938 0.282200 0.000018 -20.2 -17.0 0.6 1.48 2.28 -0.97 B34-HSM-3 150.7 0.024327 0.001090 0.282208 0.000021 -19.9 -16.7 0.8 1.47 2.26 -0.97 B34-HSM-4 149.3 0.019685 0.000886 0.282199 0.000017 -20.3 -17.1 0.6 1.48 2.28 -0.97 B34-HSM-5 150.6 0.024672 0.001110 0.282239 0.000017 -18.8 -15.6 0.6 1.43 2.19 -0.97 B34-HSM-6 150.8 0.021276 0.000977 0.282240 0.000017 -18.8 -15.6 0.6 1.43 2.19 -0.97 B34-HSM-7 150.0 0.024471 0.001076 0.282208 0.000020 -20.0 -16.8 0.7 1.48 2.26 -0.97 B34-HSM-8 150.0 0.017605 0.000783 0.282222 0.000018 -19.5 -16.3 0.6 1.44 2.23 -0.98 B34-HSM-9 150.1 0.024608 0.001104 0.282186 0.000020 -20.7 -17.5 0.7 1.51 2.31 -0.97 B34-HSM-10 150.1 0.014042 0.000641 0.282127 0.000019 -22.8 -19.6 0.7 1.57 2.44 -0.98 B34-HSM-11 150.0 0.018052 0.000807 0.282238 0.000018 -18.9 -15.7 0.6 1.42 2.20 -0.98 B34-HSM-12 150.1 0.021176 0.000970 0.282225 0.000020 -19.3 -16.2 0.7 1.45 2.22 -0.97 B34-HSM-13 150.4 0.022847 0.001042 0.282203 0.000018 -20.1 -16.9 0.6 1.48 2.27 -0.97 B34-HSM-14 150.5 0.021699 0.000963 0.282262 0.000018 -18.0 -14.8 0.7 1.39 2.14 -0.97 B34-HSM-15 150.1 0.030340 0.001324 0.282189 0.000022 -20.6 -17.5 0.8 1.51 2.31 -0.96 B34-HSM-16 150.8 0.028744 0.001169 0.282198 0.000020 -20.3 -17.1 0.7 1.49 2.28 -0.96 B34-HSM-17 150.7 0.017027 0.000727 0.282152 0.000020 -21.9 -18.7 0.7 1.54 2.38 -0.98 B34-HSM-18 149.1 0.020268 0.000897 0.282233 0.000019 -19.1 -15.9 0.7 1.43 2.21 -0.97 B34-HSM-19 149.3 0.020957 0.000929 0.282198 0.000019 -20.3 -17.1 0.7 1.48 2.28 -0.97 B34-HSM-20 150.7 0.017157 0.000768 0.282193 0.000020 -20.5 -17.2 0.7 1.48 2.29 -0.98 B64/HSM-2 145.8 0.062678 0.001776 0.282215 0.000019 -19.7 -16.7 0.7 1.49 2.25 -0.9 B64/HSM-3 146.0 0.086674 0.002499 0.282147 0.000015 -22.1 -19.1 0.5 1.62 2.41 -0.92 B64/HSM-4 146.1 0.086041 0.002449 0.282005 0.000017 -27.1 -24.2 0.6 1.82 2.72 -0.93 B64/HSM-5 146.0 0.075861 0.002098 0.282129 0.000018 -22.7 -19.7 0.6 1.63 2.45 -0.94 B64/HSM-6 146.2 0.068784 0.001907 0.282071 0.000016 -24.8 -21.8 0.6 1.70 2.58 -0.94 B64/HSM-9 146.6 0.078074 0.002465 0.282079 0.000017 -24.5 -21.6 0.6 1.72 2.56 -0.93 B64/HSM-10 146.0 0.081658 0.002413 0.282142 0.000018 -22.3 -19.3 0.6 1.62 2.42 -0.93 B64/HSM-11 145.9 0.103577 0.002919 0.282068 0.000015 -24.9 -22.0 0.5 1.76 2.59 -0.91 B64/HSM-12 146.2 0.093207 0.002458 0.282132 0.000019 -22.6 -19.7 0.7 1.64 2.44 -0.93 B64/HSM-13 145.9 0.082043 0.002161 0.282132 0.000019 -22.6 -19.7 0.7 1.63 2.44 -0.93 B64/HSM-15 146.2 0.077833 0.002103 0.282053 0.000017 -25.4 -22.4 0.6 1.74 2.62 -0.94 B64/HSM-16 145.9 0.086980 0.002270 0.282044 0.000020 -25.7 -22.8 0.7 1.76 2.64 -0.93 B64/HSM-18 145.9 0.070262 0.001851 0.282046 0.000017 -25.7 -22.7 0.6 1.74 2.63 -0.94 B64/HSM-19 145.8 0.082071 0.002452 0.282169 0.000022 -21.3 -18.4 0.8 1.59 2.36 -0.93 B64/HSM-20 145.9 0.106288 0.002679 0.282184 0.000017 -20.8 -17.9 0.6 1.58 2.33 -0.92 B64/HSM-21 145.7 0.080087 0.002110 0.282086 0.000015 -24.2 -21.3 0.5 1.69 2.54 -0.94 B64/HSM-22 145.7 0.059791 0.001771 0.282127 0.000015 -22.8 -19.8 0.5 1.62 2.45 -0.95 B64/HSM-23 146.1 0.071882 0.001942 0.282068 0.000016 -24.9 -21.9 0.6 1.71 2.58 -0.94 B64/HSM-24 145.6 0.073187 0.001883 0.282101 0.000015 -23.7 -20.7 0.5 1.66 2.51 -0.94 B33HSM-1 143.8 0.059567 0.002304 0.282063 0.000022 -25.1 -22.1 0.8 1.73 2.59 -0.93 B33HSM-2 145.6 0.051845 0.002094 0.282027 0.000019 -26.3 -23.3 0.7 1.77 2.67 -0.94 B33HSM-3 143.0 0.087118 0.003313 0.282110 0.000019 -23.4 -20.6 0.7 1.71 2.50 -0.90 B33HSM-4 143.5 0.057238 0.002296 0.281986 0.000020 -27.8 -24.9 0.7 1.84 2.77 -0.93 B33HSM-5 143.2 0.047320 0.001895 0.282005 0.000018 -27.1 -24.2 0.6 1.80 2.72 -0.94 B33HSM-6 143.9 0.055502 0.002218 0.282012 0.000018 -26.9 -23.9 0.6 1.80 2.71 -0.93 B33HSM-7 145.1 0.050196 0.002038 0.282026 0.000016 -26.4 -23.4 0.6 1.77 2.68 -0.94 B33HSM-8 146.1 0.045996 0.001832 0.282156 0.000020 -21.8 -18.8 0.7 1.58 2.38 -0.94 B33HSM-9 144.0 0.013993 0.000564 0.281782 0.000022 -35.0 -31.9 0.8 2.04 3.21 -0.98 B33HSM-10 145.1 0.050278 0.002057 0.282014 0.000018 -26.8 -23.8 0.6 1.79 2.70 -0.94 B33HSM-11 145.7 0.064744 0.002488 0.282112 0.000020 -23.3 -20.4 0.7 1.67 2.49 -0.93 B33HSM-12 146.1 0.082368 0.003161 0.282032 0.000021 -26.2 -23.3 0.7 1.82 2.67 -0.90 B33HSM-13 146.2 0.043282 0.001750 0.282080 0.000018 -24.5 -21.4 0.6 1.68 2.55 -0.95 B33HSM-14 145.7 0.056086 0.002168 0.282102 0.000022 -23.7 -20.7 0.8 1.67 2.51 -0.93 B33HSM-15 146.4 0.047132 0.001883 0.282026 0.000022 -26.4 -23.4 0.8 1.77 2.67 -0.94 B33HSM-16 146.4 0.041251 0.001646 0.282093 0.000020 -24.0 -21.0 0.7 1.66 2.52 -0.95 B33HSM-17 146.8 0.053522 0.002131 0.282018 0.000019 -26.7 -23.7 0.7 1.79 2.69 -0.94 B33HSM-18 145.3 0.049323 0.001949 0.282022 0.000017 -26.5 -23.5 0.6 1.77 2.68 -0.94 B33HSM-19 145.2 0.064493 0.002550 0.282027 0.000018 -26.3 -23.4 0.6 1.80 2.68 -0.92 B33HSM-20 146.2 0.040575 0.001599 0.282082 0.000023 -24.4 -21.4 0.8 1.67 2.55 -0.95 注:εHf(t)={[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000;TDM1=1/λ×ln{1+ [(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM]};TDM2=1/λ×ln{1+[(176Hf/177Hf)s, t-(176Hf/177Hf)DM, t]/[(176Lu/177Hf)C-(176Lu/177Hf)DM]}+t;s=sample, (176Hf/177Hf)CHUR, 0=0.282772,(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)DM=0.28325,其中t=锆石结晶年龄,λ=1.867×10-11a-1,(176Lu/177Hf)C=0. -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrial Zircons.Nature, 399(6733):252-255.doi: 10.1038/20426 [2] Ames, L., Zhou, G.Z., Xiong, B.C., 1996.Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China.Tectonics, 15(2):472-489.doi: 10.1029/95tc02552 [3] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [4] Bao, Z.W., Li, C.J., Qi, J.P., 2009.SHRIMP Zircon U-Pb Age of the Gabbro Dyke in the Luanchuan Pb-Zn-Ag Orefield, East Qinling Orogen and Its Constraint on Mineralization Time.Acta Petrologica Sinica, 25(11):2951-2956 (in Chinese with English abstract). http://www.oalib.com/paper/1472707 [5] Bao, Z.W., Wang, Y.C., Zhao, T.P., et al., 2014.Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China.Ore Geology Reviews, 57:132-153.doi: 10.1016/j.oregeorev.2013.09.008 [6] Bodnar, R.J., 2009.Heavy Metals or Punk Rocks? Science, 323(5915):724-725.doi: 10.1126/science.1166394 [7] Bolhar, R., Weaver, S.D., Whitehouse, M.J., et al., 2008.Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand).Earth and Planetary Science Letters, 268(3-4):312-324.doi: 10.1016/j.epsl.2008.01.022 [8] Chappell, B.W., White, A.J.R., 2001.Two Contrasting Granite Types:25 Years Later.Australian Journal of Earth Sciences, 48(4):489-499.doi: 10.1046/j.1440-0952.2001.00882.x [9] Chen, J.F, Xie, Z., Liu, S.S., et al., 1995.Cooling Age of Dabie Orogen, China, Determined by 40Ar-39Ar and Fission Track Techniques.Science in China (Series B), 38(6):749-757. https://www.researchgate.net/publication/230239117_A_Study_of_the_Rhenium-Osmium_Geochronometry_of_Molybdenites1 [10] Chen, L.H., Zhou, X.H., 2003.Ultramafic Xenoliths in Mesozoic Diorite in West Shandong Province.Science in China (Series D), 33(8):489-499(in Chinese). https://www.researchgate.net/profile/Li-Hui_Chen/publication/225894710_Ultramafic_xenoliths_in_Mesozoic_diorite_in_west_Shandong_Province/links/02e7e53082a3e30c6a000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail [11] Chen, R.X., Zheng, Y.F., Zhao, Z.F., et al., 2007.Zircon U-Pb Age and Hf Isotope Evidence for Contrasting Origin of Bimodal Protoliths for Ultrahigh-Pressure Metamorphic Rocks from the Chinese Continental Scientific Drilling Project.Journal of Metamorphic Geology, 25(8):873-894.doi: 10.1111/j.1525-1314.2007.00735.x [12] Chiu, H.Y., Chung, S.L., Wu, F.Y., et al., 2009.Zircon U-Pb and Hf Isotopic Constraints from Eastern Transhimalayan Batholiths on the Precollisional Magmatic and Tectonic Evolution in Southern Tibet.Tectonophysics, 477(1-2):3-19.doi: 10.1016/j.tecto.2009.02.034 [13] Coleman, D.S., Gray, W., Glazner, A.F., 2004.Rethinking the Emplacement and Evolution of Zoned Plutons:Geochronologic Evidence for Incremental Assembly of the Tuolumne Intrusive Suite California.Geology, 32(5):433-436.doi: 10.1130/g20220.1 [14] Compston, W., Williams, I.S., Kirschvink, J.L., et al., 1992.Zircon U-Pb Ages for the Early Cambrian Time-Scale.Journal of the Geological Society, 149(2):171-184.doi: 10.1144/gsjgs.149.2.0171 [15] Connelly, J.N., 2001.Degree of Preservation of Igneous Zonation in Zircon as a Signpost for Concordancy in U/Pb Geochronology.Chemical Geology, 172(1-2):25-39.doi: 10.1016/s0009-2541(00)00234-5 [16] Diwu, C.R., Sun, Y., Lin, C.L., et al., 2007.Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China.Acta Petrologica Sinica, 23(2):253-262 (in Chinese with English abstract). https://www.researchgate.net/publication/280015308_Zircon_U-Pb_ages_and_Hf_isotopes_and_their_geological_significance_of_Yiyang_TTG_gneisses_from_Henan_province_China [17] Diwu, C.R., Sun, Y., Lin, C.L., et al., 2010.LA-(MC)-ICPMS U-Pb Zircon Geochronology and Lu-Hf Isotope Compositions of the Taihua Complex on the Southern Margin of the North China Craton.Chinese Science Bulletin, 55(21):2112-2128 (in Chinese). http://www.academia.edu/13671205/Detrital_zircons_reveal_no_Jurassic_plateau_in_the_eastern_North_China_Craton [18] Dong, Z.C., Gu, P.Y., Chen, R.M., 2015.Geochronology, Geochemistry and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai.Earth Science, 40(1):130-144 (in Chinese with English abstract). https://www.researchgate.net/publication/287397509_Geochronology_geochemistry_and_Hf_isotope_characteristics_of_yanchangbeishan_granodiorite_of_lenghu_area_in_Qinghai [19] Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158.doi: 10.1016/j.gca.2006.06.1383 [20] Feng, Z.H., Wang, C.Z., Wang, B.H., 2009.Granite Magma Ascent and Emplacement Mechanisms and Their Relation to Mineralization Process.Journal of Guilin University of Technology, 29(2):183-194 (in Chinese with English abstract). https://www.researchgate.net/profile/Chunzeng_Wang/publication/226378053_The_emplacement_mechanisms_and_growth_styles_of_the_Guposhan-Huashan_batholith_in_western_Nanling_Range_South_China/links/552581980cf295bf160ea99f.pdf [21] Ge, X.Y., Li, X.H., Chen, Z.G., et al., 2002.Geochemical Characteristics and Petrogenesis of Yanshannian High-Sr/Low-Y Intermediate-Felsic Igneous Rocks from Eastern China:Constrains on Crustal Thickness of Eastern China.Chinese Science Bulletin, 47(6):474-480 (in Chinese). https://www.researchgate.net/publication/225633284_Geochemistry_and_petrogenesis_of_Jurassic_high_Srlow_Y_granitoids_in_eastern_China_Constrains_on_crustal_thickness [22] Glazner, A.F., Bartley, J.M., Coleman, D.S., et al., 2004.Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers? GSA Today, 14(4):4-11.doi: 10.1130/1052-5173(2004)014 < 0004:apaomo > 2.0.co; 2 [23] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282.doi: 10.1016/j.precamres.2003.12.011 [24] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8 [25] Grove, T.L., Donnelly-Nolan, J.M., Housh, T., 1997.Magmatic Processes that Generated the Rhyolite of Glass Mountain, Medicine Lake Volcano, N.California.Contributions to Mineralogy and Petrology, 127(3):205-223.doi: 10.1007/s004100050276 [26] Harrison, T.M., Armstrong, R.L., Naeser, C.W., et al., 1979.Geochronology and Thermal History of the Coast Plutonic Complex, near Prince Rupert British Columbia.Canadian Journal of Earth Sciences, 16(3):400-410.doi: 10.1139/e79-038 [27] Harrison, T.M., Watson, E.B., 1984.The Behavior of Apatite during Crustal Anatexis:Equilibrium and Kinetic Considerations.Geochimica et Cosmochimica Acta, 48(7):1467-1477.doi: 10.1016/0016-7037(84)90403-4 [28] Haschke, M., Ahmadian, J., Murata, M., et al., 2010.Copper Mineralization Prevented by Arc-Root Delamination during Alpine-Himalayan Collision in Central Iran.Economic Geology, 105(4):855-865.doi: 10.2113/gsecongeo.105.4.855 [29] He, Y.Q., Chen, F.Q., 2013.Geological Characteristics and Ore Indicators of the Huoshenmiao Mo Deposit in Luanchuan County.Mining Technology, 13(3):115-118(in Chinese). https://www.researchgate.net/publication/303166257_Geological_characteristics_and_molybdenite_Re-Os_isotopic_dating_of_Huangshuian_carbonatite_vein-type_Mo_Pb_deposit_in_Songxian_County_Henan_Province [30] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.oalib.com/paper/1472292 [31] Hua, R.M., Zhang, W.L., Chen, P.R., et al., 2013.Relationship between Caledonian Granitoids and Large-Scale Mineralization in South China.Geological Journal of China Universities, 19(1):1-11 (in Chinese with English abstract). [32] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69.doi: 10.1016/j.chemgeo.2004.06.017 [33] Jiao, E.Z., 2007.Geological Characteristics of the Huoshenmiao Mo(Pb) Deposit in Luanchuan.Express Information of Mining Industry, 7(7):64-65 (in Chinese). [34] Jing, H.X., Sun, D.Y., Gou, J., 2015.Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block.Earth Science, 40(1):130-144 (in Chinese with English abstract). [35] Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983.doi: 10.1126/science.1136154 [36] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391.doi: 10.1093/petroj/38.3.371 [37] Le Maitre, R.W., 1976.The Chemical Variability of Some Common Igneous Rocks.Journal of Petrology, 17(4):589-598.doi: 10.1093/petrology/17.4.589 [38] Li, H.K., Zhu, S.X., Xiang, Z.Q., et al., 2010.Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing Beijing, Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton.Acta Petrologica Sinica, 26(7):2131-2140 (in Chinese with English abstract). [39] Li, S.G., Ge, N.J., Liu, D.L., et al., 1989.Sm-Nd Isotope Ages of the C-Type Eclogite from the Dabie Group in the North Dabieshan Area and Its Tectonic Significance.China Science Bulletin, 34(7):522-525 (in Chinese). https://www.researchgate.net/profile/Shuguang_Li9/citations?sorting=recent&page=5 [40] Li, X.H., Li, W.X., Li, Z.X., 2007.Re-Discussion on Genetic Type of Nanling Granitoid and Its Tectonic Significance.Chinese Science Bulletin, 52(9):981-991 (in Chinese). [41] Li, X.H., Li, W.X., Wang, X.C., et al., 2009.Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China:In Situ Zircon Hf-O Isotopic Constraints.Science in China (Series D), 39(7):872-887(in Chinese). https://espace.curtin.edu.au/handle/20.500.11937/35805 [42] Li, Y.F., Mao, J.W., Bai, F.J., et al., 2003.Re-Os Isotopic Dating of Molybdenites in the Nannihu Molybdenum (Tungsten) Orefield in the Eastern Qinling and Its Geological Significance.Geological Review, 49(6):652-659 (in Chinese with English abstract). [43] Li, Y.F., Mao, J.W., Hu, H.B., et al., 2005.Geology, Gistribution, Types and Tectonic Settings of Mesozoic Molybdenum Deposits in East Qinling Area.Mineral Deposits, 24(3):292-304 (in Chinese with English abstract). https://www.researchgate.net/publication/293088238_Geology_distribution_types_and_tectonic_settings_of_Mesozoic_epithermal_gold_deposits_in_East_China [44] Liu, Y.S, Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 [45] Lu, K.X., Chen, X.E., Wang, X., et al., 2008.Geological Characteristics and Genesis of the Heijiazhuang Mo Deposit in Luanchuan.West-China Exploration Engineering, 20(10):144-146(in Chinese). https://www.researchgate.net/publication/305159835_Geological_characteristics_and_new_prospecting_discovery_of_the_jinduicheng_superlarge_porphyry_molybdenum_deposit [46] Ludwig, K.R., 2003.User's Manual for Isoplot/Ex, Verson 3.00.A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, 4:1-70. https://www.researchgate.net/publication/301951506_User's_Manual_for_IsoplotEx_rev_300_A_Geochronological_Toolkit_for_Microsoft_Excel [47] Lü, W.D., Zhao, C.H., Sun, W.Z., et al., 2006.Geological Characteristics and Genesis of Nanniu Lead Zinc Polymetallic Ore Field in West Henan.Mineral Sources and Geology, 20(3):219-226 (in Chinese with English abstract). http://www.bookmetrix.com/detail/chapter/ed9c869c-82b6-4b2e-b3cd-f4807b7c3b9f [48] Mao, J.W., Xie, G.Q., Bierlein, F., et al., 2008.Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt.Geochimica et Cosmochimica Acta, 72(18):4607-4626.doi: 10.1016/j.gca.2008.06.027 [49] Mao, J.W., Xie, G.Q., Pirajno, F., et al., 2010.Late Jurassic-Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central-Eastern China:SHRIMP Zircon U-Pb Ages and Tectonic Implications.Australian Journal of Earth Sciences, 57(1):51-78.doi: 10.1080/08120090903416203 [50] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005.Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings.Acta Petrologica Sinica, 21(1):169-188 (in Chinese with English abstract). https://www.researchgate.net/publication/305531894_Mesozoic_large-scale_metallogenic_pulses_in_North_China_and_corresponding_geodynamic_settings [51] Mao, J.W., Ye, H.S., Wang, R.T., et al., 2009.Mineral Deposit Model of Mesozoic Porphyry Mo and Vein-Type Pb-Zn-Ag Ore Deposits in the Eastern Qinling, Central China and Its Implication for Prospecting.Geological Bulletin of China, 28(1):72-79(in Chinese with English abstract). https://www.researchgate.net/publication/279601984_Mineral_deposit_model_of_Mesozoic_porphyry_Mo_and_vein-type_Pb-Zn-Ag_ore_deposits_in_the_eastern_Qinling_Central_China_and_its_implication_for_prospecting [52] Martin, H., Bonin, B., Capdevila, R., et al., 1994.The Kuiqi Peralkaline Granitic Complex (SE China):Petrology and Geochemistry.Journal of Petrology, 35(4):983-1015.doi: 10.1093/petrology/35.4.983 [53] Meinhold, G., 2010.Rutile and Its Application in Earth Sciences.Earth Science Review, 102(1-2):1-28.doi: 10.1016/j.earscirev.2010.06.001 [54] Miller, C.F., 1985.Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources? The Journal of Geology, 93(6):673-689.doi: 10.1086/628995 [55] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31:529-532.doi: 10.1130/0091-7613(2003)031 < 0529:hacgio > 2.0.co; 2 [56] Ni, Z.Y., Wang, R.M., Tong, Y., et al., 2003.207Pb/206Pb Age of Zircon and 40Ar/39Ar of Amphibole from Plagioelase Amphibolite in the Taihua Group, Luoning, Henan, China.Geological Review, 49(4):361-366(in Chinese with English abstract). https://www.researchgate.net/publication/236133916_Geochronology_and_petrogenesis_of_gray_gneisses_from_the_Taihua_Complex_at_Xiong'er_in_the_southern_segment_of_the_Trans-North_China_Orogen_Implications_for_tectonic_transformation_in_the_Early_Paleop [57] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745 [58] Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Acta Petrologica Sinica, 24(11):2468-2484 (in Chinese with English abstract). https://www.researchgate.net/publication/263690721_Petrogenesis_of_the_Taiwushan_granite_pluton_in_Fujian_Province_Constraints_from_zircon_U-Pb_ages_and_Hf_isotopes [59] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931.doi: 10.1093/petrology/36.4.891 [60] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263.doi: 10.1016/0024-4937(89)90028-5 [61] Rowley, D.B., Xue, F., Turker, R.D., et al., 1997.Ages of Ultrahigh Pressure Metamorphism and Protolith Orthogneisses from the Eastern Dabie Shan:U/Pb Zircon Geochemistry.Earth and Planetary Science Letters, 151(3-4):191-203.doi: 10.1016/S0012-821X(97)81848-1 [62] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Process.Geological Society, London, Special Publications, 42:313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [63] Tera, F., Wasserburg, G.J., 1972.U-Th-Pb Systematics in Three Apollo 14 Basalts and the Problem of Initial Pb in Lunar Rocks.Earth and Planetary Science Letters, 14(3):281-304.doi: 10.1016/0012-821x(72)90128-8 [64] Vervoort, J.D., Patchett, P.J., Gehrels, G.E., et al., 1996.Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes.Nature, 379(65-66):624-627.doi: 10.1038/379624a0 [65] Wang, S., Ye, H.S., Yang, Y.Q., et al., 2014a.Molybdenite Re-Os Isochron Age of the Huoshenmiao Mo Deposit in Luanchuan of Henan Province and Its Geological Implications.Geological Bulletin of China, 33(9):1430-1438 (in Chinese with English abstract). https://www.researchgate.net/publication/277964344_Molybdenite_Re-Os_Isochron_Age_of_the_Huoshenmiao_Mo_Deposit_in_Luanchuan_Henan_Province_and_Its_Geological_Implications [66] Wang, S., Ye, H.S., Yang, Y.Q., et al., 2014b.Ore Forming Fluids of Huoshenmiao Mo Deposit, Western Henan.Mineral Deposits, 33(9):1430-1438 (in Chinese with English abstract). [67] Wang, X.L., Jiang, S.Y., Dai, B.Z., et al., 2011.Age, Geochemistry and Tectonic Setting of the Neoproterozoic (ca 830 Ma) Gabbros on the Southern Margin of the North China Craton.Precambrian Research, 190(1-4):35-47.doi: 10.1016/j.precamres.2011.08.004 [68] Wang, X.X., Wang, T., Qi, Q.J., et al., 2011.Temporal-Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China.Actor Petrologica Sinica, 27(6):1573-1593 (in Chinese with English abstract). https://www.researchgate.net/publication/282283293_Temporal-spatial_variations_origin_and_their_tectonic_significance_of_the_Late_Mesozoic_granites_in_the_Qinling_Central_China [69] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821x(83)90211-x [70] Winther, K.T., Newton, R.C., 1991.Experimental Melting of Hydrous Low-Ktholeiite:Evidence on the Origin of Archaean Cratons.Bulletin of the Geological Society of Denmark, 39(6):213-228. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.485.8313&rep=rep1&type=pdf [71] Wolf, M.B., Wyllie, P.J., 1994.Dehydration-Melting of Amphibolite at 10 kbar:The Effects of Temperature and Time.Contributions to Mineralogy and Petrology, 115(4):369-383.doi: 10.1007/bf00320972 [72] Wu, F.Y., Li, X.H., Yang, J.F., et al., 2007a.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). [73] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671 [74] Wu, F.Y., Zhao, G.C., Wilde, S.A., et al., 2005.Nd Isotopic Constraints on Crustal Formation in the North China Craton.Journal of Asian Earth Sciences, 24(5):523-545.doi: 10.1016/j.jseaes.2003.10.011 [75] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569.doi: 10.1007/bf03184122 [76] Xiang, J.F., Mao, J.W., Pei, R.F., et al., 2012.New Geochronological Data of Granites and Ores from the Nannihu-Sandaozhuang Mo (W) Deposit.Geology in China, 39(2):458-473 (in Chinese with English abstract). https://www.researchgate.net/publication/279558008_New_geochronological_data_of_granites_and_ores_from_the_NannihuSandaozhuang_MoW_deposit [77] Xiao, E., Hu, J., Zhang, Z.Z., et al., 2012.Petrogeochemistry, Zircon U-Pb Dating and Lu-Hf Isotopic Compositions of the Haoping and Jinshanmiao Granites from the Huashan Complex Batholith in Eastern Qinling Orogen.Acta Petrologica Sinica, 28(12):4031-4046 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW401.002.htm [78] Xin, Z.G., 2010.Geological Characteristics and Prospecting Message of Heijiazhuang Mo Deposit in Luanchuan.West-China Exploration Engineering, 22(5):101-102(in Chinese). [79] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014 [80] Xiong, X.L., Liu, X.C., Zhu, Z.M., et al., 2011.Adakite and Craton Destruction of North China:Basis on Experimental Petrology and Geochemistry.Science in China (Series D), 41(5):654-667 (in Chinese). http://www.academia.edu/13671242/Destruction_of_the_North_China_Craton_Induced_by_Ridge_Subductions [81] Xu, X.S., Lu, W.M., He, Z.Y., 2007.Age and Generation of Fogang Granite Batholith and Wushi Diorite-Horblende Gabbro Body.Science in China (Series D), 37(1):27-38 (in Chinese). http://mall.cnki.net/magazine/Article/JDXG200702005.htm [82] Xu, Z.W., Ren, Q.J., 1988.Characteristics of Magmatic Evolution of Shibaogou, Huoshenmiao and Daping Granitoids in Luanchuan County, Henan Province.Journal of Nanjing University (Earth Science Edition), 1:95-103 (in Chinese with English abstract). [83] Yang, C.H., Xu, W.L., Yang, D.B., et al., 2008.Petrogenesis of Shangyu Gabbro-Diorites in Western Shandong:Geochronological and Geochanical Evidence.Science in China (Series D), 51(4):481-492 (in Chinese). doi: 10.1007/s11430-008-0029-0 [84] Yang, R.Y., Xu, Z.W., Lu, X.C., et al., 1996.The Contrasting Study between Mineralized and Barren Stocks of the Molybdenum Ore Belt in East Qinling.Journal of Mineralogy and Petrology, 16(3):49-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS603.008.htm [85] Yang, R.Y., Xu, Z.W., Ren, Q.J., 1997.Ages and Magma Sources of Shibaogou and Huoshenmiao Complexesin East Qinling.Bullietin of Mineralogy Petrology and Geochemistry, 16(1):17-20 (in Chinese with English abstract). [86] Yang, Y., Wang, X.X., Ke, C.H., et al., 2012.Zircon U-Pb Age, Geochemistry and Hf Isotopic Compositions of Shibaogou Granitoid Pluton in the Nannihu Ore District, Western Henan Province.Geology in China, 39(6):1525-1542 (in Chinese with English abstract). https://www.researchgate.net/publication/279558364_Zircon_U-Pb_age_geochemistry_and_Hf_isotopic_compositions_of_Shibaogou_granitoid_pluton_in_the_Nannihu_ore_district_western_Henan_Province [87] Ye, H.S., Mao, J.W., Li, Y.F., 2006.Characteristics and Metallogenic Mechanism of Mo-W and Pb-Zn-Ag Deposits in Nannihu Ore Field, Western Henan Province.Geoscience, 20(1):165-174 (in Chinese with English abstract). https://www.researchgate.net/publication/301262734_Three_Dimensional_Quantitative_Extraction_and_Integration_for_Geosciences_Information_A_Case_Study_of_Nannihu_Mo_Deposit_Area [88] Zhang, Q., Jin, W.J., Li, C.D., et al., 2011.Granitic Rocks and Their Formation Depth in the Crust.Geotectonica et Metallogenia, 35(2):259-269 (in Chinese with English abstract). [89] Zheng, J.P., Sun, M., Lu, F.X., et al., 2005.Xinyang Mafic Granulitic Xenoliths and Its Significance for the Early Mesozoic Lower Crustal Nature on the South Margin of the North China Craton.Acta Petrologica Sinica, 21(1):91-98 (in Chinese with English abstract). [90] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos, 96(1-2):127-150.doi: 10.1016/j.lithos.2006.10.003 [91] Zheng, Y.F., Zhao, Z.F., Chen, Y.X., 2013.Continental Subduction Channel Processes:Plate Interface Interacting during Continental Collision.Chinese Science Bulletin, 58(23):2233-2239 (in Chinese). https://www.researchgate.net/publication/258845485_Continental_Subduction_Channel_ProcessesPlate_Interface_Interacting_during_Continental_Collision [92] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009.Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Science in China (SeriesD), 58(23):2233-2239 (in Chinese). [93] Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442 [94] 包志伟, 李创举, 祁进平, 2009.东秦岭栾川铅锌银矿田辉长岩锆石SHRIMP U-Pb年龄及成矿时代.岩石学报, 25(11):2951-2956. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911026.htm [95] 陈立辉, 周新华, 2003.鲁西中生代闪长岩中的深源超镁铁质岩捕虏体及其富硅交代特征.中国科学(D辑):地球科学, 33(8):734-744. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308003.htm [96] 第五春荣, 孙勇, 林慈銮, 等, 2007.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学.岩石学报, 23(2):253-262. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702007.htm [97] 第五春荣, 孙勇, 林慈銮, 等, 2010.河南鲁山地区太华杂岩LA-(MC)-ICPMS锆石U-Pb年代学及Hf同位素组成.科学通报, 55(21):2112-2123. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021010.htm [98] 董增产, 辜平阳, 陈锐明, 等, 2015.柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征.地球科学, 40(1):130-144. http://www.earth-science.net/WebPage/Article.aspx?id=3013 [99] 冯佐海, 王春增, 王葆华, 2009.花岗岩侵位机制与成矿作用.桂林工学院学报, 29(2):183-194. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200902005.htm [100] 葛小月, 李献华, 陈志刚, 等, 2002.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报, 47(6):474-480. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200206021.htm [101] 何亚清, 陈凤群, 2013.栾川县火神庙钼矿地质特征及找矿标志.采矿技术, 13(3):115-118. http://www.cnki.com.cn/Article/CJFDTOTAL-SJCK201303043.htm [102] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [103] 华仁民, 张文兰, 陈培荣, 等, 2013.初论华南加里东花岗岩与大规模成矿作用的关系.高校地质学报, 19(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301002.htm [104] 焦二中, 2007.栾川火神庙矿区铅钼矿床地质特征.矿业快报, 7(7):64-65. http://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200707023.htm [105] 敬海鑫, 孙德有, 苟军, 等, 2015.兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征.地球科学, 40(6):982-994. http://www.earth-science.net/WebPage/Article.aspx?id=3099 [106] 李怀坤, 朱士兴, 相振群, 等, 2010.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报, 26(7):2131-2140. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm [107] 李曙光, 葛宁洁, 刘德良, 等, 1989.大别山北翼大别群中C型榴辉岩的Sm-Nd同位素年龄及其构造意义.科学通报, 34(7):522-525. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198907012.htm [108] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9):981-991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm [109] 李献华, 李武显, 王选策, 等, 2009.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约.中国科学(D辑), 39(7):872-887. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907003.htm [110] 李永峰, 毛景文, 白凤军, 等, 2003.东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义.地质论评, 49(6):652-659. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200306015.htm [111] 李永峰, 毛景文, 胡华斌, 等, 2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质, 24(3):292-304. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200503008.htm [112] 卢克学, 程相恩, 王夏, 等, 2008.栾川黑家庄钼矿区矿床地质特征及成因探讨.西部探矿工程, 20(10):144-146. doi: 10.3969/j.issn.1004-5716.2008.10.054 [113] 吕文德, 赵春和, 孙卫志, 等, 2006.豫西南泥湖多金属矿田铅锌矿地质特征与成因研究.矿产与地质, 20(3):219-226. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200603003.htm [114] 毛景文, 谢桂青, 张作衡, 等, 2005.中国北方大规模成矿作用的期次及其地球动力学背景.岩石学报, 21(1):169-188. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [115] 毛景文, 叶会寿, 王瑞廷, 等, 2009.东秦岭中生代钼铅锌银多金属矿床成矿模型及其找矿评价.地质通报, 28(1):72-79. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901010.htm [116] 倪志耀, 王仁民, 童英, 等, 2003.河南洛宁太华岩群斜长角闪岩的锆石207Pb/206Pb和角闪石40Ar/39Ar年龄.地质论评, 49(4):361-366. http://www.geojournals.cn/georev/ch/reader/view_abstract.aspx?file_no=20030463&flag=1 [117] 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm [118] 王赛, 叶会寿, 杨永强, 等, 2014a.河南栾川火神庙钼矿床辉钼矿Re-Os年龄及其地质意义.地质通报, 33(9):1430-1438. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201409018.htm [119] 王赛, 叶会寿, 杨永强, 等, 2014b.豫西火神庙矽卡岩型钼矿床成矿流体研究.矿床地质, 33(6):1233-1250. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406007.htm [120] 王晓霞, 王涛, 齐秋菊, 等, 2011.秦岭晚中生代花岗岩时空分布、成因演变及构造意义.岩石学报, 27 (6):1573-1593. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106002.htm [121] 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm [122] 吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [123] 向君峰, 毛景文, 裴荣富, 等, 2012.南泥湖-三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义.中国地质, 39(2) :458-473. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202016.htm [124] 肖娥, 胡建, 张遵忠, 等, 2012.东秦岭花山复式岩基中蒿坪与金山庙花岗岩体岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素组成.岩石学报, 28(12):4031-4046. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212019.htm [125] 辛志刚, 2010.栾川黑家庄钼矿区成矿地质特征及找矿启示.西部探矿工程, 22(5):101-102. http://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201005039.htm [126] 熊小林, 刘星成, 朱志敏, 等, 2011.华北埃达克质岩与克拉通破坏:实验岩石学和地球化学依据.中国科学(D辑), 41(5):654-667. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105005.htm [127] 徐夕生, 鲁为敏, 贺振宇, 2007.佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源.中国科学(D辑), 37(1):27-38. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701002.htm [128] 徐兆文, 任启江, 1988.河南栾川石宝沟、火神庙和大坪岩体岩浆演化特征及其与钼矿化关系.南京大学学报, 1:95-103. [129] 杨承海, 许文良, 杨德彬, 等, 2008.鲁西上峪辉长-闪长岩的成因:年代学与岩石地球化学证据.中国科学(D辑), 38(1):44-45. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200801005.htm [130] 杨荣勇, 徐兆文, 陆现彩, 等, 1996.东秦岭钼矿带成矿岩体与非成矿岩体的对比研究.矿物岩石, 16(3):49-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS603.008.htm [131] 杨荣勇, 徐兆文, 任启江, 1997.东秦岭地区石宝沟和火神庙岩体的时代及岩浆物质来源.矿物地球化学通报, 16(1) :17-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH701.004.htm [132] 杨阳, 王晓霞, 柯昌辉, 等, 2012.豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、地球化学及Hf同位素组成.中国地质, 39(6):1525-1542. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201206004.htm [133] 叶会寿, 毛景文, 李永峰, 等, 2006.豫西南泥湖矿体钼钨及铅锌银矿床地质特征及其成矿机理探讨.现代地质, 20(1):165-174. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200601018.htm [134] 张旗, 金惟俊, 李承东, 等, 2011.花岗岩与地壳厚度关系探讨.大地构造与成矿学, 35(2):259-269. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102012.htm [135] 郑建平, 孙敏, 路凤香, 等, 2005.信阳基性麻粒捕虏体及其华北南缘早中生代下地壳性质.岩石学报, 21(1):91-98. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501010.htm [136] 郑永飞, 赵子福, 陈伊翔, 2013.大陆俯冲隧道过程:大陆碰撞过程中的板块界面相互作用.科学通报, 58(23):2233-2239. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323000.htm [137] 朱弟成, 莫宣学, 王立全, 等, 2009.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学(D辑), 39(7):833-848. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm 期刊类型引用(8)
1. 陈龙龙,唐利,沈彦谋,郭旭飞,赵风芸,盛渊明,曾涛,王汉辉,陈雅鹏. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比. 西北地质. 2024(02): 67-89 . 百度学术
2. 晁红丽,任建德,吕际根,谢朝永,李莹琪,李瑞强,焦静华. 河南省三川幅1:50000地质图数据库. 中国地质. 2020(S1): 173-212 . 百度学术
3. Sai Wang,Bing Li,Xingkang Zhang,Peng Wang,Weiwei Chao,Huishou Ye,Yongqiang Yang. Genesis of the Huoshenmiao Mo deposit in the Luanchuan ore district, China: Constraints from geochronology, ?uid inclusion, and H-O-Sisotopes. Geoscience Frontiers. 2019(01): 331-349 . 必应学术
4. 丁丽雪,黄圭成,夏金龙. 鄂东南地区鄂城岩体的时代、成因及其对成矿作用的指示. 地球科学. 2018(07): 2350-2369 . 本站查看
5. 程路平,邵拥军,郑明泓,谭华杰,张建东,彭光雄. 河南南召县银洞山铅锌矿床地质地球化学特征研究. 地质找矿论丛. 2018(02): 176-181 . 百度学术
6. Chao Chen,Xinbiao Lü,Chunming Wu,Xiao Jiang,Chen Mao. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science. 2018(01): 114-129 . 必应学术
7. GAO XinYu,ZHAO TaiPing. Late Mesozoic magmatism and tectonic evolution in the Southern margin of the North China Craton. Science China(Earth Sciences). 2017(11): 1959-1975 . 必应学术
8. 高昕宇,赵太平. 华北克拉通南缘晚中生代花岗质岩浆作用与构造演化. 中国科学:地球科学. 2017(11): 1309-1328 . 百度学术
其他类型引用(9)
-