• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义

    施彬 朱云海 钟增球 菅坤坤

    施彬, 朱云海, 钟增球, 菅坤坤, 2016. 东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义. 地球科学, 41(1): 35-54. doi: 10.3799/dqkx.2016.003
    引用本文: 施彬, 朱云海, 钟增球, 菅坤坤, 2016. 东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义. 地球科学, 41(1): 35-54. doi: 10.3799/dqkx.2016.003
    Shi Bin, Zhu Yunhai, Zhong Zengqiu, Jian Kunkun, 2016. Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun. Earth Science, 41(1): 35-54. doi: 10.3799/dqkx.2016.003
    Citation: Shi Bin, Zhu Yunhai, Zhong Zengqiu, Jian Kunkun, 2016. Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun. Earth Science, 41(1): 35-54. doi: 10.3799/dqkx.2016.003

    东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义

    doi: 10.3799/dqkx.2016.003
    基金项目: 

    青海东昆仑1:5万黑海地区五幅区调项目 1212011086001

    青海1:5万中灶火地区四幅区调项目 1212010918012

    详细信息
      作者简介:

      施彬(1980-),男,博士,从事岩浆岩岩石学及区域地质调查研究.E-mail: 7293026@qq.com

    • 中图分类号: P588.121; P595; P597.3

    Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun

    • 摘要: 东昆仑黑海地区发育加里东期过铝质花岗岩(424.0~420.5 Ma),其形成与地壳的发展演化密切相关,主要通过岩相学和地球化学方法对其进行了研究.黑海过铝质花岗岩由黑云母英云闪长岩、黑云母花岗闪长岩、黑云母花岗岩、二云母花岗岩和白云母花岗岩组成.SiO2变化区间为65.32%~75.87%,K2O/Na2O为0.47~1.52,δ为1.09~3.00,为钙碱性-高钾钙碱性系列;A/CNK为1.02~1.31,属于过铝质-强过铝质花岗岩.稀土元素具有轻稀土相对富集和重稀土相对亏损的特征,中等负铕异常.微量元素具有相对选择性富集大离子亲石元素而相对亏损高场强元素的特征.源区参与熔融物质由以变杂砂岩为主,向以变泥质岩为主过渡.结合区域资料,认为黑海过铝质花岗岩是东昆南俯冲增生杂岩楔发生伸展减薄引起地幔物质底侵而促使富硅铝地壳物质发生不同程度部分熔融形成.

       

    • 图  1  东昆仑造山带构造单元划分

      Ⅰ.东昆北岩浆弧;Ⅱ.东昆北蛇绿构造混杂岩带;Ⅲ.东昆中复合岩浆弧;Ⅳ.东昆中蛇绿构造混杂岩带;Ⅴ.东昆南俯冲增生杂岩楔;Ⅵ.东昆南蛇绿构造混杂岩带

      Fig.  1.  Tectonic unit map of the eastern Kunlun orogenic belt

      图  2  黑海地区地质简图

      1.第四纪;2.三叠纪地层;3.石炭-二叠纪浩特洛哇组;4.志留纪赛什腾组;5.奥陶-志留纪纳赤台群;6.中元古代万宝沟群;7.三叠纪花岗岩;8.晚三叠世辉长岩;9.晚志留世过铝质花岗岩(研究对象);10.区域断裂;11.地质界线;12.角度不整合界线

      Fig.  2.  Simplified geological map of the Heihai region

      图  3  黑海地区加里东期过铝质花岗岩野外露头及显微镜下特征

      a.晚志留世过铝质花岗岩(γS3)与赛什腾组(Ss)侵入接触;b.含石榴子石白云母花岗岩(Mu.白云母,Gt.石榴子石);c.白云母花岗岩(γm)与黑云母花岗岩(γβ)侵入接触;d.花岗闪长岩(γδ)中的似斑状英云闪长岩(πγδο)包体;e.石榴子石(Gt)显微镜下特征(单偏光);f.石榴子石(Gt)显微镜下特征(正交光)

      Fig.  3.  Macroscopic and microcosmic characteristics of the caledonian peraluminous granites in Heihai region

      图  4  主量元素图解

      a.AR-SiO2图解,据邓晋福等(2004);b.SiO2-K2O图解,据Rickwood(1989);c.A/CNK-A/NK图解,据Maniar and Piccoli(1989);d.SiO2-FeO/(FeO+MgO)图解, 据Frost et al.(2001);图中叉形代表英云闪长岩,三角形代表花岗闪长岩,菱形代表黑云母花岗岩,圆形代表二云母花岗岩,正方形代表白云母花岗岩,后续图相同

      Fig.  4.  Major elements diagrams

      图  5  黑海地区过铝质花岗岩稀土元素球粒陨石标准化曲线

      黑色代表英云闪长岩,紫色代表花岗闪长岩,蓝色代表黑云母花岗岩,绿色代表二云母花岗岩,红色代表白云母花岗岩;球粒陨石标准化值据Taylor and Mclennan(1985)

      Fig.  5.  Chondrite-normalized REE distribution patterns of the peraluminous granites in Heihai region

      图  6  黑海地区过铝质花岗岩微量元素原始地幔标准化曲线

      黑色代表英云闪长岩,紫色代表花岗闪长岩,蓝色代表黑云母花岗岩,绿色代表二云母花岗岩,红色代表白云母花岗岩;原始地幔标准化值据McDonough et al.(1992)

      Fig.  6.  Primitive mantle-normalized patterns of the peraluminous granites in Heihai region

      图  7  黑海地区过铝质花岗岩源区特征图解

      a.SiO2-TZr图解;b.Yb-Sr图解(据张旗等, 2006);c.Rb/Sr-Rb/Ba关系图解,据Sylvester(1998);d.Al2O3/TiO2-CaO/Na2O,据Sylvester(1998);Ⅰ.高Sr低Yb型,Ⅱ.低Sr低Yb型,Ⅲ.高Sr高Yb型,Ⅳ.低Sr高Yb型,Ⅴ.非常低Sr高Yb型

      Fig.  7.  Source characteristics of the peraluminous granites in Heihai region

      表  1  黑海地区过铝质花岗岩主量元素测试结果及特征值

      Table  1.   Analysis results and eigenvalues of major elements of the peraluminous granites in Heihai region

