Elemental Migration Characteristics and Chemical Weathering Degree of Black Shale in Northeast Chongqing, China
-
摘要: 黑色页岩是富含有机质和硫化矿物的特殊沉积岩,但人们对其风化过程的元素活动性及矿物风化机制关注较少.为探讨不同地形位置的黑色页岩化学风化过程,采集了渝东北城口某山脊 (A)、近山顶 (B) 和沟谷 (C) 的下寒武统水井沱组黑色页岩风化剖面岩样,利用XRD、XRF和化学分析手段对采集样品的矿物成分、主量元素进行测定分析.元素和矿物的质量迁移系数 (τ) 和质量迁移通量 (Mj, flux) 的计算结果表明,黑色页岩风化过程中Ca、Mg和Na元素具有明显的贫化现象,近地表处存在Al元素的富集现象;矿物成分方面,黄铁矿和有机质氧化后形成的酸性水环境,造成方解石、白云石、斜长石等不稳定矿物溶解,并生成含水石膏、铁质氧化物、黏土矿物等次生矿物.不同赋存位置的黑色页岩风化程度有所差异,Na/K-CIA、K/Ca*-Al/Na、A-CN-K和A-CNK-FM图解显示:A剖面处于脱Ca过程的初级风化阶段,B剖面处于脱Ca、Na初期的初等-中等风化阶段,C剖面已发生脱Ca、Na过程,并伴随脱Si作用的中等-强烈风化阶段,结合不同风化指数 (如:CIA、CIW、PIA、MWPI等),得出各剖面的化学风化强弱程度依次为C>B>A.Abstract: Black shales are special sedimentary rocks that contain significant amounts of organic matter and sulfide minerals; whereas, less is known about the elemental mobility and weathering mechanism in black shales during chemical weathering. For understanding the chemical weathering processes of black shale in different geographic locations, a number of Shuijingtuo Formation black shale samples were collected from three weathering profiles, namely, profile A (mid-ridge), profile B (near mountaintop), and profile C (valley) at Chengkou County, northeastern Chongqing Province in this study. The major element concentration, mineral composition, and bulk density of each sample were analyzed by XRF, XRD and chemical analysis methods. The results of geochemical analysis indicate that these weathering profiles were significantly depleted of Ca, Mg and Na in all samples but enriched in Al on the surface weathering zone by calculated mass transfer coefficient (τ) and mass transfer flux (Mj, flux) in all samples. From the perspective of mineralogy, the calcite, dolomite and plagioclase were dissolved in acid solution produced from pyrite and organic matter, and the illite, gypsum and Fe-oxides were formed during chemical weathering process. From the graphical representations of Na/K-CIA, K/Ca*-Al/Na, A-CN-K, and A-CNK-FM show that profile A is located in the weak chemical weathering stage of Ca removal. Profile B has reached the weak to moderate chemical weathering stage and being initial stage of Ca and Na removal. Profile C has undergone the early stage of Ca and Na removal, and reached the Si removal (desilication) stage of moderate to strong chemical weathering. Different chemical weathering indexes of CIA, CIW, PIA, and MWPI were calculated in three profiles, showing that the chemical weathering sequence in all profiles is C > B > A.
-
Key words:
- black shale /
- chemical weathering /
- element migration /
- mineral transformation /
- chemical weathering index /
- geochemistry /
- petrology
-
表 1 城口下寒武统黑色页岩各剖面矿物成分
Table 1. Mineral concentrations of black shales in all profiles at Chengkou County
分层 序号 深度
(m)石英
(%)斜长石
(%)方解石
(%)白云石
(%)伊利石
(%)白云母
(%)蒙脱石
(%)磷灰石
(%)石膏a
(%)黄铁矿a
(%)A-1 0.10 24.6 20.4 -- -- 23.5 31.2 -- -- 0.29 0.32 风化层 A-2 0.25 27.5 24.4 -- -- 23.8 23.4 -- -- 0.46 0.85 A-3 0.45 18.9 17.3 1.0 1.1 17.6 44.1 -- -- 0.81 0.59 半风化层 A-4 0.55 27.5 24.8 -- -- 18.4 29.3 -- -- 1.83 0.57 A-5 0.65 27.6 28.6 -- -- 20.5 21.8 -- -- 1.28 0.46 A-6 0.75 26.1 32.1 -- -- 19.6 21.2 -- -- 1.16 0.72 A-7 0.85 26.8 24.9 -- -- 20.1 16.4 -- -- 8.74 3.05 A-8 1.10 18.4 14.2 2.4 2.5 12.4 41.2 -- -- 6.90 3.65 过渡层 A-9 1.50 17.3 13.4 1.8 2.2 13.2 39.3 -- -- 5.15 6.42 A-10 2.10 20.5 18.1 5.4 3.0 22.0 21.0 -- -- 2.81 6.35 母岩 A-11 3.00 22.5 23.7 3.9 4.4 20.1 17.6 -- -- 0.13 7.16 B-1 0.50 41.4 6.1 -- 2.0 40.9 -- 9.1 -- 0.50 0.36 风化层 B-2 1.00 42.3 5.7 2.4 0.8 43.5 -- 6.0 -- 0.38 0.84 B-3 1.50 40.6 5.4 2.0 -- 42.6 -- 7.5 -- 0.07 2.49 半风化层 B-4 2.00 42.4 6.2 -- -- 38.3 10.2 3.6 -- 0.15 3.11 B-5 2.50 24.7 5.8 -- -- 39.3 25.7 3.0 -- 0.19 1.54 B-6 3.20 20.4 21.5 -- -- 26.7 30.5 -- -- 0.27 3.90 B-7 4.00 24.6 17.3 4.0 1.3 25.1 25.6 -- -- 0.14 3.46 B-8 4.80 13.7 24.1 1.4 1.9 16.5 31.2 3.3 -- 0.18 6.20 过渡层 B-9 5.50 15.9 33.3 2.2 1.8 17.2 21.6 -- -- 0.14 6.22 B-10 6.20 25.6 22.3 2.9 3.4 17.1 19.2 -- -- 0.07 6.81 母岩 B-11 7.00 31.7 20.2 3.8 5.2 15.0 15.4 -- -- 0.04 8.88 C-1 0.50 26.3 2.1 -- 7.8 12.3 52.8 -- -- 0.47 0.18 风化层 C-2 1.00 30.8 2.3 -- -- 14.6 50.9 -- -- 0.41 0.58 C-3 1.50 36.3 2.2 0.8 -- 13.3 47.4 -- -- 0.37 0.48 C-4 2.00 35.3 2.3 -- -- 12.4 50.3 -- -- 0.64 1.05 C-5 3.00 33.9 1.6 -- -- 16.5 46.2 -- -- 0.97 2.96 半风化层 C-6 4.00 33.7 1.5 1.2 -- 18.8 38.5 -- -- 1.97 4.12 C-7 5.00 32.4 1.3 2.0 -- 20.0 40.4 -- -- 1.08 3.43 C-8 6.20 32.7 1.7 1.0 -- 14.4 44.2 -- -- 0.69 5.31 过渡层 C-9 8.00 41.4 1.5 8.8 4.4 13.5 17.0 -- 8.4 0.48 4.32 C-10 9.00 41.3 2.2 11.5 8.4 13.8 13.3 -- 3.5 0.04 5.99 母岩 C-11 10.50 40.4 2.0 17.2 13.1 4.7 10.0 -- 5.5 0.12 5.32 ? C-oxideb ? 18.5 -- -- -- 18.1 6.9 -- -- -- 0.19 页岩碎片 SS-1 0.00 43.0 5.8 -- 9.6 19.8 18.1 -- -- 0.97 0.97 SS-2 0.00 41.3 8.0 -- -- 21.2 19.5 10.0 -- 1.09 1.27 SS-3 0.00 37.8 9.4 -- -- 20.1 12.7 4.0 -- 16.09 0.49 SS-4 0.00 39.3 6.0 -- -- 15.0 18.4 8.9 -- 11.14 1.34 注:“--”表示低于XRD的检测限,<0.5%;“?”表示C-oxide样品为未知分层;a.石膏和黄铁矿的百分含量分别由硫酸盐、二硫化物的含量来修正;b.C-oxide含有56.5%针铁矿,未在表中列出. 表 2 城口下寒武统黑色页岩主量元素和Ti元素百分比浓度及风化指标统计
Table 2. Concentrations of major elements and Ti, pH, chemical index values of black shale in profiles A, B, C, and SS at Chengkou County
序号 深度
(m)ρ
(g/cm3)SiO2
(%)Al2O3
(%)TFe2O3
(%)K2O
(%)Na2O
(%)CaO
(%)MgO
(%)MnO
(%)P2O5
(%)BaO
(%)SO3
(%)LOI
(%)bTi (10-6) dNa/K dK/Ca* dAl/Na εTi, w CIA CIW PIA MWPI aICV A-1 0.10 1.53 65.5 13.60 8.10 2.84 2.52 0.29 0.97 0.22 0.20 0.53 0.23 4.39 4 970 1.35 11.66 3.28 0.63 63.71 74.43 69.25 7.28 1.20 A-2 0.25 1.79 65.7 13.70 7.78 2.87 2.63 0.28 0.96 0.05 0.25 0.47 0.30 4.41 5 275 1.39 12.20 3.17 0.31 63.30 73.91 68.66 7.38 1.19 A-3 0.45 1.72 63.4 13.85 9.08 2.91 2.59 0.22 0.98 0.27 0.28 0.37 1.03 4.97 5 138 1.35 15.75 3.25 0.40 63.94 74.82 69.66 7.48 1.23 A-4 0.55 1.92 69.8 14.60 1.35 3.13 2.74 0.19 1.09 0.01 0.03 0.28 1.10 5.69 5 271 1.33 19.61 3.24 0.22 63.92 75.05 69.79 7.59 0.88 A-5 0.65 1.90 69.1 14.25 1.38 3.02 2.79 0.36 1.02 BDL 0.02 0.26 1.78 7.33 5 818 1.40 9.99 3.10 0.12 62.60 73.10 67.68 7.73 0.91 A-6 0.75 1.98 67.8 14.20 1.63 3.05 2.94 0.19 0.96 BDL 0.02 0.29 3.36 8.21 5 657 1.46 19.11 2.94 0.10 62.60 73.26 67.77 7.73 0.91 A-7 0.85 2.22 62.6 13.35 3.97 2.93 2.56 1.58 1.20 0.02 0.09 0.46 7.26 8.56 5 340 1.33 2.21 3.17 0.04 56.55 65.33 58.96 9.82 1.26 A-8 1.10 2.42 55.7 11.70 4.93 2.51 2.28 5.94 2.16 0.05 0.17 0.32 8.31 10.64 5 017 1.38 1.45 3.12 0.02 53.38 60.93 54.49 12.54 1.68 A-9 1.50 2.50 49.6 10.60 12.06 2.36 1.94 5.05 1.72 0.04 0.14 0.28 8.70 11.06 4 767 1.25 1.60 3.32 0.04 54.25 62.42 55.76 11.48 2.05 A-10 2.10 2.61 57.2 11.10 4.45 2.41 2.08 6.79 1.72 0.05 0.15 0.37 7.75 10.94 4 859 1.31 1.52 3.24 -0.02 54.01 61.86 55.37 11.06 1.57 A-11 3.00 2.65 52.3 11.75 9.93 2.63 2.22 3.80 2.49 0.05 0.18 0.33 6.25 10.76 4 670 1.28 1.56 3.22 0.00 53.65 61.67 54.93 13.34 2.01 B-1 0.50 1.67 69.7 9.85 3.92 2.06 0.66 3.48 1.20 0.02 1.34 1.02 0.40 5.02 3 542 0.49 4.11 9.07 0.34 69.12 81.94 77.82 5.39 1.08 B-2 1.00 1.90 69.9 6.98 2.87 1.62 0.56 3.65 0.94 0.01 0.60 0.65 0.26 8.80 2 486 0.53 3.81 7.58 0.67 66.00 79.12 73.94 4.48 1.18 B-3 1.50 1.88 67.4 8.76 3.49 2.09 0.42 2.85 1.30 0.02 0.65 1.60 0.70 11.70 3 234 0.31 6.55 12.68 0.30 70.62 86.37 82.46 5.24 1.11 B-4 2.00 1.75 