Characteristics and Metallogenic Significance of Melt-Fluid Inclusions of Shanshenfu Granite in the Hongyan Area, Inner Mongolia
-
摘要: 通过内蒙古红彦镇地区山神府花岗岩的包裹体研究来探讨岩浆-热液过渡阶段的流体特征和成矿潜力.研究表明,山神府花岗岩包裹体类型可分为熔融包裹体、熔-流包裹体和流体包裹体3大类.熔-流包裹体的存在表明花岗岩经历岩浆-热液过渡阶段,而岩体中心相-边缘相流体包裹体均一温度从281 ℃变化到大于550 ℃,盐度从1.1% NaCl eqv变化到大于66.8% NaCl eqv同样指示了这一特征.根据不同温度、盐度包裹体等容线和水饱和花岗质岩浆固相线相交法可计算岩浆出溶流体温压范围,结合CO2三相包裹体对岩体最小侵位压力有较好限制,估算出山神府花岗岩最小侵位深度为7.6~9.5 km,出溶温度为580~700 ℃,出溶深度集中在6.0~14.9 km.包裹体拉曼特征表明,熔-流包裹体固相成分含有重晶石、蓝铜矿和赤铁矿等强氧化性物质,说明岩浆-热液体系具有高氧逸度,而在高温高压高盐条件下非常有利于岩浆中Cu等金属向出溶流体中富集,结合野外矿化蚀变特征,分析得出山神府地区具有较好寻找岩浆热液型Cu矿床的成矿潜力.Abstract: This study investigates the characteristics of the fluid and its mineralization potential in magmatic-hydrothermal phase by the inclusions study of the Shanshenfu granite located in the Hongyan area, Inner Mongolia. The study shows that the inclusions of the Shanshenfu granite can be divideddevided into three types includingof melt inclusions, melt-fluid inclusions and fluid inclusions. The presence of melt-fluid inclusions indicates that granitic magma has experiencedgot through magmatic-hydrothermal transition stage, which is confirmed by the large changes in homogenization temperatures (from 281 ℃ to > 550 ℃) and the salinities(from 1.1% NaCl eqv to > 66.8% NaCl eqv) from rock center lithofaciesphase to edge lithofaciesphase. We use inclusion isochors of different homogenization temperatures and salinitiesy together with water-saturated solidus of granitic magma to estimate the temperatures and pressures of exsolved fluids. Considering that the three-phase inclusions containing CO2 have a good limitation to the smallest emplacement pressure, we estimate that the smallest emplacement depth of Shanshenfu granite of range 7.6-9.5 km, exsolution temperature and depth of range 580-700 ℃ and 6.0-14.9 km, respectively. Laser-Raman characteristics of inclusions show that the solid phases of melt-fluid inclusions contain strong oxidation substances such as barite, azurite and hematite, which indicates the strong oxidation in magmatic-hydrothermal system that is very beneficial for Cu enriched in the exsolved fluids under the conditions of high-pressure, high-temperature and high-salinity. Combined with the wild in situ mineralized alteration characteristics, we conclude that the Shanshenfu area has good mineralization potential to form magmatic-hydrothermal deposit of Cu.