      序号 样品号 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O+ CO2 ALK K2O/Na2O σ AR A/CNK Norm.C
      1 02-1-1 70.26 0.39 14.84 0.32 2.08 0.05 0.86 2.25 3.41 4.00 0.14 1.06 0.06 99.72 7.41 1.17 2.01 2.39 1.07 1.28
      2 02-3-1 71.35 0.37 14.29 0.99 1.17 0.04 0.77 2.10 3.31 4.30 0.13 0.83 0.10 99.75 7.61 1.30 2.04 2.46 1.04 0.92
      3 02-4-1 73.75 0.27 13.49 0.49 1.07 0.03 0.59 1.66 3.15 4.26 0.10 0.81 0.10 99.77 7.41 1.35 1.79 2.55 1.06 1.15
      4 02-7-1 71.59 0.38 14.30 0.62 1.67 0.05 0.80 2.30 3.52 3.38 0.15 0.81 0.16 99.73 6.90 0.96 1.67 2.42 1.06 1.40
      5 02-8-1 72.98 0.28 14.21 0.44 1.27 0.04 0.58 1.70 3.93 3.51 0.09 0.71 0.04 99.78 7.44 0.89 1.85 2.76 1.07 1.16
      6 02-9-1 72.32 0.30 14.28 0.24 1.53 0.04 0.61 1.84 3.58 4.02 0.11 0.82 0.04 99.73 7.60 1.12 1.97 2.65 1.06 1.05
      7 02-10-1 72.03 0.28 14.25 0.33 1.37 0.04 0.55 1.96 3.38 4.51 0.10 0.82 0.12 99.74 7.89 1.33 2.14 2.55 1.03 0.76
      8 02-11-1 71.87 0.36 14.00 0.51 1.67 0.04 0.81 2.15 3.42 3.65 0.14 1.00 0.12 99.74 7.07 1.07 1.73 2.49 1.05 1.13
      9 02-13-1 71.86 0.39 14.23 0.40 1.80 0.05 0.84 2.00 3.52 3.50 0.15 0.96 0.06 99.76 7.02 0.99 1.71 2.52 1.09 1.51
      10 02-15-1 71.13 0.42 14.76 0.95 1.63 0.07 0.89 2.09 4.27 2.31 0.18 0.94 0.10 99.74 6.58 0.54 1.54 2.28 1.13 2.10
      11 02-17-1 71.10 0.38 14.71 0.68 1.60 0.04 0.83 1.97 3.37 3.87 0.13 0.98 0.10 99.76 7.24 1.15 1.87 2.41 1.12 1.94
      12 02-18-1 70.03 0.42 15.20 0.46 1.87 0.04 0.92 2.46 3.61 3.49 0.14 1.01 0.08 99.73 7.10 0.97 1.86 2.34 1.08 1.53
      13 13-6-1 72.43 0.29 14.28 0.55 1.32 0.04 0.69 2.17 3.61 3.24 0.12 0.86 0.13 99.73 6.85 0.90 1.59 2.43 1.08 1.48
      14 13-7-1 72.44 0.30 14.36 0.39 1.45 0.04 0.67 1.97 3.54 3.42 0.11 0.72 0.09 99.50 6.96 0.97 1.65 2.49 1.11 1.72
      15 13-8-1 72.24 0.28 14.58 0.61 1.13 0.04 0.63 1.89 3.58 3.59 0.10 0.82 0.11 99.60 7.17 1.00 1.76 2.54 1.11 1.86
      16 13-9-1 72.64 0.26 14.53 0.38 1.30 0.04 0.62 1.72 3.61 3.46 0.10 0.89 0.06 99.61 7.07 0.96 1.69 2.54 1.14 2.10
      17 13-10-1 73.56 0.28 13.81 0.49 1.23 0.04 0.61 2.04 3.31 3.52 0.11 0.73 0.09 99.82 6.83 1.06 1.53 2.46 1.08 1.32
      18 13-11-1 72.03 0.30 14.68 0.61 1.27 0.04 0.70 2.10 3.45 3.62 0.11 0.88 0.04 99.83 7.07 1.05 1.72 2.41 1.11 1.62
      19 13-12-1 72.03 0.28 14.56 0.67 1.13 0.04 0.66 2.51 3.68 3.25 0.11 0.76 0.13 99.81 6.93 0.88 1.65 2.37 1.04 0.99
      20 02-20-1 71.01 0.41 14.74 0.57 1.77 0.04 0.89 2.48 3.63 3.26 0.15 0.66 0.12 99.73 6.89 0.90 1.69 2.33 1.07 1.37
      21 02-21-1 70.51 0.42 14.42 0.60 1.73 0.05 1.03 1.38 3.67 4.52 0.14 1.16 0.08 99.71 8.19 1.23 2.44 2.84 1.09 1.50
      22 09-3-1 72.37 0.21 14.02 0.26 1.13 0.02 0.55 0.80 2.33 7.06 0.22 0.78 0.04 99.79 9.39 3.03 3.00 2.38 1.11 1.71
      23 09-4-1 72.42 0.30 14.60 0.39 1.52 0.04 0.80 0.82 3.22 4.20 0.19 1.30 0.04 99.84 7.42 1.30 1.87 2.54 1.31 3.81
      24 09-6-1 71.76 0.24 15.28 0.42 1.17 0.04 0.58 0.82 4.07 4.08 0.18 1.10 0.13 99.87 8.15 1.00 2.31 3.05 1.23 3.41
      25 09-7-1 71.83 0.33 14.83 0.51 1.60 0.04 0.78 1.37 3.27 3.65 0.18 1.37 0.06 99.82 6.92 1.12 1.66 2.39 1.28 3.58
      26 09-9-1 70.10 0.57 14.11 0.86 2.67 0.06 1.25 1.35 2.43 4.81 0.27 1.31 0.04 99.83 7.24 1.98 1.93 2.14 1.24 3.19
      27 09-10-1 73.09 0.22 14.25 0.36 1.22 0.04 0.56 1.27 3.09 4.37 0.22 1.03 0.11 99.83 7.46 1.41 1.85 2.46 1.20 2.91
      28 12-2-1 74.84 0.11 13.77 0.39 0.75 0.04 0.36 0.52 3.38 4.52 0.15 0.82 0.21 99.86 7.90 1.34 1.96 2.95 1.23 3.22