74.7 9.34 3.50 2.16 1.41 0.66 0.86 BDL 0.15 0.48 0.33 5.91 4 355 0.99 3.90 4.03 0.04 61.46 72.63 66.55 5.49 1.16 B-5 2.50 1.82 67.2 11.75 3.72 2.80 0.55 0.77 1.52 0.01 0.17 1.66 0.86 8.09 3 834 0.30 6.70 12.99 0.13 70.82 86.65 82.81 6.35 1.00 B-6 3.20 1.72 66.0 12.10 5.94 2.80 1.96 0.12 1.03 0.01 0.12 0.41 8.24 8.88 4 275 1.06 27.78 3.75 0.08 65.15 77.85 72.49 6.63 1.13 B-7 4.00 1.98 60.8 10.25 3.55 2.51 1.29 5.76 1.70 0.03 0.17 0.95 5.93 10.11 3 764 0.78 2.56 4.83 0.06 59.55 70.72 63.96 8.87 1.39 B-8 4.80 2.14 59.7 13.00 4.42 3.11 1.84 3.74 2.04 0.03 0.20 0.52 7.00 9.01 4 916 0.90 2.22 4.29 -0.24 57.98 68.23 61.41 11.07 1.41 B-9 5.50 2.21 59.4 13.35 4.13 3.06 2.01 3.56 2.09 0.03 0.20 0.46 6.47 9.01 5 010 1.00 2.00 4.04 -0.28 57.36 66.87 60.28 11.52 1.40 B-10 6.20 2.38 59.7 13.35 4.13 3.01 2.29 4.00 1.94 0.04 0.19 0.50 5.83 8.37 4 886 1.16 1.73 3.54 -0.32 55.30 63.92 57.25 11.80 1.44 B-11 7.00 2.50 66.0 8.77 3.36 2.12 1.72 4.30 1.29 0.02 0.17 0.37 5.34 9.30 3 167 1.23 1.62 3.10 0.00 52.44 60.78 53.36 10.36 1.59 C-1 0.50 1.56 65.5 15.30 2.73 2.87 0.23 2.73 2.03 0.22 0.79 0.20 0.18 8.99 6 345 0.12 16.42 40.44 -0.44 79.84 95.29 94.16 5.55 0.79 C-2 1.00 1.49 70.5 16.60 1.33 3.19 0.30 0.31 0.74 0.02 0.04 0.83 0.30 5.01 5 611 0.14 13.99 33.64 -0.34 78.90 94.39 93.02 4.40 0.50 C-3 1.50 1.35 69.8 16.70 0.87 3.38 0.23 0.41 0.77 0.01 0.03 0.59 0.18 5.84 5 693 0.10 19.34 44.14 -0.29 79.09 95.67 94.52 4.48 0.48 C-4 2.00 1.43 68.7 17.50 1.48 3.55 0.21 0.31 0.86 0.01 0.04 0.55 0.16 5.42 5 689 0.09 22.25 50.66 -0.32 79.42 96.20 95.18 4.73 0.50 C-5 3.00 1.57 63.9 15.85 4.82 3.28 0.20 0.37 0.77 0.01 0.04 0.61 4.16 9.26 6 329 0.09 21.58 48.17 -0.48 79.82 97.20 96.42 4.61 0.63 C-6 4.00 1.79 60.5 15.20 6.73 3.08 0.20 0.63 1.02 0.14 0.14 0.63 5.25 10.60 4 867 0.10 20.27 46.20 -0.37 79.20 95.85 94.75 5.10 0.79 C-7 5.00 1.71 58.8 14.20 7.09 2.81 0.18 0.94 1.18 0.30 0.10 0.79 6.00 10.45 4 643 0.10 20.54 47.95 -0.30 79.62 96.00 94.96 5.23 0.87 C-8 6.20 1.86 56.9 14.85 9.91 3.02 0.20 0.35 0.78 0.03 0.08 0.46 6.10 11.61 4 627 0.10 19.87 45.13 -0.36 79.09 95.76 94.62 4.77 0.89 C-9 8.00 1.90 55.3 6.87 2.46 1.79 0.17 6.80 1.30 0.02 3.90 0.46 4.07 13.89 5 055 0.14 13.86 24.57 -0.42 73.34 92.47 89.82 5.35 1.14 C-10 9.00 2.45 53.6 6.45 2.71 1.66 0.18 8.00 1.84 0.02 1.74 0.35 4.18 17.53 2 831 0.16 12.14 21.78 -0.20 72.97 91.59 88.71 6.63 1.44 C-11 10.50 2.74 49.1 4.51 2.94 1.16 0.19 13.5 2.60 0.01 2.90 0.35 2.77 19.32 2 002 0.25 8.03 14.43 0.00 70.57 87.83 83.89 8.62 2.36 C-oxide ? 1.56 26.5 9.60 48.45 1.10 0.01 0.06 0.76 0.01 0.35 0.36 0.42 11.60 3 755 0.01 144.76 583.56 -0.44 88.70 99.66 99.61 3.54 SS-1 0 52.8 10.10 6.48 1.41 0.48 4.13 3.08 0.07 0.71 0.37 4.41 15.49 5 951 0.52 3.87 12.79 76.48 86.48 84.45 9.50 1.60 SS-2 0 45.1 8.47 22.18 1.30 0.79 1.04 0.82 0.03 2.15 1.50 2.76 15.21 5 508 0.92 2.17 6.52 67.89 76.52 73.10 5.78 2.51 SS-3 0 60.2 9.77 6.49 2.42 1.08 5.45 0.76 0.04 0.18 0.12 5.45 7.04 3 935 0.68 2.95 5.50 61.28 73.33 66.80 6.52 1.32 SS-4 0 55.4 12.60 6.24 2.79 0.65 4.01 0.99 0.02 0.16 1.10 9.28 8.77 5 201 0.35 5.65 11.78 70.95 85.49 81.75 6.48 1.00 UCC 66.0 15.20 5.00 3.40 3.90 4.20 2.20 0.06 0.50 c0.50 1.74 1.15 2.37 47.93 54.22 47.31 14.48 1.70 PAAS 62.8 18.90 7.22 3.70 1.20 1.30 2.20 0.11 1.00 c0.16 0.49 4.06 9.57 70.38 82.72 79.05 9.41 0.97 ES 57.9 13.80 7.73 2.50 0.95 12.95 2.13 0.30 0.89 c0.75 0.58 3.46 8.83 70.29 81.53 78.02 8.75 1.24 NASC 62.6 17.09 6.26 3.49 2.32 3.85 3.00 0.12 0.27 c0.91 1.01 1.98 4.48 59.96 69.13 63.56 12.98 1.41 注:各风化剖面的分层情况如表 1所示.UCC为上陆壳,PAAS为澳大利亚后太古代平均页岩,数据来自于Taylor and McLennan (1985);ES为欧洲平均页岩,NASC为北美平均页岩,数据分别来自于 Gromet et al.(1984) 和MecLennan (1993).BDL表示低于检测限:<0.01%.LOI表示为烧失量.a表示ICV=[(Fe2O3+K2O+Na2O+CaO*+MgO+MnO+TiO2)/Al2O3],运用各氧化物摩尔分数计算,CaO*只包括硅酸盐矿物中的Ca,计算原则来源于Cox et al.(1995) .b表示Ti元素运用电感耦合等离子体质谱法 (ICP-MS) 进行测试.c表示UCC、PAAS、ES及NASC的Ti元素的单位为百分含量 (%).d表示Na/K,K/Ca*和Al/Na比值都为分子摩尔比.表 3 城口黑色页岩各剖面质量迁移系数 (τTi, j) 分布