-
图 1 红彦镇山神府地区地质简图
据陈俊等(2013)修编
Fig. 1. Sketch geological map of the Shanshenfu region in the Hongyan area
图 3 山神府碱长花岗岩石英中不同类型包裹体
a.岩体中心相结晶质熔融包裹体;b.岩体边缘相含两个气泡的玻璃质熔融包裹体(上)与富液相包裹体(下)共生;c.岩体中心相结晶质熔-流包裹体;d.岩体过渡相结晶质熔-流包裹体(上)与富液相包裹体(下)共生;e.岩体中心相含石盐子矿物包裹体;f.岩体过渡相含石盐和赤铁矿子矿物包裹体;g.岩体中心相含CO2三相包裹体;h.岩体过渡相纯液相包裹体(上)、富气包裹体(中)与富液包裹体(下)共生;i.岩体边缘相纯液相包裹体(左)、富液相包裹体(中)和纯气相包裹体(右)共生;L.液相;V.气相;S.结晶质;G.玻璃质;Hal.石盐;Hm.赤铁矿
Fig. 3. Different inclusion type in quartz from Shanshenfu alkali feldspar granite
表 1 山神府碱长花岗岩中心相-边缘相流体包裹体特征及参数
Table 1. Characteristics and parameters of fluid iclusions from center phase to edge phase of Shanshenfu alkali feldspar granite
样号 类型 大小
(μm)气液比
(%)Φ(CO2)
(%)Φ(CO2)气
(%)测次 Tm(ice)
(℃)Tm(cla)
(℃)Ts
(℃)均一温度
(℃)盐度
(%NaCl eqv)密度
(g/cm3)压力(MPa) 深度(km) 方法一 方法二 方法一 方法二 Zx-1 Ⅲ-1 6~10 15~40 13 2.8~-20.5 369~>550 4.6~25.6 0.6~0.8 150~325 5.5~11.8 Ⅲ-2 7~12 60~70 11 5.4~-19.3 357~>551 8.4~26.2 0.6~0.9 150~355 5.5~12.9 Ⅲ-3 7~12 11 397~>550 445~>552 47.1~>66.8 165~225 6.0~8.2 Zx-2 Ⅲ-4 6~10 35~90 20~50 4 6.6~8.1 350~400 3.7~6.4 0.47~0.68 210~260 7.6~9.5 Gd-1 Ⅲ-1 6~20 20~45 14 1.0~-15.1 310~512 1.7~18.7 0.57~0.83 160~490 5.8~17.8 Ⅲ-2 7~22 70~80 13 0.6~-17.4 315~414 1.1~20.5 0.65~0.87 165~500 6.0~18.2 Gd-2 Ⅲ-3 6~10 7 302~426 311~426 38.4~50.1 270~450 9.8~16.4 By-1 Ⅲ-1 6~16 20~40 15 1.5~-8.4 292~429 2.6~12.2 0.55~0.80 160~355 6.0~12.9 Ⅲ-2 8~20 70~80 13 1.3~-5.4 287~410 2.2~8.4 0.55~0.76 160~360 5.8~13.1 By-2 Ⅲ-3 6~10 9 285~456 281~464 37.1~54.0 240~580 8.9~21.1 注:Φ(CO2).CO2占包裹体总体积的百分数;Φ(CO2)气.气相CO2占CO2相总体积的百分数;Tm(ice).冰点温度;Tm(cla).CO2笼合物熔化温度;TS.子晶消失温度. -
[1] Audetat, A., Pettke, T., Heinrich, C.A., et al., 2008.The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions.Economic Geology, 103(5):877-908.doi: 10.2113/gsecongeo.103.5.877 [2] Bai, L.A., Sun, J.G., Zhang, Y., et al., 2012.Genetic Type, Mineralization Epoch and Geodynamical Setting of Endogenous Copper Deposits in the Great Xing'an Range.Atca Petrologica Sinica, 28(2):468-482(in Chinese with English abstract). https://www.researchgate.net/publication/283167371_Genetic_type_mineralization_epoch_and_geodynamical_setting_of_endogenous_copper_deposits_in_the_Great_Xing%27an_Range [3] Bodnar, R..J, 1994.Synthetic Fluid Inclusions: XII.The System H2O-NaCl Experimental Determination of the Halite Liquids and Isochors for a 40% NaCl Solution.Geochimica et Cosmochimiaca Acta, 58(3):1053-1063.doi: 10.1016/0016-7037(94)90571-1 [4] Bodnar, R.J., 1983.A Method of Calculateing Fluid Inclusion Volumes Based on Vapor Bubble Diameters and PVTX Properties of Inclusion Fluids.Economic Geology, 78(3):535-542.doi: 10.2113/gsecongeo.78.3.535 [5] Brown, P.E., Lamb, W.M., 1989.P-V-T Properties of Fluids in the System CO2±H2O±NaCl:New Graphial Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta, 53(6):1209-1221.doi: 10.1016/0016-7037(89)90057-4 [6] Candela, P.A., 1984.The Partitioning of Copper and Molybdenum between Silicate Melts and Aqueous Fluids.Geochimica et Cosmochimica Acta, 48(2):373-380.doi: 10.1016/0016-7037(84)90257-6 [7] Candela, P.A., 1997.A Review of Shallow, Ore-Related Granites:Textures, Volatiles, and Ore Metals.Journal of Petrology, 38(12):1619-1633.doi: 10.1093/petroj/38.12.1619 [8] Chen, J., Lü, X.B., Yao, S.Z., et al., 2013.Zircon U-Pb of A-Type Granites in the Hongyan Area, Early Permian.Bulletin of Mineralogy, Petrology and Geochemistry, 32(5):574-579(in Chinese). [9] Cline, J.S., Bodnar, R.J., 1991.Can Economic Porphyry Copper Mineralization be Generated by a Typical Calc-Alkaline Melt? Journal of Geophysical Research-Solid Earth, 96(B5):8113-8126.doi: 10.1029/91JB00053 [10] Collins, P.L.F., 1979.Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity.Economic Geology, 74(6):1435-1444.doi: 10.2113/gsecongeo.74.6.1435 [11] Fang, S., Liu, Z.J., Huang, X.T., et al., 2008.Uplift and Topography Evolution Research at FT in Cenozoic of South-Eastern Slope of Daxing'anling Mountains.Journal of Jilin University (Earth Science Edition), 38(5):771-794(in Chinese with English abstract). doi: 10.1007/s12517-015-1981-6 [12] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202.doi: 10.2113/gsecongeo.83.1.197 [13] Hattori, K., 1993.High-Sulfur Magma, a Product of Fluid Discharge from Underlying Mafic Magma: Evidence from Mount Pinatubo, Philippines.Geology, 21(12):1083.doi:10.1130/0091-7613(1993)021<1083:hsmapo>2.3.co;2 [14] Heinrich, C.A., 2007.Fled-Fluid Interactions in Magmatic-Hvdrothermal Ore Formation.Reviews in Mineralogy and Geochemistry, 65(11):363-387.doi: 10.2138/rmg.2007.65.11 [15] Heinrich, C.A., Ryan, C.G., Mernagh, T.P., et al., 1992.Segregation of Ore Metals between Magmatic Brine and Vapor; A Fluid Inclusion Study Using PIXE Microanalysis.Economic Geology, 87(6):1566-1583.doi: 10.2113/gsecongeo.87.6.1566 [16] Hezarkhani, A., Williams-Jones, A.E., Gammons, C.H., 1999.Factors Controlling Copper Solubility and Chalcopyrite Deposition in the Sungun Porphyry Copper Deposit, Iran.Mineralium Deposita, 34(8):770-783.doi:10. 1007/s001260050237 [17] Johannes, W., 1984.Beginning of Melting in the Granite System Qz-Or-Ab-H2O.Contribution to Mineralogy and Petrology, 86(3):264-273.doi: 10.1007/BF00373672 [18] Kamenetsky, V.S., Naumov, V.B., Davidson, P., et al., 2004.Immiscibility between Silicate Magmas and Aqueous Fluids:A Melt Inclusion Pursuit into the Magmatic-Hydrothermal Transition in the Omsukchan Granite(NE Russia).Chemical Geology, 210(1-4):73-90.doi: 10.1016/j.chemgeo.2004.06.016 [19] Kilinc, I.A., Burnham, C.W., 1972.Partitioning of Chloride between a Silicate Melt and Coexisting Aqueous Phase from 2 to 8 Kilobars.Economic Geology, 67(2):231-235.doi: 10.2113/gsecongeo.67.2.231 [20] Landtwing, M., Pettke, T., Halter, W., et al., 2005.Copper Deposition during Quartz Dissolution by Cooling Magmatic-Hydrothermal Fluids: The Bingham Porphyry.Earth and Planetary Science Letters, 235(1-2):229-243.doi: 10.1016/j.epsl.2005.02.046 [21] Leng, C.B., Zhang, X.C., Wang, S.X., et al., 2009.Advances of Researches on the Evolution of Ore-for Ming Fluids and the Vapor Transport of Metalsin Magmatic-Hydrother Malsystems.Geological Review, 55(1):100-112(in Chinese with English abstract). [22] Li, J.K., Zhang, D.H., Li, S.H., et al, 2011.Application of Melt Inclusions to Estimating Ore-Forming Pressure(Depth) of Granite-Related Ore Deposits.Mineral Deposits, 30(6):1002-1016(in Chinese). [23] Li, P.J., Yu, X.Q., Qiu, J.T., et al., 2013.The Ore-Bearing Potential and Oxygen Fugacity of the Yanshanian Granites in the Intersection Area of Zhejiang, Jiangxi, and Anhui