      29 12-3-1 74.61 0.12 13.89 0.40 0.80 0.05 0.44 0.61 3.44 4.56 0.17 0.67 0.08 99.84 8.00 1.33 2.02 2.95 1.21 2.78
      30 12-4-1 73.93 0.18 13.98 0.47 1.03 0.03 0.55 0.68 3.09 4.86 0.19 0.82 0.02 99.83 7.95 1.57 2.04 2.67 1.23 2.90
      31 12-5-1 73.00 0.23 14.07 0.60 1.12 0.04 0.63 1.04 2.89 4.99 0.26 0.92 0.06 99.85 7.88 1.73 2.07 2.46 1.20 2.78
      32 12-6-1 73.24 0.22 14.20 0.43 1.15 0.03 0.55 0.69 2.92 4.83 0.27 1.17 0.17 99.87 7.75 1.65 1.99 2.50 1.30 3.95
      33 12-7-1 74.93 0.10 14.11 0.49 0.50 0.04 0.31 0.48 3.57 4.36 0.17 0.75 0.06 99.87 7.93 1.22 1.97 3.02 1.25 3.19
      34 12-8-1 74.60 0.16 13.72 0.46 0.92 0.03 0.46 0.78 3.08 4.36 0.18 0.88 0.19 99.82 7.44 1.42 1.75 2.63 1.25 3.39
      35 12-9-1 73.04 0.23 14.35 0.31 1.30 0.03 0.63 0.84 2.86 4.97 0.28 0.85 0.15 99.84 7.83 1.74 2.04 2.43 1.27 3.76
      36 12-10-1 72.46 0.20 13.50 0.24 1.27 0.05 1.04 1.55 2.83 4.49 0.23 1.18 0.81 99.85 7.32 1.59 1.82 2.38 1.12 3.59
      37 12-11-1 73.16 0.23 14.28 0.38 1.25 0.03 0.66 0.72 2.86 4.92 0.27 1.00 0.09 99.85 7.78 1.72 2.01 2.45 1.30 3.80
      38 12-13-1 72.57 0.23 14.32 0.54 1.30 0.04 0.77 0.67 2.25 5.58 0.32 1.18 0.06 99.83 7.83 2.48 2.07 2.18 1.35 4.27
      39 12-14-1 70.24 0.31 15.32 0.64 1.73 0.05 1.00 2.42 3.67 3.09 0.27 1.02 0.11 99.87 6.76 0.84 1.68 2.23 1.14 2.44
      40 13-1-1 73.66 0.22 13.84 0.09 1.12 0.02 0.43 0.80 3.03 5.35 0.25 1.01 0.04 99.86 8.38 1.77 2.29 2.68 1.16 2.30
      41 13-2-1 72.96 0.23 14.44 0.26 1.20 0.03 0.46 1.11 2.94 4.91 0.24 1.02 0.04 99.84 7.85 1.67 2.06 2.42 1.22 2.94
      42 13-3-1 73.61 0.22 13.82 0.41 1.07 0.03 0.45 1.09 2.82 4.96 0.25 0.85 0.11 99.69 7.78 1.76 1.98 2.45 1.18 2.68
      43 13-4-1 73.38 0.21 14.07 0.60 0.82 0.03 0.46 1.06 2.92 5.03 0.23 0.88 0.06 99.75 7.95 1.72 2.08 2.48 1.18 2.58
      44 13-13-1 72.25 0.29 14.51 0.52 1.30 0.05 0.65 1.85 3.61 3.52 0.12 1.04 0.09 99.80 7.13 0.98 1.74 2.54 1.12 1.89
      45 13-15-1 72.56 0.22 14.70 0.23 1.17 0.04 0.42 1.39 3.74 4.15 0.17 0.85 0.11 99.75 7.89 1.11 2.11 2.79 1.13 2.19
      46 13-16-1 72.82 0.20 14.49 0.40 0.98 0.04 0.42 1.11 3.72 4.09 0.17 1.06 0.09 99.59 7.81 1.10 2.05 2.87 1.17 2.54
      47 02-12-1 75.90 0.05 13.59 0.03 0.48 0.02 0.10 0.46 3.47 4.92 0.16 0.64 0.10 99.92 8.39 1.42 2.14 3.16 1.16 2.54
      48 02-19-1 75.70 0.03 13.69 0.08 0.32 0.03 0.08 0.79 4.08 4.02 0.22 0.64 0.14 99.82 8.10 0.99 2.01 3.54 1.12 2.04
      49 13-5-1 73.99 0.14 14.59 0.52 0.53 0.02 0.18 0.85 3.46 4.29 0.21 0.96 0.13 99.87 7.75 1.24 1.94 2.72 1.25 3.51
      50 13-14-1 73.09 0.13 14.98 0.38 0.63 0.04 0.27 1.20 3.92 4.18 0.17 0.72 0.15 99.86 8.10 1.07 2.18 2.91 1.16 2.58
      51 13-17-1 74.94 0.10 14.16 0.20 0.67 0.04 0.22 0.96 3.26 3.94 0.28 0.95 0.09 99.81 7.20 1.21 1.62 2.60 1.28 3.67
      52 09-1-1 67.00 0.91 13.85 1.28 4.38 0.11 2.07 2.54 2.28 2.84 0.34 2.19 0.04 99.83 5.12 1.25 1.09 1.82 1.26 3.31
      53 09-3-2 66.87 0.87 14.20 1.35 4.12 0.07 2.02 2.24 2.50 3.38 0.32 1.83 0.04 99.81 5.88 1.35 1.45 1.95 1.24 3.21
      54 09-5-1 64.88 0.94 14.85 1.27 4.57 0.10 2.06 2.59 2.63 4.00 0.35 1.46 0.08 99.78 6.63 1.52 2.01 1.98 1.15 2.51
      55 09-8-1 68.95 0.67 14.08 1.02 3.08 0.07 1.62 1.25 3.40 3.53 0.34 1.74 0.08 99.83 6.93 1.04 1.85 2.61 1.25 3.39
      56 02-5-1 65.32 0.71 16.44 0.89 3.42 0.12 1.62 2.55 4.46 2.11 0.24 1.79 0.10 99.77 6.57 0.47 1.93 2.06 1.18 2.99
        注:含量单位为%;1~19样品为黑云母花岗岩;20~46样品为二云母花岗岩;47~51样品为白云母花岗岩;52~55样品为黑云母花岗岩闪长岩;56样品为黑云母英云闪长岩.
      下载: 导出CSV