Table 3. The τTi, j values of major elements of black shale in profiles A, B, and C at Chengkou County
分层 序号 深度 (m) τTi, j Si Al Fe K Na Ca Mg P S LOI A-1 0.10 0.18 0.09 -0.23 0.01 0.07 -0.93 -0.63 0.04 -0.97 -0.62 风化层 A-2 0.25 0.11 0.03 -0.31 -0.03 0.05 -0.93 -0.66 0.23 -0.96 -0.64 A-3 0.45 0.10 0.07 -0.17 0.01 0.06 -0.95 -0.64 0.41 -0.85 -0.58 半风化层 A-4 0.55 0.18 0.10 -0.88 0.05 0.09 -0.96 -0.61 -0.85 -0.84 -0.53 A-5 0.65 0.06 -0.03 -0.89 -0.08 0.01 -0.92 -0.67 -0.91 -0.77 -0.45 A-6 0.75 0.07 0.00 -0.86 -0.04 0.09 -0.96 -0.68 -0.91 -0.56 -0.37 A-7 0.85 0.05 -0.01 -0.65 -0.03 0.01 -0.64 -0.58 -0.56 0.02 -0.30 A-8 1.10 -0.01 -0.07 -0.54 -0.11 -0.04 0.46 -0.19 -0.12 0.24 -0.08 过渡层 A-9 1.50 -0.07 -0.12 0.19 -0.12 -0.14 0.30 -0.32 -0.24 0.36 0.01 A-10 2.10 0.05 -0.09 -0.57 -0.12 -0.10 0.72 -0.34 -0.20 0.19 -0.02 母岩 A-11 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 B-1 0.50 -0.06 0.00 0.04 -0.13 -0.66 -0.28 -0.17 6.05 -0.93 -0.52 风化层 B-2 1.00 0.35 0.01 0.09 -0.03 -0.59 0.08 -0.07 3.50 -0.94 0.21 B-3 1.50 0.00 -0.02 0.02 -0.03 -0.76 -0.35 -0.01 2.74 -0.87 0.23 半风化层 B-4 2.00 -0.18 -0.23 -0.24 -0.26 -0.40 -0.89 -0.52 -0.36 -0.96 -0.54 B-5 2.50 -0.16 0.11 -0.09 0.09 -0.74 -0.85 -0.03 -0.17 -0.87 -0.28 B-6 3.20 -0.26 0.02 0.31 -0.02 -0.16 -0.98 -0.41 -0.48 0.14 -0.29 B-7 4.00 -0.22 -0.02 -0.11 0.00 -0.37 0.13 0.11 -0.16 -0.07 -0.09 B-8 4.80 -0.42 -0.05 -0.15 -0.05 -0.31 -0.44 0.02 -0.24 -0.16 -0.38 过渡层 B-9 5.50 -0.43 -0.04 -0.22 -0.09 -0.26 -0.48 0.02 -0.26 -0.23 -0.39 B-10 6.20 -0.41 -0.01 -0.20 -0.08 -0.14 -0.40 -0.03 -0.28 -0.29 -0.42 母岩 B-11 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C-1 0.50 -0.58 0.07 -0.71 -0.22 -0.62 -0.94 -0.75 -0.91 -0.98 -0.85 风化层 C-2 1.00 -0.49 0.31 -0.84 -0.02 -0.44 -0.99 -0.90 -1.00 -0.96 -0.91 C-3 1.50 -0.50 0.30 -0.90 0.02 -0.57 -0.99 -0.90 -1.00 -0.98 -0.89 C-4 2.00 -0.51 0.37 -0.82 0.08 -0.61 -0.99 -0.88 -1.00 -0.98 -0.90 C-5 3.00 -0.59 0.11 -0.48 -0.11 -0.67 -0.99 -0.91 -1.00 -0.53 -0.85 半风化层 C-6 4.00 -0.49 0.39 -0.06 0.09 -0.57 -0.98 -0.84 -0.98 -0.22 -0.77 C-7 5.00 -0.48 0.36 0.04 0.04 -0.59 -0.97 -0.80 -0.99 -0.07 -0.77 C-8 6.20 -0.50 0.42 0.46 0.13 -0.54 -0.99 -0.87 -0.99 -0.05 -0.74 过渡层 C-9 8.00 -0.55 -0.40 -0.67 -0.39 -0.65 -0.76 -0.80 -0.47 -0.42 -0.72 C-10 9.00 -0.23 0.01 -0.35 0.01 -0.33 -0.53 -0.50 -0.50 0.07 -0.36 母岩 C-11 10.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ? C-oxide ? -0.71 0.13 7.78 -0.49 -0.97 -1.00 -0.84 -0.94 -0.92 -0.68 表 4 黑色页岩风化剖面中主量元素质量迁移通量 (mol/m2) 计算
Table 4. Mass fluxes (mol/m2) of major elements in three black shale weathering profiles
剖面 分层 深度 (m) Si Al Fe K Na Ca Mg A剖面 风化层 0~0.55 501 64 -105 0 14 -709 -215 半风化层 0.55~1.50 118 -74 -503 -44 -17 -144 -361 过渡层 1.50~3.00 194 -167 -433 -78 -82 815 -349 总计 0~3.00 813 -177 -1 041 -122 -85 -38 -925 B剖面 风化层 0~2.00 -723 -65 -1 -84 -506 -762 -129 半风化层 2.00~4.80 -8 750 -19 -17 -22 -536 -1 984 -155 过渡层 4.80~7.00 -13 312 -91 -180 -90 -280 -1 483 -1 总计 0~7.00 -22 785 -175 -198 -196 -1 322 -4 229 -285 C剖面 风化层 0~2.00 -12 812 361 -892 -109 -121 -14 834 -2 822 半风化层 2.00~8.00 -39 617 1 356 -511 -51 -363 -43 494 -8 807 过渡层 8.00~10.50 -6 937 -184 -383 -78 -64 -6 811 -1 521 总计 0~10.50 -59 366 1 533 -1 786 -238 -548 -65 139 -13 150 表 5 各种风化指标表达式
Table 5. Summary of weathering indices evaluated in this study