Provinces, SE China.Acta Scientiarum Naturalium Universitatis Suntatseni, 52(5):161-168(in Chinese with English abstract). https://www.researchgate.net/publication/286608182_The_ore-bearing_potential_and_oxygen_fugacity_of_the_Yanshanian_granites_in_the_intersection_area_of_Zhejiang_Jiangxi_and_Anhui_Provinces_SE_China [24] Liu, J., Wu, G., Li, Y., Zhu, M.T., et al.2012.Re-Os Sulfide(Chalcopyrite, Pyrite and Molybdenite) Systematics and Fluid Inclusion Study of the Duobaoshan Porphyry Cu (Mo) Deposit, Heilongjiang Province, China.Journal of Asian Earth Sciences, 49:300-312.doi: 10.1016/j.jseaes.2011.10.014 [25] Liu, W., Liu, X.J., Liu, L.Q., 2013.Underplating Generated A-and I-Type Granitoids of the East Junggar from the Lower and the Upper Oceanic Crust with Mixing of Mafic Magma:Insights from Integrated Zircon U-Pb Ages, Petrography, Geochemistry and Nd-Sr-Hf Isotopes.Lithos, 179: 293-319.doi: 10.1016/j.lithos.2013.08.009 [26] Liu, W.H., McPhail, D.C., 2005.Thermodynamic Properties of Copper Chloride Complexes and Copper Transport in Magmatic-Hydrothermal Solutions.Chemical Geology, 221(1-2):21-39.doi: 10.1016/j.chemgeo.2005.04.009 [27] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004.Fluid Inclusion.Science Press, Beijing(in Chinese). [28] Mao, J.W., Han, C.M., Wang, Y.T., et al., 2002.Geological Characteristics, Metallogenic Model and Exploration Criteria of Large Gold Belt at South Tianshan in Central Asia.Geological Bulletin of China, 21(12):858-868(in Chinese). https://www.researchgate.net/publication/285953464_Asian_Gold_Belt_in_western_Tianshan_and_its_dynamic_setting_metallogenic_control_and_exploration [29] Mao, J.W., Zhou, Z.H., Wu, G., et al.2013.Metallogenic Regularity and Minerogenetic Series of Ore Deposits in Inner Mongolia and Adjacent Areas.Mineral Deposits, 32(4):715-729(in Chinese). https://www.researchgate.net/publication/285350451_Metallogenic_regularity_and_minerogenetic_series_of_ore_deposits_in_Inner_Mongolia_and_adjacent_areas [30] Mei, W., Lü, X.B., Tang, R.K., et al., 2015.Ore-Forming Fluid and Its Evolution of Bairendaba-Weilasituo Deposits in West Slope of Southern Great Xing'an Range.Earth Science, 40(1):145-162(in Chinese with English abstract). [31] Mungall, J.E., 2002.Roasting the Mantle:Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits.Geology, 30(10):915-918.doi:10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 [32] Nagaseki, H., Hayashi, K.I., 2008.Experimental Study of the Behavior of Copper and Zinc in a Boiling Hydrothermal System.Geology, 36(1):27.doi: 10.1130/g24173a.1 [33] Roedder, E.1992.Fluid Inclusion Evidence for Immiscibility in Magmatic Differentiation.Geochimica et Cosmochimica Acta, 56(1):5-20.doi: 10.1016/0016-7037(92)90113-W [34] Rusk, B.G., Reed, M.H., Dilles, J.H., et al., 2004.Compositions of Magmatic Hydrothermal Fluids Determined by LA-ICP-MS of Fluid Inclusions from the Porphyry Copper-Molybdenum Deposit at Butte, MT.Chemical Geology, 210(1-4):173-199.doi: 10.1016/j.chemgeo.2004.06.011 [35] Shi, L.D., Li, C.Y., 2001.Critical Inclusion and Its Application in Gold Deposit Geological Study.Geology and Resources, 1(1):59-62(in Chinese). [36] Wainwright, A.J., Tosdal, R.M., Forster, C.N., et al., 2010.Devonian and Carboniferous Arcs