      表  2  黑海地区过铝质花岗岩稀土元素测试结果及特征值

      Table  2.   Analysis results and eigenvalues of rare earth elements of the peraluminous granites in Heihai region

      序号 样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y 总量 LaN/YbN δEu
      1 02-1-1 45.73 86.43 9.47 31.23 5.12 1.00 4.22 0.61 2.91 0.51 1.38 0.21 1.20 0.18 14.89 205.10 0.63 0.16
      2 02-3-1 47.13 88.95 9.92 32.99 5.28 0.96 4.29 0.60 2.79 0.48 1.19 0.19 0.98 0.16 13.37 209.27 0.92 0.16
      3 02-4-1 39.18 73.74 8.37 27.80 5.07 0.81 4.02 0.55 2.41 0.39 0.97 0.16 0.75 0.13 10.97 175.30 0.94 0.14
      4 02-7-1 55.86 103.50 11.33 36.31 5.62 1.04 4.29 0.58 2.57 0.43 1.23 0.20 1.20 0.19 12.64 237.00 0.87 0.26
      5 02-8-1 39.26 74.69 8.35 28.15 5.24 0.78 4.87 0.78 4.38 0.82 2.39 0.37 2.39 0.34 25.55 198.36 1.47 0.20
      6 02-9-1 43.74 80.84 8.77 28.70 4.39 0.89 3.58 0.49 2.11 0.36 0.98 0.16 0.82 0.14 10.83 186.80 1.07 0.15
      7 02-10-1 36.19 65.93 7.37 23.87 3.80 0.85 2.91 0.42 1.73 0.29 0.72 0.13 0.65 0.11 8.18 153.14 1.38 0.19
      8 02-11-1 41.54 78.10 8.86 29.81 5.10 0.93 4.18 0.59 2.78 0.49 1.32 0.21 1.17 0.19 14.39 189.66 0.78 0.21
      9 02-13-1 41.15 77.95 8.59 27.86 4.57 0.92 3.64 0.53 2.41 0.40 1.08 0.17 0.94 0.15 11.50 181.86 0.72 0.19
      10 02-15-1 61.84 113.20 12.40 41.03 6.57 1.03 5.37 0.75 3.36 0.55 1.37 0.21 1.07 0.17 15.17 264.07 0.90 0.16
      11 02-17-1 45.41 86.25 9.52 31.43 5.27 0.96 4.38 0.58 2.65 0.46 1.16 0.19 1.04 0.16 12.96 202.41 0.79 0.17
      12 02-18-1 52.47 97.44 10.78 35.38 5.44 1.20 4.06 0.55 2.54 0.42 1.15 0.17 0.87 0.15 12.18 224.80 0.68 0.15
      13 13-6-1 32.27 59.63 6.57 23.19 4.19 0.81 3.32 0.49 2.52 0.43 1.15 0.17 1.09 0.16 11.85 147.84 0.71 0.21
      14 13-7-1 33.15 61.77 6.84 23.70 4.23 0.81 3.44 0.51 2.49 0.42 1.10 0.17 0.96 0.15 11.64 151.38 0.76 0.17
      15 13-8-1 31.59 59.07 6.60 23.36 4.16 0.81 3.43 0.51 2.68 0.47 1.21 0.18 1.12 0.16 12.62 147.97 0.87 0.20
      16 13-9-1 30.92 58.47 6.55 23.27 4.24 0.80 3.48 0.53 2.71 0.48 1.27 0.19 1.26 0.18 12.98 147.32 0.74 0.17
      17 13-10-1 23.17 43.35 4.89 17.41 3.30 0.74 2.90 0.44 2.43 0.45 1.24 0.19 1.20 0.18 12.53 114.41 0.93 0.19
      18 13-11-1 33.26 62.06 6.92 24.13 4.38 0.79 3.51 0.54 2.87 0.50 1.32 0.19 1.20 0.17 12.65 154.49 0.80 0.18
      19 13-12-1 38.70 72.82 8.10 28.33 5.03 0.84 3.95 0.60 3.14 0.55 1.49 0.23 1.52 0.21 15.49 181.01 0.83 0.19
      20 02-20-1 50.63 96.71 10.43 34.46 5.51 0.99 4.33 0.57 2.62 0.42 1.18 0.17 0.93 0.15 12.31 221.41 0.65 0.18
      21 02-21-1 49.62 98.46 11.14 35.76 5.35 1.10 3.82 0.51 2.11 0.35 0.96 0.15 0.82 0.14 10.25 220.55 0.90 0.14
      22 09-3-1 25.30 51.05 6.39 23.05 5.46 1.23 4.84 0.76 4.21 0.73 2.29 0.31 2.06 0.30 34.52 162.51 1.26 0.17
      23 09-4-1 24.62 49.03 5.99 21.78 4.60 0.74 3.66 0.58 3.05 0.55 1.68 0.23 1.48 0.22 25.01 143.22 1.18 0.22
      24 09-6-1 22.98 42.94 5.26 19.15 3.90 0.76 3.32 0.54 2.92 0.57 1.76 0.24 1.45 0.21 26.61 132.60 0.97 0.25
      25 09-7-1 27.21 51.96 6.44 23.24 4.91 0.87 3.94 0.62 3.32 0.60 1.64 0.25 1.54 0.23 18.34 145.11 1.27 0.20
      26 09-9-1 37.65 76.13 9.53 36.22 7.87 1.15 6.67 1.09 6.38 1.20 3.39 0.48 3.04 0.41 31.83 223.04 1.15 0.14
      27 09-10-1 20.99 41.33 5.11 18.60 4.12 0.62 3.48 0.54 2.96 0.52 1.63 0.22 1.37 0.19 24.84 126.51 1.84 0.26
      28 12-2-1 12.36 25.19 3.25 11.72 2.95 0.40 2.55 0.47 2.61 0.49 1.35 0.19 1.26 0.18 18.98 83.94 3.08 0.25
      29 12-3-1 15.57 32.05 4.17 15.12 3.61 0.54 3.11 0.53 2.96 0.54 1.63 0.23 1.45 0.21 23.29 104.99 2.93 0.31
      30 12-4-1 23.51 48.61 6.28 22.88 5.23 0.67 4.18 0.67 3.54 0.63 1.81 0.23 1.45 0.21 16.37 136.26 1.84 0.18
      31 12-5-1 26.78 54.62 7.19 26.37 6.05 0.72 5.04 0.78 3.78 0.64 1.73 0.22 1.34 0.19 23.10 158.53 1.74 0.17
      32 12-6-1 25.60 52.62 6.59 24.38 5.37 0.64 4.60 0.69 3.52 0.59 1.59 0.21 1.26 0.17 24.73 152.56 1.66 0.18
      33 12-7-1 10.07 20.07 2.63 9.39 2.23 0.37 1.99 0.35 2.08 0.38 1.28 0.19 1.26 0.18 22.18 74.65 2.53 0.45
      34 12-8-1 19.09 38.48 5.10 18.71 4.26 0.60 3.46 0.56 2.91 0.51 1.61 0.20 1.26 0.17 25.11 122.04 1.66 0.22
      35 12-9-1 27.58 56.57 7.34 27.09 5.99 0.74 4.89 0.77 3.88 0.63 1.63 0.21 1.28 0.17 22.16 160.93 1.76 0.15
      36 12-10-1 24.18 49.07 6.39 23.73 5.42 0.64 4.44 0.70 3.53 0.61 1.72 0.21 1.33 0.18 25.49 147.64 1.33 0.16
      37 12-11-1 26.25 53.56 6.91 25.27 5.67 0.70 4.60 0.71 3.33 0.53 1.50 0.18 1.08 0.16 20.80 151.26 1.68 0.18
      38 12-13-1 21.29 52.42 5.61 21.61 5.08 0.65 4.10 0.62 2.91 0.47 1.41 0.17 0.93 0.13 24.86 142.26 1.57 0.15
      39 12-14-1 17.92 35.99 4.80 17.58 3.86 0.74 3.29 0.49 2.28 0.39 1.01 0.14 0.90 0.13 10.95 100.46 1.59 0.24
      40 13-1-1 26.94 55.94 6.67 25.11 5.30 0.63 4.24 0.61 2.73 0.40 0.96 0.14 0.82 0.11 10.50 141.10 2.00 0.17
      41 13-2-1 29.75 60.92 7.24 26.96 5.71 0.65 4.51 0.68 3.10 0.46 1.13 0.18 1.00 0.13 11.73 154.15 1.91 0.16
      42 13-3-1 28.42 57.34 6.95 25.75 5.79 0.61 4.59 0.77 3.69 0.57 1.37 0.20 1.29 0.16 12.84 150.34 1.87 0.16
      43 13-4-1 25.47 52.20 6.10 22.40 4.79 0.60 3.92 0.60 2.63 0.42 1.01 0.14 0.86 0.11 11.17 132.41 1.68 0.17
      44 13-13-1 31.54 58.90 6.59 23.18 4.16 0.79 3.31 0.49 2.45 0.42 1.07 0.16 0.98 0.14 11.01 145.18 1.12 0.19
      45 13-15-1 24.19 45.90 5.35 19.22 3.91 0.68 3.28 0.59 3.29 0.56 1.54 0.25 1.58 0.21 15.86 126.42 2.05 0.23
      46 13-16-1 22.48 43.56 4.94 17.56 3.45 0.66 2.75 0.46 2.38 0.41 1.06 0.16 1.03 0.15 11.45 112.51 1.37 0.29
      47 02-12-1 4.08 7.34 0.89 3.04 0.77 0.33 0.89 0.23 1.20 0.24 0.68 0.14 0.76 0.13 7.92 28.64 9.40 0.23
      48 02-19-1 5.65 10.85 1.21 3.97 1.04 0.36 1.13 0.28 1.35 0.23 0.58 0.11 0.54 0.10 7.24 34.64 5.15 0.43
      49 13-5-1 14.86 31.25 3.57 13.36 2.87 0.45 2.73 0.46 2.38 0.40 1.02 0.16 0.91 0.13 11.36 85.92 2.54 0.28
      50 13-14-1 14.18 26.70 3.20 11.54 2.71 0.39 2.39 0.48 2.60 0.44 1.19 0.21 1.31 0.17 11.38 78.90 3.03 0.23
      51 13-17-1 10.08 19.78 2.25 8.04 1.89 0.32 1.76 0.36 2.08 0.37 1.06 0.18 1.09 0.15 11.00 60.39 3.72 0.44
      52 09-1-1 48.61 97.96 12.55 47.98 10.18 1.60 9.16 1.54 8.88 1.62 4.25 0.56 3.29 0.46 44.17 292.80 0.48 0.17
      53 09-3-2 47.37 95.00 11.95 46.32 9.32 1.52 7.87 1.23 6.42 1.11 2.76 0.42 2.72 0.40 32.20 266.59 0.67 0.15
      54 09-5-1 43.13 85.45 10.56 40.46 8.92 1.60 7.88 1.37 8.26 1.63 4.63 0.69 4.39 0.60 45.31 264.89 0.83 0.14
      55 09-8-1 33.95 68.92 8.56 32.29 6.93 1.30 5.89 0.94 4.86 0.84 2.06 0.24 1.44 0.22 27.16 195.60 0.61 0.21
      56 02-5-1 134.60 244.10 26.63 85.16 13.49 1.20 10.42 1.46 7.03 1.16 2.99 0.40 2.32 0.32 33.49 564.78 0.45 0.16
      09-1-2 46.54 96.23 12.05 46.45 10.07 1.50 9.18 1.44 8.30 1.45 3.36 0.39 1.97 0.25 41.78 280.95 0.61 0.15
        注:含量单位为10-6;1~19样品为黑云母花岗岩;20~46样品为二云母花岗岩;47~51样品为白云母花岗岩;52~55样品为黑云母花岗岩闪长岩;56样品为黑云母英云闪长岩.
      下载: 导出CSV

      表  3  黑海地区过铝质花岗岩微量元素测试结果及特征值

      Table  3.   Analysis results and eigenvalues of trace elements of the peraluminous granites in Heihai region

