Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains
-
摘要: 东安金矿区细粒正长花岗岩是小兴安岭燕山早期与吉黑东部斑岩型-矽卡岩型钼多金属矿床有关的花岗岩带组成岩体之一.为了解区域燕山早期岩浆演化和大规模钼多金属热液的成矿作用,进一步提升东安金矿成矿地质背景的研究程度,对该花岗岩进行了岩石地球化学、锆石U-Pb年龄和Hf同位素研究,讨论了岩石成因、岩浆源区和构造背景.获得细粒正长花岗岩锆石LA-ICP-MS U-Pb定年结果184±2 Ma,MSWD=1.2,为早侏罗世.岩石富硅和钾(K2O/Na2O值为1.46~1.81),低钙、镁和Mg#(Mg#=12.79~23.52),A/CNK=1.05~1.14,属高钾钙碱性、弱过铝质系列岩石.岩石富集大离子亲石元素(Rb、K)和不相容元素(Th、U),亏损高场强不相容元素(Nb、Ti等),轻、重稀土元素分馏强烈,轻微负Eu异常(Eu/Eu*=0.76~0.92).综合岩石地球化学特征、Harker图解、Ce-SiO2和(K2O+Na2O)/CaO-(Zr+Nb+Ce+Y)判别图解确定岩石为高分异I型花岗岩.锆石的176Hf /177Hf值为0.282 588~0.282 775,εHf(t)值为-2.35~+3.94,二阶段模式年龄TDM2为973~1 386 Ma,岩浆源区应主要为起源于亏损地幔的中新元古代新增生陆壳的部分熔融,有硅铝质地壳物质的加入.研究表明,岩石形成于古太平洋板块俯冲引起大陆弧后伸展和岩石圈减薄的构造背景,幔源岩浆底侵为地壳熔融提供了热动力.燕山早期伸展体制下大陆岩浆弧环境的中-浅成、高钾钙碱性花岗质小侵入体是吉黑东部斑岩型-矽卡岩型钼多金属矿床找矿的主要目标.Abstract: The fine-grained syenogranite in the Dong'an goldfield is the early Yanshanian granite body in the Lesser Xing'an Mountains, it is one of the granite bodys of the granite belt which is related to porphyry and skarn-type molybdenum-polymetallic deposits in the east Jilin-Heilongjiang Province. In order to understand regional magmatic evolution in the early Yanshanian and cosmical molybdenum-polymetallic hydrothermal mineralization, thus further promote the research degree of the metallogenic background in the Dong'an goldfield. This paper presents geochemisty, zircon U-Pb geochronology, and Hf-isotopic data of these rocks, their petrogenesis, sources and tectonic implications have been investigated. The granitic rocks yield an average zircon LA-ICP-MS U-Pb age of 184±2 Ma (MSWD=1.2), i.e., the Early Jurassic. The granites have high SiO2 (75.39%-78.84%) and K2O (K2O/Na2O: 1.46~1.81), low CaO, MgO and Mg# (12.79-23.52), with A/CNK values of 1.05-1.14, indicating high potassium calc-alkaline, weakly peraluminous granites. The granites are enriched in large ion lithosphile elements (Rb, K) and incompatibale elements (Th, U), and depleted in high field-strength element (Nb, Ti). They have strong fractionation between LREE and HREE, as well as slightly negative Eu anomalies (Eu/Eu*=0.76-0.92). It was shown that these granitic rocks belong to highly fractionated I-type granites according to lithogeochemical constituents, Harker plots, the discrimination diagrams of Ce vs. SiO2 and (K2O+Na2O)/CaO vs. Zr+Nb+Ce+Y. All zircons in the granites have 176Hf/177Hf ratios ranging from 0.282 588 to 0.282 775, εHf(t) values ranging from -2.35 to +3.94, and two-stage Hf model ages (TDM2) ranging from 973 to 1 386 Ma. It was indicated that the magma was originated from the partial melting of Meso-Neoproterozoic juvenile accreted lower crust that was derived from the depleted mantle, with addition of ancient sialic crustal materials. The results show that the granites were generated from the extensional and lithospheric thinning environment due to the subduction of the Paleo-Pacific plate, and underplating of the mantle-derived magma provided the thermodynamic power for the partial melting of the crust. The small scale hypabyssal-middle high potassium calc-alkaline granitic intrusive bodies that were generated in the continental arc extension setting in the early Yanshanian are main targets for the prospecting of porphyry and skarn-type molybdenum-polymetallic deposits in the east Jilin-Heilongjiang Province.