of the Oyu Tolgoi Porphyry Cu-Au District, South Gobi Region, Mongolia.Geological Society of America Bulletin, 123(1-2):306-328.doi: 10.1130/b30137.1 [37] Wang.X.W., Wang, X.D., 2001.Geochemical Discrimination Signs of Granite Mineralization.Geology and Mineral Resources of South China, 17(4):36-44(in Chinese). https://www.researchgate.net/publication/301174455_Geochemical_Characteristics_of_the_Aligudarz_Granite_Intrusion_and_Its_Mineralization_Potential [38] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002.A-Type Granites in Northeastern China:Age and Geochemical Constraints on their Petrogenesis.Chemical Geology, 187(1-2):143-173.doi: 10.1016/s0009-2541(02)00018-9 [39] Takagi, T., Tsukimura, K., 1997.Genesis of Oxidized and Reduced Granrie.Economic Geology, 92(1):81-86.doi: 10.2113/gsecongeo.92.1.81 [40] Xiong, S.F., He, M.C., Yao.S.Z., et al., 2014.Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range:Implications for Ore Genesis.Earth Science, 39(7):820-836(in Chinese with English abstract). https://www.researchgate.net/publication/287551794_Compositions_and_microthermometry_of_fluid_inclusions_of_Chalukou_porphyry_Mo_deposit_from_Great_Xing'an_Range_implications_for_ore_genesis [41] Xu, J.H., Wei, H., Wang, Y.H., Zeng, Q.D., et al., 2012.Sub-Volcanic Hydrothermal Mineralization of the Wulaga Gold Deposit, Heilongjiang, China:Evidences from Melt and Fluid Inclusion.Acta Petrologica Sinica, 28(4):1305-1316(in Chinese with English abstract). http://www.oalib.com/paper/1313690 [42] Yang, Z.M., Hou, Z.Q., Li, Z.Q., et al., 2008.Discovery of UST Quartz in Porphyry Copper Molybdenum Deposit at Qulong, Tibet: Direct Recording of Initial Magmatic Fluids.Mineral Deposits, 27(2):188-199(in Chinese). [43] Zhai, D.G., Liu, J.J., Wang, J.P., et al., 2012a.Characteristics of Melt-Fluid Inclusions and Sulfur Isotopic Compositions of the Hashitu Molybdenum Deposit, Inner Mongolia.Journal of Earth Science, 37(6):1279-1290(in Chinese with English abstract). https://www.researchgate.net/publication/286591059_Characteristics_of_melt-fluid_inclusions_and_sulfur_isotopic_compositions_of_the_Hashitu_molybdenum_deposit_Inner_Mongolia [44] Zhai, D.G., Liu, J.J., Yang, Y.Q., et al., 2012b.Petrogenetic and Metallogentic Ages of the Huanggangliang Fe-Sn Deposit, Inner Mongolia and Its Tectonic Setting.Acta Petrologica et Mineralogica, 31(4):513-523(in Chinese). https://www.researchgate.net/publication/285160959_Petrogenetic_metallogentic_ages_of_the_Huanggangliang_Fe-Sn_deposit_Inner_Mongolia_its_tectonic_setting [45] Zhang, D.H., Xu, J.H., Yu, X.Q, et al., 2011.The Diagentiec and Metalloginic Depth:Main Constrains and the Estimation Methods.Geological Bulletin of China, 30(1):112-125(in Chinese). https://www.researchgate.net/publication/281080318_The_diagenetic_and_metallogenic_depth_main_constriants_and_the_estimation_methods [46] Zhang, D.H., Zhang, W.H., Xu, G.J., 2001.Exsolution and Evolution of Magmatic Hydrothermal Fluids and Their Constraints on the Porphyry Ore-Forming System.Earth Science Frontiers, 8(3):193-202(in Chinese). https://www.researchgate.net/profile/James_Webster6/publication/248360326_The_magmatic_to_hydrothermal_transition_and_its_bearing_on_ore-forming_systems_-_Preface/links/550c15420cf2528164db270c.