      序号 样品号 Cs Rb Ba Th U Ta Nb Sr Hf Zr Rb/Sr Rb/Ba TZr
      1 02-1-1 8.43 137.55 1 145.00 18.47 1.68 1.46 13.83 261.60 7.31 219.40 0.53 0.12 788.64
      2 02-3-1 8.66 186.28 969.20 21.82 1.13 1.40 13.06 231.80 6.07 202.20 0.80 0.19 790.92
      3 02-4-1 6.32 134.11 602.00 21.30 1.33 1.09 10.84 199.60 4.77 143.00 0.67 0.22 789.94
      4 02-7-1 14.18 189.63 900.80 15.19 0.97 1.93 11.60 264.30 6.88 218.00 0.72 0.21 792.45
      5 02-8-1 12.77 218.27 543.20 21.22 2.18 1.70 13.66 168.90 4.96 148.90 1.29 0.40 783.33
      6 02-9-1 5.80 174.28 1 056.00 16.46 0.91 1.17 11.48 260.10 5.36 162.70 0.67 0.17 788.14
      7 02-10-1 8.53 195.39 929.60 16.04 0.94 1.35 9.69 243.20 4.71 141.20 0.80 0.21 788.42
      8 02-11-1 7.97 161.54 811.20 27.35 1.72 1.86 13.70 261.10 6.15 206.30 0.62 0.20 812.95
      9 02-13-1 7.48 152.06 799.50 17.06 1.23 1.22 9.50 248.90 5.97 211.50 0.61 0.19 803.90
      10 02-15-1 22.61 213.90 728.10 26.86 1.40 1.28 13.28 224.90 7.27 237.50 0.95 0.29 779.66
      11 02-17-1 9.31 163.22 796.10 22.65 1.74 1.25 11.21 261.10 5.68 207.40 0.63 0.21 813.55
      12 02-18-1 13.53 160.89 1 014.00 16.10 0.72 0.95 9.54 314.70 6.68 236.20 0.51 0.16 782.39
      13 13-6-1 11.87 114.31 576.10 14.44 1.19 1.36 9.84 161.30 5.37 159.90 0.71 0.20 788.24
      14 13-7-1 12.84 120.14 606.10 16.04 1.15 1.06 9.38 161.10 4.93 159.00 0.75 0.20 772.39
      15 13-8-1 13.73 135.80 647.90 14.56 1.08 1.31 9.67 170.90 5.63 156.60 0.79 0.21 807.98
      16 13-9-1 14.03 115.65 642.20 15.65 1.45 1.01 8.60 164.80 5.22 155.40 0.70 0.18 813.96
      17 13-10-1 9.86 137.81 606.00 13.31 1.39 1.24 9.63 146.20 4.76 147.90 0.94 0.23 826.33
      18 13-11-1 13.40 124.72 629.75 12.91 1.11 1.17 9.54 169.00 5.97 155.60 0.74 0.20 813.79
      19 13-12-1 13.38 138.76 578.65 16.51 1.46 1.25 9.74 174.20 5.49 167.90 0.80 0.24 820.60
      20 02-20-1 12.68 144.62 822.80 19.57 0.98 1.16 9.94 299.90 6.53 224.10 0.48 0.18 775.60
      21 02-21-1 5.07 193.53 1 295.00 16.08 0.97 0.92 9.14 252.70 5.88 215.30 0.77 0.15 785.29
      22 09-3-1 5.18 191.50 839.40 16.83 2.80 1.25 7.71 161.30 4.47 152.20 1.19 0.23 781.97
      23 09-4-1 5.88 201.80 546.60 13.90 2.88 1.70 11.13 121.30 4.79 170.30 1.66 0.37 777.40
      24 09-6-1 9.60 141.20 485.70 6.20 0.86 1.82 10.67 71.07 4.10 145.00 1.99 0.29 786.66
      25 09-7-1 6.72 194.20 567.10 15.68 2.51 1.46 11.12 148.50 4.40 152.40 1.31 0.34 761.53
      26 09-9-1 13.77 269.70 643.30 24.79 3.17 1.59 17.16 110.60 6.58 235.20 2.44 0.42 770.42
      27 09-10-1 18.51 251.20 437.50 13.00 1.84 2.16 11.97 94.20 3.92 136.80 2.67 0.57 755.01
      28 12-2-1 18.57 280.10 276.80 8.09 2.03 2.22 13.31 51.29 2.90 90.90 5.46 1.01 764.04
      29 12-3-1 19.99 304.70 342.70 10.81 3.03 2.67 12.89 71.40 3.20 103.90 4.27 0.89 786.77
      30 12-4-1 12.73 246.80 482.40 14.79 2.40 1.58 12.46 91.37 4.11 134.10 2.70 0.51 786.13
      31 12-5-1 11.86 242.20 463.60 14.68 2.14 1.71 14.67 78.13 4.37 139.10 3.10 0.52 790.25
      32 12-6-1 7.09 223.20 447.50 15.14 2.16 1.85 15.53 69.65 4.00 134.40 3.20 0.50 760.78
      33 12-7-1 18.26 243.30 251.50 4.78 2.24 2.51 6.84 41.73 2.80 95.99 5.83 0.97 783.71
      34 12-8-1 9.22 209.50 446.10 11.14 2.30 1.83 11.89 80.32 3.75 126.00 2.61 0.47 791.38
      35 12-9-1 8.63 245.10 483.80 18.58 1.96 1.63 16.20 91.21 4.28 139.40 2.69 0.51 777.41
      36 12-10-1 3.94 179.50 444.50 14.15 0.94 1.52 14.22 84.57 4.10 134.60 2.12 0.40 793.18
      37 12-11-1 10.40 233.60 481.10 15.73 2.33 1.81 15.07 83.42 4.21 139.30 2.80 0.49 806.94
      38 12-13-1 9.49 246.90 451.90 14.09 2.22 1.69 17.44 104.90 4.78 157.30 2.35 0.55 769.45
      39 12-14-1 14.75 201.40 216.60 11.78 1.92 2.04 13.68 133.40 3.67 126.60 1.51 0.93 785.87
      40 13-1-1 7.24 252.41 402.90 16.71 2.73 1.72 15.18 83.80 4.30 126.30 3.01 0.63 812.37
      41 13-2-1 13.34 259.19 419.80 18.64 2.11 1.52 14.11 90.00 4.37 135.60 2.88 0.62 790.88
      42 13-3-1 8.97 248.01 378.95 16.17 2.37 1.67 15.75 87.80 4.34 132.90 2.82 0.65 799.49
      43 13-4-1 12.00 212.87 352.90 13.30 2.50 1.69 14.58 86.60 4.21 126.40 2.46 0.60 834.54
      44 13-13-1 17.08 168.75 638.90 16.21 1.38 1.28 10.05 156.00 5.43 150.30 1.08 0.26 785.46
      45 13-15-1 20.63 226.72 579.25 10.32 1.69 1.86 12.34 137.40 4.01 110.80 1.65 0.39 815.12
      46 13-16-1 13.28 161.87 492.30 7.54 1.55 2.18 11.10 139.70 4.40 117.90 1.16 0.33 813.01
      47 02-12-1 15.64 204.88 209.20 2.42 0.60 1.55 8.40 39.86 0.73 21.80 5.14 0.98 741.44
      48 02-19-1 15.66 190.65 378.70 3.45 0.86 2.49 7.58 40.40 1.23 37.00 4.72 0.50 733.75
      49 13-5-1 10.35 194.06 217.25 5.59 2.99 2.65 14.54 92.60 2.89 76.50 2.10 0.89 723.95
      50 13-14-1 16.82 231.78 307.10 6.14 1.38 1.68 10.29 91.70 2.91 76.60 2.53 0.75 646.93
      51 13-17-1 19.90 221.18 212.65 3.96 1.55 4.32 15.55 64.10 2.54 59.50 3.45 1.04 679.32
      52 09-1-1 6.42 153.90 536.10 23.20 2.87 1.80 18.69 142.70 8.74 318.40 1.08 0.29 861.31
      53 09-3-2 8.68 195.60 645.40 25.58 1.93 1.59 17.94 157.00 7.87 292.60 1.25 0.30 860.00
      54 09-5-1 14.56 217.30 830.00 18.27 1.84 1.69 19.45 160.80 6.96 260.40 1.35 0.26 827.29
      55 09-8-1 4.09 142.90 585.00 16.94 2.37 2.01 15.64 107.10 6.40 233.70 1.33 0.24 831.80
      56 02-5-1 7.68 157.36 470.80 51.82 2.35 2.52 29.15 202.00 10.90 346.20 0.78 0.33 835.80
      09-1-2 11.49 168.50 336.30 31.51 2.35 1.49 17.49 142.50 7.34 274.70 1.18 0.50 857.10
        注:含量单位为10-6;1~19样品为黑云母花岗岩;20~46样品为二云母花岗岩;47~51样品为白云母花岗岩;52~55样品为黑云母花岗岩闪长岩;56样品为黑云母英云闪长岩.
      下载: 导出CSV
    • [1] Bai, Y.S., Chang, G.H., Tan, S.X., et al., 2001.Study on the Features of Caledonian Intrusive Rocks in the Eastern Sector of East Kunlun.Qinghai Geology, 10(S1):28-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GTJL2001S1005.htm
      [2] Barbarin, B., 1996.Genesis of the Two Main Types of Peraluminous Granitoids.Geology, 24(4):295-298.doi:10.1130/0091-7613(1996)024<0295:GOTTMT>2.3.CO;2
      [3] Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626.doi: 10.1016/S0024-4937(98)00085-1
      [4] Bian, Q.T., Luo, X.Q., Li, D.H., et al., 2001.Geochemistry and Formation Environment of the Buqingshan Ophiolite Complex, Qinghai Province, China.Acta Gelogica Sinica, 75(1):45-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200101008.htm
      [5] Cai, K., Sun, M., Yuan, C., et al., 2011.Geochronology, Petrogenesis and Tectonic Significance of Peraluminous Granites from the Chinese Altai, NW China.Lithos, 127(1):261-281.doi: 10.1016/j.lithos.2011.09.001
      [6] Chappell, B.W., White, A.J.R., 2001.Two Contrasting Granite Types:25 Years Later.Australian Journal of Earth Sciences, 48(4):489-499.doi: 10.1046/j.1440-0952.2001.00882.x
      [7] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2005.Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt.Geology in China, 32(3):386-395(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200503006.htm
      [8] Clarke, D.B., 1981.The Mineralogy of Peraluminous Granites:A Review.The Canadian Mineralogist, 19(1):1-17. http://canmin.geoscienceworld.org/content/19/1/3
      [9] Clemens, J.D., Wall, V.J., 1981.Origin and Crystallization of Some Peraluminous (S-Type) Granitic Magmas.The Canadian Mineralogist, 19(1):111-131. https://www.mendeley.com/research-papers/origin-crystallization-some-peraluminous-stype-granitic-magmas/
      [10] Collins, W.J., 2002.Hot Orogens, Tectonic Switching, and Creation of Continental Crust.Geology, 30(6):535-538.doi:10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2