-
Key words:
- Lesser Xing'an mountains /
- Dong'an goldfield /
- syenogranite /
- geochemistry /
- zircon U-Pb age /
- zircon Hf isotopes
-
图 1 东安金矿区地质简图
a中① 喜桂图-塔源断裂;② 贺根山-黑河断裂;③ 索伦-西拉木伦-长春缝合带;④ 嘉荫-牡丹江断裂;⑤ 伊通-依兰断裂;⑥ 敦化-密山断裂;b中1.第四系;2.第四系大熊山组玄武岩;3.流纹质凝灰岩;4.流纹岩;5.英安岩;6.粗安岩;7.安山岩;8.流纹斑岩;9.细粒正长花岗岩;10.中粗粒碱长花岗岩;11.金矿体及编号;12.隐爆角砾岩;13.矿化蚀变带;14.断裂;15.采样位置;a图据Wu et al.(2007)修编;b图据黑龙江省有色金属地质勘查707队,2005.黑龙江省逊克县东安金矿5#矿体勘探报告修编
Fig. 1. Sketch geological map of Dong'an goldfield
图 7 东安金矿区细粒正长花岗岩的稀土元素球粒陨石标准化配分曲线图和原始地幔标准化蛛网图
球粒陨石标准化值据Boynton(1984);原始地幔标准化值据Sun and Mcdonough(1989)
Fig. 7. Chondrite-normalized REE patterns and primitive mantle-normalized trace element spider diagrams of the fine-grained syenogranite in Dong'an goldfield
图 9 东安金矿区细粒正长花岗岩锆石Hf同位素特征
Fig. 9. Zircon Hf isotopic features for the fine-grained syenogranite in Dong'an goldfield
图 10 东安金矿区细粒正长花岗岩的Th/Hf-Ta/Hf图解(a)和Rb-(Y+Nb)花岗岩判别图解(b)
图b据Pearce(1996)
Fig. 10. Tectonic distinction diagram of Th/Hf-Ta/Hf diagram (a) and Rb vs. (Y+Nb) for the fine-grained syenogranite in Dong'an goldfield
图 11 东北地区早-中侏罗世斑岩型(含矽卡岩型)矿床分布
1.翠宏山;2.霍吉河;3.翠岭;4.鹿鸣;5.福安堡;6.季德屯;7.大黑山;8.兰家;据许文良等(2013)有修改
Fig. 11. Distribution map of the Early-Middle Jurassic porphyry-type (including skarn type) ore deposits in NE China
表 1 东安金矿区细粒正长花岗岩锆石LA-ICP-MS U-Pb同位素定年数据
Table 1. LA-ICP-MS zircon U-Pb isotope dating results of the fine-grained syenogranite in Dong'an goldfield
样品 Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ t(Ma) 1σ DA-N2-1 1.61 0.049 77 0.002 84 0.204 25 0.012 00 0.029 55 0.000 80 188 5 DA-N2-2 2.60 0.048 82 0.002 99 0.204 53 0.013 11 0.029 74 0.000 76 189 5 DA-N2-3 2.44 0.052 18 0.003 46 0.220 41 0.013 73 0.031 17 0.000 81 198 5 DA-N2-4 1.76 0.050 04 0.002 50 0.203 84 0.010 08 0.029 58 0.000 62 188 4 DA-N2-5 1.42 0.050 50 0.003 10 0.206 49 0.012 30 0.029 70 0.000 61 189 4 DA-N2-6 1.35 0.049 46 0.002 53 0.198 70 0.010 05 