指标 计算公式 参考来源 CIA [Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100 Nesbitt and Young (1982, 1984) CIW [Al2O3/(Al2O3+CaO*+Na2O)]×100 Harnois (1988) PIA [(Al2O3-K2O)/ (Al2O3+CaO*+Na2O-K2O)]×100 Fedo et al.(1995) MWPI [(Na2O+K2O+CaO*+MgO)/(Na2O+K2O+CaO*+MgO+SiO2+Al2O3+Fe2O3)]×100 Vogel (1975) 注:上述各风化指标均运用氧化物的分子摩尔数计算,CaO*为硅酸盐矿物中的摩尔含量,不包括碳酸盐和磷酸盐矿物中的CaO含量;由于硅酸盐中的CaO与Na2O通常以1:1的摩尔比例存在,所以当CaO的摩尔数大于Na2O时,CaO*的分子摩尔等于Na2O的分子摩尔,而小于Na2O时则有mCaO*=mCaO(McLennan, 1993). -
[1] Anderson, S.P., Dietrich, W.E., Brimhall, G.H., 2002.Weathering Profiles, Mass-Blalance Analysis, and Rates of Solute Loss:Linkage between Weathering and Erosion in a Small, Steep Catchment.Geological Science of American Bulletin, 114(9):1143-1158.doi: 10.1130/0016-7606 [2] Brantley, S.L., Holleran, M.E., Jin, L., et al., 2013.Probing Deep Weathering in the Shale Hills Critical Zone Observatory, Pennsylvania (USA):The Hypothesis of Nested Chemical Reaction fronts in the Subsurface.Earth Surface Processes and Landforms, 38(11):1280-1298.doi: 10.1002/esp.3415 [3] Brantley, S.L., White, A.F., 2009.Approaches to Modeling Weathered Regolith.Reviews in Mineralogy & Geochemistry, 70:435-484.doi: 10.2138/rmg.2009.70.10 [4] Brimhall, G.H., Dietrich, W.E., 1987.Constitutive Mass Balance Relations between Chemical Composition, Volume, Density, Porosity, and Strain in Metasomatic Hydrochemical Systems:Rresults on Weathering and Pedogenesis.Geochimica et Cosmochimica Acta, 51(3):567-587.doi: 10.1016/0016-7037(87)90070-6 [5] Cox, R., Low, D.R., Cullers, R.L., 1995.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States.Geochimica et Cosmochimica Acta, 59(14):2919-2940.dio:10.1016/0016-70 37(95)00185-9 doi: 10.1016/0016-7037(95)00185-9 [6] Dere, A.L., White, T.S., Aprll, R.H., et al., 2013.Climate Dependence of Feldspar Weathering in Shale Soils along a Latitudinal Gradient.Geochimica et Cosmochimica Acta, 122:101-126.doi: 10.1016/j.gca.2013.08.001 [7] Egli, M., Fitze, P., 2000.Formulation of Pedologic Mass Balance Based on Immobile Elements:A Revision.Soil Science, 165(5):437-443.doi:10.1097/00010694-20000 5000-00008 [8] Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921-924.doi:10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO; 2 [9] Fu, W., Huang, X.R., Yang, M.L., et al., 2014.REE Geochemistry in the Laterite Crusts Derived from Ultramafic Rocks:Comparative Study of Two Laterite Profiles under Different Climate Condition.Earth Science, 39(6):716-732 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201002018.htm [10] Gromet, L.P., Dymek, R.F., Haskin, L.A., et al., 1984.The "North American Shale Composite":Its Compilation, Major and Trace Element Characteristics.Geochimica et Cosmochimica Acta, 48(12):2469-2482.doi: 10.1016/0016-7037(84)90298-9 [11] Harnois, L., 1988.The CIW Index:a New Chemical Index of Weathering.Sedimentary Geology, 55(3-4):319-322.dio:10.1016/0037-0738(88)90137-6 doi: 10.1016/0037-0738(88)90137-6 [12] Jaffe, L.A., Peucker-Ehrenbrink, B., Petsch, S.T., 2002.Mobility of Rhenium, Platinum Group Elements and Organic Carbon during Black Shale Weathering.Earth and Planetary Science Letters, 198(3-4):339-353.dio:10.016/S0012-821X (02)00526-5 doi: 10.1016/S0012-821X(02)00526-5 [13] Jiang, M.R., Zhang, J., Liu, W.H., et al., 2015.Alteration-Mineralization and Element Migration Features of Nihe Iron Deposit in Lujiang, Anhui Province.Earth Science, 40(6):1034-1051 (in Chinese with English abstract). https://www.researchgate.net/publication/282269418_Alteration-mineralization_and_element_migration_features_of_Nihe_iron_deposit_in_Lujiang_Anhui_Province [14] Jin, L., Ravella, R., Ketchum, B., et al., 2010.Mineral Weathering and Elemental Transport during Hillslope Evolution at the Susquehanna/Shale Hills Critical Zone Observatory.Geochimica et Cosmochimica Acta, 74:3369-3691.doi: 10.1016/j.gca.2010.03.036 [15] Jin, L., Mathur, R., Rother, G., et al., 2013.Evolution of Porosity and Geochemistry in Marcellus Formation Black Shale during Weathering.Chemical Geology, 356:50-63.doi:10.1016/ j.chemgeo.2013.07.012 [16] Li, X.S., Han, Z.Y., Yang, S.Y., et al., 2007.Chemical Weathering Intensity and Element Migration Features of the Xiashu Loess Profile in Zhenjiang, Jiangsu Province.Journal of Geographical Sciences, 62(11):1174-1184 (in Chinese with English abstract). doi: 10.1007%2Fs11442-008-0341-9.pdf [17] Liao, X., Wu, X.Y., Zhu, B.L., et al., 2012.Study on the Characteristics of Black Strata Geochemical Weathering and Its Disaster-Causing Mechanism.Disaster Advances, 5(4):1558-1562. https://www.researchgate.net/publication/253818506_Weathering_Process_of_Black_Strata [18] Liao, X., Wu, X.Y., Zhu, B.L., 2013.Chemical Weathering Characteristics of Cambrian Black Shale in Northern Guangxi, China.Journal of Central South University (Science and Technology), 44(12):4980-4987 (in Chinese with English abstract). https://www.researchgate.net/publication/281928286_Chemical_weathering_characteristics_of_Cambrian_black_shale_in_northern_Guangxi_China [19] MacLean, W.H., 1990.Mass Change Calculations in Altered Rock Series.Mineralium Deposita, 25(1):44-49.doi: 10.1007/BF03326382 [20] Maulana, A., Yonezu, K., Watanabe, K., 2014.Geochemistry of Rare Earth Elements (REE) in the Weathered Crusts from the Granitic Rocks in Sulawesi Island, Indoesia.Journal of Earth Science, 25(3):460-472.doi: 10.1007/s12583-014-00449-z [21] McLennan, S.M., 1993.Weathering and Global Denudation.Journal of Geology, 101(2):295-303.doi: 10.1086/648222 [22] Nesbitt, H.W., Young, G.M., 1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature, 299(5885):715-717.doi: 10.1038/299715a0 [23] Nesbitt, H.W., Young, G.M., 1984.Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations.Geochimica et Cosmochimica Acta, 48(7):1523-1534.doi: 10.1016/0016-7037(84):90408-3 [24] Peng, B., Piestrzynski, A., Pieczonka, J., et al., 2007.Mineralogical and Geochemical Constraints on Environmental Impacts from Waste Rock at Taojiang Mn-Ore Deposit, Central Hunan, China.Environmental Geology, 52(7):1277-1296.doi: 10.1007/s00254-006-0567-8 [25] Peng, B., Song, Z.L., Tu, X.L., et al., 2004.Release of Heavy Metals during Weathering of the Lower Cambrian Black Shales in Western Hunan, China.Environmental Geology, 45(8):1137-1147.doi:0.1007/s00254-004-0974-7 [26] Peng, B., Tang, X.Y., Yu, C.X., et al., 2009.Geochemical Study of Heavy Metal Contamination of Soils Derived from Black Shales at the HJC Uranium Mine in Central Hunan, China.Acta Geologica Sinica, 83(1):89-106 (in Chinese with English abstract). https://www.researchgate.net/publication/279692296_Geochemical_study_of_heavy_metal_contamination_of_soils_derived_from_black_shales_at_the_HJC_uranium_mine_in_central_Hunan_China [27] Peng, B., Wu, F.C., Xiao, M.L., et al., 2005.The Resource Functions and Environment Effects of Black Shales.Bulletin of Mineralogy, Petrology and Geochemistry, 24(2):153-158 (in Chinese with English abstract). [28] Petsch, S.T., Edwards, K.J., Eglinton, T.I., 2005.Microbial Transformations of Organic Matter in Black Shales and Implications for Global Biogeochemical Cycles.Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2):157-170.doi: 10.1016/j.palaeo.2004.10.019 [29] Price, J.R., Velbel, M.A., 2003.Chemical Weathering Indices Applied to Weathering Profiles Developed on Heterogeneous Felsic Metamorphic Parent Rocks.Chemical Geology, 202(3-4):397-416.doi: 10.1016/j.chemgeo.2002.11.001 [30] Qiu, S.F., Ouyang, T.P., Zhu, Z.Y., et al., 2014.Magnetic Susceptibility Characteristics of Weathering-Pedogenic Topsoil along East Part of China and Its Significance.Earth Science, 39(10):1554-1564 (in Chinese with English abstract). https://www.researchgate.net/publication/286105595_Magnetic_susceptibility_characteristics_of_weathering-pedogenic_topsoil_along_east_part_of_China_and_its_significance [31] Rieu, R., Allen, P.A., Plotze, M., et al., 2007.Compositional and Mineralogical Variations in a Neoproterozoic Glacially Influenced Succession, Mirbat Area, South Oman:Implications for Paleoweathering Conditions.Precambrian Research, 154(3-4):248-265.doi: 10.1016/j.precamres.2007.01.003 [32] Sáez, R., Moreno, C., González, F., et al., 2011.Black Shales and Massive Sulfide Deposits:Causal or Casual Relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar.Mineralium Deposita, 46(5-6):585-614.doi: 10.1007/s00126-010-0311-x [33] Song, Z.L., Peng, B., Liu, C.Q., 2004.Discussion on Element Mobility and Reference Frame Selection during Black Shale Weathering:Example of Profiles from Matian and Taohuajiang in Hunan Province.Geological Science and Technology Information, 23(3):25-29 (in Chinese with English abstract). [34] Song Z.L., 2009.Mechanisms and Potentiality of Silicon Release during Weathering of the Lower Cambrian Black Shales in Hunan, China.Environmental Science and Management, 34(11):21-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BFHJ200911006.htm [35] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Press, London [36] Tuttle, M.L., Breit, G.N., 2009.Weathering of the New Albany Shale, Kentucy, USA:Ι.Weathering Zones Defined by Mineralogy and Major Element Compsiton.Applied Geochemsitry, 24(8):1549-1564.doi: 10.1016/j.apgeochem.2009.04.021 [37] Vogel, D.E., 1975.Precambrian Weathering in Acid Metavolcanic Rocks from the Superior Province, Villebon Township, South-Central Quebcé.Canadian Journal of Earth Science, 12:2080-2085.doi: 10.1139/e75-183 [38] White, A.F., Blum, A.E., Marjorie S., 1996.Chemical Weathering Rates of a Soil Chronosequence on Granitic Alluvium:Ι.Quantification of Mineralogical and Surface Area Changes and Calculation of Primary Silicate Reaction Rates.Geochimica et Cosmochimica Acta, 60(14):2533-2550.doi: 10.1016/0016-7037(96)00106-8 [39] White, A.F., Blum, A.E., Schulz, M.S., et al., 2002.Chemical Weathering of the Panola Granite:Solute and Regolith Elemental Fluxes and the Weathering Rate of Biotite.U.S.Geological Survey, Boulder. [40] Wu, C.D., Chu, Z.Y., 2001.Sequential Extraction of Trace Elements and the Geological Significance of Fractions in Black Shales, West Hunan and East Guizhou.Bulletin of Mineralogy, Petrology and Geochemistry, 20(1):14-20 (in Chinese with English abstract). https://www.researchgate.net/publication/256141916_Variations_in_the_type_and_distribution_of_organic_matter_in_some_Carboniferous_sediments_from_Northern_England [41] Wu, X.Y., Wang Y., Luo, J., 1998.Study on Relationship between Formation of Corrosive Environment Water and Movement Characteristics of Groundwater.Journal of the China Railway Society, 20(4):106-112 (in Chinese with English abstract). [42] Wu, X.Y., Zhu, B.L., Luo, J., 2008.Analysis on the Process and Thermomechanics of the Black Rock