      [11] Collins, W.J., Richards, S.W., 2008.Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens.Geology, 36(7):559-562.doi: 10.1130/G24658A.1
      [12] Deng, J.F., Luo, Z.H., Su, S.G., et al., 2004.Genesis of Rock, Tectonic Setting and Mineralization.Geological Publishing House, Beijing(in Chinese).
      [13] Deng, J.F., Zhao, H.L., Lai, S.C, et al., 1994.Generation of Muscovite/Two-Mica Granite and Intracontinental Subduction.Earth Science, 19(2):139-147(in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zddy401.000&dbname=CJFD&dbcode=CJFQ
      [14] Douce, A.E.P., Harris, N., 1998.Experimental Constraints on Himalayan Anatexis.Journal of Petrology, 39(4):689-710.doi: 10.1093/petroj/39.4.689
      [15] Elburg, M.A., 1996.Genetic Significance of Multiple Enclave Types in a Peraluminous Ignimbrite Suite, Lachlan Fold Belt, Australia.Journal of Petrology, 37(6):1385-1408.doi: 10.1093/petrology/37.6.1385
      [16] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001.A Geochemical Classification for Granitic Rocks.Journal of Petrology, 42(11):2033-2048.doi: 10.1093/petrology/42.11.2033
      [17] Gao, L.E., Zeng, L.S., Liu, J., et al., 2009.Early Oligocene Na-Rich Peraluminous Leucogranites in the YardoiGneiss Dome, Southern Tibet:Formation Mechanism and Tectonic Implications.Acta Petrologica Sinica, 25(9):2289-2302(in Chinese with English abstract). http://www.oalib.com/paper/1470792
      [18] Gao, X.F., Jiao, P.X., Xie, C.R., et al., 2010.Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area.Geological Bulletin of China, 29(7):1001-1008(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201007007.htm
      [19] Gao, Y.B., Li, W.Y., 2011.Petrogenesis of Granites Containing Tungsten and Tin Ores in the Baiganhu Deposit, Qimantage, NW China:Constraints from Petrology, Chronology and Geochemistry.Geochimica, 40(4):324-336(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201104003.htm
      [20] Gerdes, A., Montero, P., Bea, F., et al., 2002.Peraluminous Granites Frequently with Mantle-Like Isotope Compositions:The Continental-Type Murzinka and Dzhabyk Batholiths of the Eastern Urals.International Journal of Earth Sciences, 91(1):3-19.doi: 10.1007/s005310100195
      [21] Haapala, I., 1997.Magmatic and Postmagmatic Processes in Tin-Mineralized Granites:Topaz-Bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland.Journal of Petrology, 38(12):1645-1659.doi: 10.1093/petroj/38.12.1645
      [22] Huang, J.N., Chen, Y.Q., Lu, Y.X., et al., 2011.Zircon SHRIMP U-Pb Geochronology, Geochemistry, and Petrogenesis of the Upper Eocene Shuangmaidi Peraluminous Granite in Baoshan Block, Western Yunnan Terrain, Southwestern China.Science in (Series D), 41(4):452-467(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg201107005&dbname=CJFD&dbcode=CJFQ
      [23] Icenhower, J., London, D., 1996.Experimental Partitioning of Rb, Cs, Sr and Ba between Alkali Feldspar and Peraluminous Melt.American Mineralogist, 81(5):719-734. http://rruff.info/doclib/am/vol81/AM81_719.pdf
      [24] Jiang, G.L., Zhang, S.M., Liu, K.F., et al., 2014.Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qilian-Qaidam-East Kunlun Area.Earth Science, 38(6):1214-1228(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201408006.htm
      [25] Kapp, J.D.A., Miller, C.F., Miller, J.S., 2002.Ireteba Pluton, Eldorado Mountains, Nevada:Late, Deep-Source, Peraluminous Magmatism in the Cordilleran Interior.The Journal of Geology, 110(6):649-669.doi: 10.1086/342864
      [26] Le Fort, P., 1981.Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement.Journal of Geophysical Research, 86(B11):10545-10568.doi: 10.1029/JB086iB11p10545
      [27] Le Fort, P., Cuney, M., Deniel, C., et al., 1987.Crustal Generation of the Himalayan Leucogranites.Tectonophysics, 134(1):39-57.doi: 10.1016/0040-1951(87)90248-4
      [28] Li, J.L., 2004.Basic Characteristics of Accretion-Type Orogens.Geological Bulletin of China, 23(9):947-951(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2017.htm
      [29] Li, R.S., Xu, X.Y., Ji, W.H., 2008a.Some Problems of Geological Study in the Western China Orogenic Belt.Geological Bulletin of China, 27(12):2020-2025(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200812009.htm
      [30] Li, R.S., Ji, W.H., Yang, Y.C., et al., 2008b.Geology of Kunlun Mountain and Adjacent Area.Geology Publishing House, Beijing (in Chinese).
      [31] Li, R.S., Ji, W.H., Zhao, Z.M., et al., 2007.Progress in the Study of the Early Paleozoic Kunlun Orogenic Belt.Geological Bulletin of China, 26(4):373-382(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200704001.htm
      [32] Li, W.Y., Li, S.G., Guo, A.L., et al., 2007.Zircon SHRIMP U-Pb Age and Trace Element Geochemistry of Kuhai Gabbro and Deerni Diorite, Southern Tectonic Belt, Eastern Kunlun, Qinghai-Constraints on the South Boundary of Late Neoproterozoic-Early Ordovician Archipelagic Ocean.Science in China(Series D), 37(S1):288-294(in Chinese). doi: 10.1007/s11430-007-6003-4
      [33] Lin, G.C., Ma, C.Q., 2003.Genesis of Peraluminous Granitoids and Their Tectonic Settings.Geology and Mineral Resources of South China, (1):65-70(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC200301012.htm
      [34] Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2012.Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes.Acta Petrologica Sinica, 28(6):1785-1807(in Chinese with English abstract). http://www.oalib.com/paper/1475573
      [35] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004.Crust Mantle Magma Mixing of Eastern Kunlun:Evidence from Zircon SHRIMP Dating.Science Bulletin, 49(6):596-602(in Chinese). doi: 10.1007/BF02889756
      [36] Liu, Z.Q., Li, R.B., Pei, X.Z., et al., 2011b.Early Paleozoic Intermdiate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Melange Belt on the Southern Margin of East Kunlun:Constrains from Zircon U-Pb Dating and Geochemistry.Geology in China, 38(5):1150-1167(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201105004.htm
      [37] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011a.LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the Anyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication.Acta Geologica Sinica, 85(2):185-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201102005.htm
      [38] Long, X.P., Jin, W., Ge, W.C., et al., 2006.Zircon U-Pb Geochronology and Geological Implications of Granitoids in Jinshuikou, Eastern Kunlun, NW China.Geochimica, 35(4):367-376(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200604004.htm
      [39] Lu, J.P., Li, J., Qin, X.F., et al., 2005.The Yiniekeagan Granite Mass in Qimantag, Eastern Kunlun and Its Teconic Significance.Sedimentary Geology and Tethyan Geology, 25(4):46-54(in Chinese with English abstract).
      [40] Luo, W.X., Qian, L.L., Li, D.W., et al., 2013.Petrogenesis of the Zhongzaohuo Ultramafic Pyroxenite Pluton, East Kunlun: Constraints from Petrology, Geochemistry and Genetic Mineralogy.Earth Science, 38(6):1214-1228(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201306006.htm
      [41] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      [42] McDonough, W.F., Sun, S.S., Ringwood, A.E., et al., 1992.Potassium, Rubidium and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth.Geochimica et Cosmochimica Acta, 56(3):1001-1012.doi: 10.1016/0016-7037(92)90043-I