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [47] Zhang, L., Lü, X.B., Liu, G., et al., 2013.Characteristics and Genesis of Continental Back-Arc A-Type Granite in the Eastern Part of Xingmeng Orogen.Geology in China, 40(3):869-884(in chinese). https://www.researchgate.net/publication/285539900_Characteristics_and_genesis_of_continental_back-arc_A-type_granites_in_the_eastern_segment_of_the_Inner_Mongolia-Da_Hinggan_Mountains_orogenic_belt [48] 白令安, 孙景贵, 张勇, 等, 2012.大兴安岭地区内生铜矿床的成因类型、成矿时代与成矿动力学背景.矿物学报, 28(2): 468-482. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202011.htm [49] 陈俊, 吕新彪, 姚书振, 等, 2013.内蒙古红彦镇地区早二叠世A型花岗岩锆石U-Pb年代学研究.矿物岩石地球化学通报, 32(5): 574-579. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201305007.htm [50] 方石, 刘招君, 黄湘通, 等, 2008.大兴安岭东南坡新生代隆升及地貌演化的裂变径迹研究.吉林大学学报(地球科学版), 38(5): 771-794. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200805009.htm [51] 冷成彪, 张兴春, 王守旭, 等, 2009.岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展.地质论评, 55(1): 100-112. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901016.htm [52] 李建康, 张德会, 李胜虎, 等, 2011.熔体包裹体在估算花岗岩类矿床形成压力(深度)方面的应用.矿床地质, 30(6): 1002-1016. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201106004.htm [53] 李鹏举, 余心起, 邱骏挺, 等, 2013.浙赣皖相邻区燕山期花岗质岩类含矿性及其氧逸度特征.中山大学学报(自然科学版), 52(5): 161-168. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201305028.htm [54] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社. [55] 毛景文, 韩春明, 王义天, 等, 2002.中亚地区南天山大型金矿带的地质特征、成矿模型和勘查准则.地质通报, 21(12): 858-868. doi: 10.3969/j.issn.1671-2552.2002.12.009 [56] 毛景文, 周振华, 武广等, 2013.内蒙古及邻区矿床成矿规律与成矿系列.矿床地质, 32(4): 715-729. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304008.htm [57] 梅微, 吕新彪, 唐然坤, 等, 2015.大兴安岭南段西坡拜仁达坝-维拉斯托矿床成矿流体特征及其演化.地球科学, 40(1): 145-162. http://www.earth-science.net/WebPage/Article.aspx?id=3022 [58] 施立达, 李存有, 2001.临界包裹体及其在金矿地质研究中的应用.地质与资源, 1(1): 59-62. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200101010.htm [59] 汪雄武, 王晓地, 2001.花岗岩成矿的地球化学判别标志.华南地质与矿产, 17(4): 36-44. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200104008.htm [60] 熊索菲, 何谋惷, 姚书振, 等, 2014.大兴安岭岔路口斑岩钼矿床流体成分及成矿意义.地球科学, 39(7): 820-836. http://www.earth-science.net/WebPage/Article.aspx?id=2893 [61] 徐九华, 魏浩, 王燕海, 等, 2012.黑龙江乌拉嘎金矿的次火山岩浆-热液成矿:熔体-流体包裹体证据.岩石学报, 28(4): 1305-1316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204027.htm [62] 杨志明, 侯增谦, 李振清, 等, 2008.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录.矿床地质, 27(2): 188-199. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200802005.htm [63] 翟德高, 刘家军, 王建平, 等, 2012a.内蒙古哈什吐钼矿床熔融-流体包裹体特征及硫同位素组成.地球科学, 37(6): 1279-1290. http://www.earth-science.net/WebPage/Article.aspx?id=2333 [64] 翟德高, 刘家军, 杨永强, 等, 2012b.内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景.岩石矿物学杂志, 31(4): 513-523. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201204005.htm [65] 张德会, 张文淮, 许国建, 2001.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约.地学前缘, 8(3): 193-202. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103033.htm [66] 张德会, 徐九华, 余心起, 等, 2011.成岩成矿深度:主要影响因素与压力估算方法.地质通报, 30(1): 112-125. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201101013.htm [67] 张磊, 吕新彪, 刘阁, 等, 2013.兴蒙造山带东段大陆弧后A型花岗岩特征与成因.中国地质, 40(3): 869-884. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201303019.htm