Weathering.Science Press, Beijing, 9-15 (in Chinese). [43] Xie, S.R., Peng, B., Tang, X.Y., et al., 2008.Characteristics of Heavy Metal Contamination of Soils Derived from Black Shale in the Central Hunan, China.Chinese Journal of Soil Science, 39(1):137-142 (in Chinese with English abstract). https://www.researchgate.net/profile/Changxun_Yu/publication/233792186_Geochemistry_of_soils_derived_from_black_shales_in_the_Ganziping_mine_area_western_Hunan_China/links/0912f50b8a7c69d794000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail [44] Xu, J.Z., Peng, B., Yu, C.X., et al., 2013.Geochemistry of Soils Derived from Black Shales in thg Ganziping Miner Area, Western Hunan, China.Environmental Earth Sciences, 70(1):175-190.doi: 10.1007/s12665-012-2114-0 [45] Yamasaki, S., Chigira, M., 2011.Weathering Mechanisms and Their Effects on Landsliding in Politic Schist.Earth Surface Processes and Landforms, 36(4):481-494.doi: 10.1002/esp.2067 [46] Yu, C.X., Peng, B., Peltola, P., et al., 2012.Effect of Weathering on Abundance and Release of Potentially Toxic Elements in Soils Developed on Lower Cambrian Black Shales, P.R.China.Environmental Geochemistry and Health, 34(3):375-390.doi: 10.1007/s10653-011-9398-y [47] Yu, C.X., Peng, B., Tang, X.Y., et al., 2009.Geochemical Characteristics of Soils Derived from the Lower Cambrian Black Shales Distributed in Central Hunan, China.Acta Pedologica Sinica, 46(4):557-570(in Chinese with English abstract). https://www.researchgate.net/publication/279673307_Elemental_geochemistry_of_soils_derived_from_the_Lower-Cambrian_black_shales_in_Anhua_county_central_Hunan_China [48] Zeng, J.H., Xu, T.W., Sun, Z.Q., et al., 2010.Origin of Paleofluids in Dabashan Foreland Thrust Belt:Geochemical Evidence of 13C, 18O and 87Sr/86Sr in Veins and Host Rocks.Acta Geologica Sinica (English Edition), 84(5):1239-1255.doi: 10.1111/j.1755-6724.2010.00294.x [49] 付伟, 黄小荣, 杨梦力, 等, 2014.超基性岩红土风化壳中REE地球化学:不同气候风化剖面的对比.地球科学, 39(6):716-732. http://earth-science.net/WebPage/qk.aspx?id=126# [50] 江满容, 张均, 刘文浩, 等, 2015.安微庐江泥河铁矿床蚀变-矿化作用及元素迁移规律.地球科学, 40(6):1034-1051. http://earth-science.net/WebPage/qk.aspx?id=138# [51] 李徐生, 韩志勇, 杨守业, 等, 2007.镇江下蜀土剖面的化学风化强度与元素迁移特征.地理学报, 62(11):1174-1184. doi: 10.3321/j.issn:0375-5444.2007.11.006 [52] 廖昕, 巫锡勇, 朱宝龙, 2013.桂北地区寒武系黑色页岩化学风化特征.中南大学学报 (自然科学版), 44(12):4980-4987. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201312029.htm [53] 彭渤, 唐晓燕, 余昌训, 等, 2009.湘中HJC铀矿区黑色页岩土壤重金属污染地球化学分析.地质学报, 83(1):89-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200901009.htm [54] 彭渤, 吴甫成, 肖美莲, 等, 2005.黑色页岩的资源功能和环境效应.矿物岩石地球化学通报, 24(2):153-158. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200502016.htm [55] 邱世藩, 欧阳婷萍, 朱照宇, 等, 2014.中国东部表层土壤磁化率特征及其指示意义.地球科学, 39(10):1554-1564. http://earth-science.net/WebPage/qk.aspx?id=130# [56] 宋照亮, 彭渤, 刘丛强, 2004.黑色页岩风化过程中元素的活动性及参考系的选取初探.地质科技情报, ,23(3):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200403005.htm [57] 宋照亮, 2009.湖南下寒武统黑色页岩风化释Si的机制与潜力.环境科学与管理, 34(11):21-25. doi: 10.3969/j.issn.1673-1212.2009.11.005 [58] 吴朝东, 储著银, 2001.黑色页岩微量元素形态分析及地质意义.矿物岩石地球化学通报, 20(1):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200101004.htm [59] 巫锡勇, 王鹰, 罗健, 1998.侵蚀性环境水形成与地下水运动特征的关系研究.铁道学报, 20(4):106-112. http://www.cnki.com.cn/Article/CJFDTOTAL-TDXB804.018.htm [60] 巫锡勇, 朱宝龙, 罗健, 2008.黑色岩层的风化过程及其热力学分析.北京:科学出版社, 9-15. [61] 谢淑容, 彭渤, 唐晓燕, 等, 2008.湘中地区发育于黑色页岩上的土壤重金属污染特征.土壤通报, 39(1):137-142. http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200801027.htm [62] 余昌训, 彭渤, 唐晓燕, 等, 2009.湘中下寒武统黑色页岩土壤的地球化学特征.土壤学报, 46(4):557-570. doi: 10.11766/trxb200810110401