      [43] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529-532.doi:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
      [44] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703005.htm
      [45] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Model of Archipelagic Arc-Basin Systems:The Key to the Continental Geology.Sedimentary Geology and Tethyan Geology, 32(3):1-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201203000.htm
      [46] Pan, Y.S., Fang, A.M., 2010.Formation and Evolution of the Tethys in the Tibetan Plateau.Chinese Journal of Geology, 45(1):92-101(in Chinese with English abstract). https://www.mendeley.com/research-papers/formation-evolution-tethys-tibetan-plateau/
      [47] Pan, Y.S., Zhou, W.M., Xu, R.H., et al., 1996.Early Paleozoic Geological Characteristic and Evolution of Kunlun Mountain.Science in China(Series D), 26(4):302-307(in Chinese).
      [48] Pearce, J.A., Harris, N.B., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956
      [49] Rickwood, P.C, 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263.doi: 10.1016/0024-4397(89)90028-5
      [50] Shi, Z.L., Zhang, H.F.and Cai, H.M., 2009.Petrogenesis of Strongly Peraluminous Granites in Markan Area, Songpan Fold Belt and Its Tectonic Implication.Earth Science, 34(4):569-584(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200904003.htm
      [51] Sun, T., Zhou, X.M., Chen, P.R., et al., 2003.Genesis and Implication of the East Nanling Mesozoic Peraluminous Granites.Science in China(Series D), 33(12):1209-1218(in Chinese).
      [52] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1):29-44.doi: 10.1016/S0024-4937(98)00024-3
      [53] Tang, J.H., Gu, L.X., Zhang, Z.Z., et al., 2008.Peraluminous Granite in Huangshan-Jingerquan Area of Eastern Tianshan:Geochemistry, Mineralogy and Geochronology.Acta Petrologica Sinica, 24(5):921-946(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200805002.htm
      [54] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell, Oxford.
      [55] Vielzeuf, D., Holloway, J.R, 1988.Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System.Contributions to Mineralogy and Petrology, 98(3):257-276.doi: 10.1007/BF00375178
      [56] Villaseca, C., Barbero, L., Rogers, G., 1998.Crustal Origin of Hercynian Peraluminous Granitic Batholiths of Central Spain:Petrological, Geochemical and Isotopic (Sr, Nd) Constraints.Lithos, 43(2):55-79.doi: 10.1016/S0024-4937(98)00002-4
      [57] Visonà, D., Lombardo, B., 2002.Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet).Himalayan Leucogranite Genesis by Isobaric Heating? Lithos, 62(3):125-150.doi: 10.1016/S0024-4937(02)00112-3
      [58] Wang, D.Z., Liu, C.S., Shen, W.Z., et al., 1990.Characteristics and Genesis of Cenozoic Peraluminous Granitoids of the Okinoshima Island, SW Japan.Acta Petrologica Sinica, 6(3):24-32(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199003002.htm
      [59] Wang, G.C., Wang, Q.H., Jian, P., 2004.Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China.Earth Science Frontiers, 11(4):481-490(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404019.htm
      [60] Wang, Y.J., Fan, W.M., Xi, X.W., et al., 2002.Formation of Indosinian Peraluminous Granites, Hunan:Numerical Simulation of Magma Underplating and Crustal Thickening Heat Effect.Science in China(Series D), 32(6):491-499(in Chinese).
      [61] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821X(83)90211-X
      [62] Yang, J.S., Xu, Z.Q., Ma, C.Q., et al., 2010.Compound Orogeny and Scientific Problems Concerning the Central Orogenic Belt of China.Geology in China, 37(1):1-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201001004.htm
      [63] Yao, Y.G., Kenneth, J.H., 1994.Origin of the Kunlun Mountains by Arc-Arc and Arc-Continent Collisions.Island Arc, 3(2):75-89.doi: 10.1111/j.1440-1738.1994.tb00096.x
      [64] Yin, H.F., Zhang, K.X., 1997.Characteristics of the Eastern Kunlun Orogenic Belt.Earth Science, 22(4):339-342(in Chinese with English abstract).
      [65] Yu, N., Jin, W., Ge, W.C., et al., 2005.Geochemical Study on Peraluminous Granite from Jinshuikou in East Kunlun.Global Geology, 24(2):123-128(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ200502004.htm
      [66] Za, X.F., Ji, W.H., Zhang, H.D., et al., 2012.A Discussion on the Deformation Phases and Tectonic Process of the Southern Kunlun Accretionary Complex Belt, in Central Qinghai.Geological Bulletin of China, 31(12):2015-2024(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201212010.htm
      [67] Zen, E.A., 1986.Aluminum Enrichment in Silicate Melts by Fractional Crystallization:Some Mineralogic and Petrographic Constraints.Journal of Petrology, 27(5):1095-1117.doi: 10.1093/petrology/27.5.1095
      [68] Zen, E.A., 1988.Phase Relations of Peraluminous Granitic Rocks and Their Petrogenetic Implications.Annual Review of Earth and Planetary Sciences, 16:21.doi: 10.1146/annurev.ea.16.050188.000321
      [69] Zhang, H.F., Harris, N., Parrish, R., et al., 2005.Geochemistry of North Himalayan Leucogranites:Regional Comparison, Petrogenesis and Tectonic Implications.Earth Science, 30(3):275-288(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200503003.htm
      [70] Zhang, J.Y., Liao, Q.A., 2004.Leucogranites-Geological Proof of Uplifting, Decompressing and Melting of the Basement, Dingjie, South Tibet.Northwestern Geology, 37(2):7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XBDI200402002.htm
      [71] Zhang, L.Y., Ding, L., Yang, D., et al., 2012.Origin of Middle Miocene Leucogranites and Rhyolites on the Tibetan Plateau:Constraints on the Timing of Crustal Thickening and Uplift of Its Northern Boundary.China Sci.Bull., 57(2-3):153-168(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw201205012&dbname=CJFD&dbcode=CJFQ
      [72] Zhang, Q., 2012.Collision and Granite:Collision is a Tectonic Event, not a Teconic Environment.Acta Petrologica et Mineralogica, 31(5):745-749(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201205013.htm
      [73] Zhang, Q., Jin, W.J., Li, C.D., et al., 2011.Granitic Rocks and Their Formation Depth in the Crust.Geotectonica et Metallogenia, 35(2):259-269(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201102012.htm
      [74] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.A Granite Classification Based on Pressures.Geological Bulletin of China, 25(11):1274-1278(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200611003.htm
      [75] Zhao, Z.M., Li, R.S., Ji, W.H., et al., 2010.Silurian Tectonic-Paleogeographic Environment in Kunlun Mountain Area and Its Metallogenic Significance.Geology in China, 37(5):1284-1304(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dizi201005008.htm
      [76] Zhao, Z.M., Ma, H.D., Wang, B.Z., et al., 2008.The Evidence of Intrusive Rocks about Collision-Orogeny during Early Devonian in Eastern Kunlun Area.Geological Review, 54(1):47-56(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200801007.htm
      [77] Zhong, H.M., Tong, J.S., Lu, R.K., et al., 2006.Geochemical Charateristics and Tectonic Setting of Peraluminous Granite in the Songxi Area, Rutog County, Tibet, China.Geological Bulletin of China, 25(1):183-188(in Chinese with English abstract).
      [78] Zhu, Y.H., Lin, Q.X., Jia, C.X., et al., 2005.Zircon SHRIMP Ages of Early Paleozoic Volcanic Rocks in Eastern Kunlun Orogenic Belt and their Geological Implications.Science in China(Series D), 35(12):1112-1119 (in Chinese).
      [79] Zhu, Y.H., Zhang, K.X., Pan, Y.M., et al., 1999.Determination of Different Ophiolitic Belts in Eastern Kunlun Orogenic Zone and Their Tectonic Significance.Earth Science, 24(2):134-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX902.005.htm
      [80] 拜永山, 常革红, 谈生祥, 等, 2001.东昆仑东段加里东造山旋回侵入岩特征研究.青海地质, 10(S1):28-35. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL2001S1005.htm
      [81] 边千韬, 罗小全, 李涤徽, 等, 2001.青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境.地质学报, 75(1):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200101008.htm
      [82] 谌宏伟, 罗照华, 莫宣学, 等, 2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质, 32(3):386-395. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200503006.htm
      [83] 邓晋福, 罗照华, 苏尚国, 等, 2004.岩石成因、构造环境与成矿作用.北京:地质出版社.
      [84] 邓晋福, 赵海玲, 赖绍聪, 等, 1994.白云母/二云母花岗岩形成与陆内俯冲作用.地球科学, 19(2):139-147. http://earth-science.net/WebPage/Article.aspx?id=129
      [85] 高利娥, 曾令森, 刘静, 等, 2009.藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义.岩石学报, 25(9):2289-2302. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909021.htm
      [86] 高晓峰, 校培喜, 谢从瑞, 等, 2010.东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报, 29(7):1001-1008. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201007007.htm
      [87] 高永宝, 李文渊, 2011.东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因.地球化学, 40(4):324-336. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201104003.htm
      [88] 黄静宁, 陈永清, 卢映祥, 等, 2011.滇西保山地块双脉地晚始新世过铝质花岗岩:锆石SHRIMP U-Pb定年, 地球化学和成因.中国科学(D辑), 41(4):452-467. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201104004.htm
      [89] 姜高磊, 张思敏, 柳坤峰, 等, 2014.祁连-柴达木-东昆仑新元古-中生代沉积盆地演化.地球科学, 39(8):1000-1015. http://earth-science.net/WebPage/Article.aspx?id=2908
      [90] 李继亮, 2004.增生型造山带的基本特征.地质通报, 23(9):947-951. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2017.htm
      [91] 李荣社, 徐学义, 计文化, 2008a.对中国西部造山带地质研究若干问题的思考.地质通报, 27(12):2020-2025. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200812009.htm
      [92] 李荣社, 计文化, 杨永成, 等, 2008b.昆仑山及邻区地质.北京:地质出版社.
      [93] 李荣社, 计文化, 赵振明, 等, 2007.昆仑早古生代造山带研究进展.地质通报, 26(4):373-382. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200704001.htm
      [94] 李王晔, 李曙光, 郭安林, 等, 2007.青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代-早奥陶世多岛洋南界的制约.中国科学(D辑), 37(S1):288-294. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1030.htm
      [95] 林广春, 马昌前, 2003.过铝花岗岩的成因类型与构造环境研究综述.华南地质与矿产, (1):65-70. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200301012.htm
      [96] 刘彬, 马昌前, 张金阳, 等, 2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报, 28(6):1785-1807. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206008.htm
      [97] 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-602. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200406018.htm
      [98] 刘战庆, 裴先治, 李瑞保, 等, 2011a.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2):185-194. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm
      [99] 刘战庆, 裴先治, 李瑞保, 等, 2011b.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据.中国地质, 38(5):1150-1167. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105004.htm
      [100] 龙晓平, 金巍, 葛文春, 等, 2006.东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义.地球化学, 35(4):367-376. http://cdmd.cnki.com.cn/Article/CDMD-10183-2004100390.htm
      [101] 陆济璞, 李江, 覃小锋, 等, 2005.东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义.沉积与特提斯地质, 25(4):46-54. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200504007.htm
      [102] 罗文行, 钱莉莉, 李德威, 等, 2013.东昆仑中灶火地区超镁铁质辉石岩的成因.地球科学, 38(6):1214-1228. http://earth-science.net/WebPage/Article.aspx?id=2803
      [103] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm
      [104] 潘桂棠, 王立全, 李荣社, 等, 2012.多岛弧盆系构造模式:认识大陆地质的关键.沉积与特提斯地质, 32(3):1-20. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201203000.htm
      [105] 潘裕生, 方爱民, 2010.中国青藏高原特提斯的形成与演化.地质科学, 45(1):92-101. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001010.htm
      [106] 潘裕生, 周伟明, 许荣华, 等, 1996.昆仑山早古生代地质特征与演化.中国科学(D辑), 26(4):302-307. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604002.htm
      [107] 时章亮, 张宏飞, 蔡宏明, 2009.松潘造山带马尔康强过铝质花岗岩的成因及其构造意义.地球科学, 34(4):569-584. http://earth-science.net/WebPage/Article.aspx?id=1861
      [108] 孙涛, 周新民, 陈培荣, 等, 2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑), 33(12):1209-1218. doi: 10.3321/j.issn:1006-9267.2003.12.010
      [109] 唐俊华, 顾连兴, 张遵忠, 等, 2008.东天山黄山-镜儿泉过铝花岗岩矿物学、地球化学及年代学研究.岩石学报, 24(5):921-946. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805002.htm
      [110] 王德滋, 刘昌实, 沈渭洲, 等, 1990.日本西南冲岛新生代过铝质花岗岩类的特征和成因.岩石学报, 6(3):24-32. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199003002.htm
      [111] 王国灿, 王青海, 简平, 2004.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义.地学前缘, 11(4):481-490. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404019.htm
      [112] 王岳军, 范蔚茗, 席先武, 等, 2002.湖南印支期过铝质花岗岩的形成:岩浆底侵与地壳加厚热效应的数值模拟.中国科学(D辑), 32(6):491-499. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200206005.htm
      [113] 杨经绥, 许志琴, 马昌前, 等, 2010.复合造山作用和中国中央造山带的科学问题.中国地质, 37(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001004.htm
      [114] 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4):339-342. http://earth-science.net/WebPage/Article.aspx?id=532
      [115] 余能, 金巍, 葛文春, 等, 2005.东昆仑金水口过铝花岗岩的地球化学研究.世界地质, 24(2):123-128. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200502004.htm
      [116] 查显锋, 计文化, 张海迪, 等, 2012.青海中部昆南增生杂岩带变形分期及构造过程.地质通报, 31(12):2015-2024. doi: 10.3969/j.issn.1671-2552.2012.12.010
      [117] 张宏飞, Harris, N., Parrish, R., 等, 2005.北喜马拉雅淡色花岗岩地球化学:区域对比, 岩石成因及其构造意义.地球科学, 30(3):275-288. http://earth-science.net/WebPage/Article.aspx?id=1410
      [118] 张金阳, 廖群安, 2004.藏南定结淡色花岗岩——基底隆升降压熔融成因的地质证据.西北地质, 37(2):7-12. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200402002.htm
      [119] 张利云, 丁林, 杨迪, 等, 2012.藏北中中新世淡色花岗岩及流纹岩的成因:对高原北部边界地壳加厚过程和隆升时代的制约.科学通报, 57(2-3):153-168. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2012Z1010.htm
      [120] 张旗, 2012.碰撞与花岗岩——碰撞是构造事件, 不是构造环境.岩石矿物学杂志, 31(5):745-749. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201205013.htm
      [121] 张旗, 金惟俊, 李承东, 等, 2011.花岗岩与地壳厚度关系探讨.大地构造与成矿学, 35(2):259-269. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102012.htm
      [122] 张旗, 王焰, 李承东, 等, 2006.花岗岩按照压力的分类.地质通报, 25(11):1274-1278. doi: 10.3969/j.issn.1671-2552.2006.11.004
      [123] 赵振明, 李荣社, 计文化, 等, 2010.志留纪昆仑山地区构造古地理环境及其成矿意义.中国地质, 37(5):1284-1304. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201005008.htm
      [124] 赵振明, 马华东, 王秉璋, 等, 2008.东昆仑早泥盆世碰撞造山的侵入岩证据.地质论评, 54(1):47-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801007.htm
      [125] 钟华明, 童劲松, 鲁如魁, 等, 2006.西藏日土县松西地区过铝质花岗岩的地球化学特征及构造背景.地质通报, 25(1):183-188. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1029.htm
      [126] 朱云海, 林启祥, 贾春兴, 等, 2005.东昆仑造山带早古生代火山岩锆石SHRIMP年龄及其地质意义.中国科学(D辑), 35(12):1112-1119. doi: 10.3969/j.issn.1674-7240.2005.12.002
      [127] 朱云海, 张克信, Pan, Y.M., 等, 1999.东昆仑造山带不同蛇绿岩带的厘定及其构造意义.地球科学, 24(2):134-138. http://earth-science.net/WebPage/Article.aspx?id=776
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  4130
    • HTML全文浏览量:  1698
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-08-06
    • 刊出日期:  2016-01-15

    目录

      /

      返回文章
      返回