0.028 83 0.000 46 183 3 DA-N2-7 2.43 0.050 38 0.002 39 0.204 38 0.009 37 0.029 09 0.000 41 185 3 DA-N2-8 1.99 0.049 58 0.002 03 0.197 00 0.007 86 0.028 57 0.000 39 182 2 DA-N2-9 1.77 0.049 67 0.002 16 0.200 17 0.008 34 0.029 11 0.000 38 185 2 DA-N2-10 1.24 0.050 21 0.002 28 0.203 33 0.009 27 0.029 11 0.000 47 185 3 DA-N2-11 1.47 0.051 34 0.004 87 0.199 41 0.018 21 0.027 91 0.000 75 177 5 DA-N2-12 2.51 0.050 46 0.002 67 0.199 09 0.010 49 0.028 64 0.000 47 182 3 DA-N2-13 2.24 0.049 24 0.002 22 0.198 10 0.009 13 0.028 87 0.000 46 183 3 DA-N2-14 2.02 0.049 88 0.003 12 0.197 36 0.012 11 0.028 87 0.000 61 183 4 表 2 东安金矿区细粒正长花岗岩样品主量元素、稀土元素和微量元素含量及有关参数
Table 2. Major, REE and trace element content and parameter of the fine-grained syenogranite in Dong'an goldfield
样品号 DA-1-B1 DA-1-B2 DA-1-B3 DA-1-B4 DA-1-B5 DA-1-B6 DA-1-B7 SiO2 75.54 75.40 76.10 75.39 75.68 76.92 78.84 TiO2 0.17 0.18 0.16 0.17 0.16 0.11 0.10 Al2O3 12.66 12.57 12.67 12.50 12.80 12.14 11.23 Fe2O3T 1.76 1.79 1.47 1.73 1.54 1.29 0.99 MnO 0.13 0.13 0.07 0.17 0.08 0.09 0.06 MgO 0.21 0.22 0.18 0.19 0.18 0.10 0.15 CaO 0.43 0.44 0.46 0.39 0.48 0.37 0.30 Na2O 3.26 3.37 3.36 3.28 3.34 3.38 2.59 K2O 5.17 5.17 5.02 5.15 4.99 4.92 4.69 P2O5 0.04 0.04 0.04 0.04 0.05 0.02 0.02 LOI 0.52 0.41 0.49 0.62 0.56 0.46 0.71 Total 99.90 99.73 100.03 99.63 99.84 99.79 99.68 Mg# 19.32 19.84 19.76 17.69 18.93 12.79 23.52 里特曼指数 2.18 2.25 2.12 2.19 2.12 2.03 1.48 A/NK 1.15 1.13 1.15 1.14 1.17 1.11 1.20 A/CNK 1.08 1.05 1.07 1.07 1.09 1.05 1.14 DI 94.05 94.24 94.48 94.39 94.16 95.60 95.42 La 22.4 18.5 22.1 28.5 22.7 21.9 26.4 Ce 37.1 29.3 35.1 47.6 37.7 35.2 47.0 Pr 3.54 2.75 3.04 4.35 3.51 3.11 3.77 Nd 10.4 8.0 8.3 12.5 10.3 8.3 10.4 Sm 1.76 1.30 1.27 1.88 1.69 1.14 1.52 Eu 0.455 0.384 0.362 0.429 0.439 0.296 0.369 Gd 1.62 1.27 1.20 1.57 1.55 1.12 1.46 Tb 0.185 0.131 0.114 0.168 0.163 0.107 0.154 Dy 1.38 1.09 1.04 1.29 1.27 1.00 1.30 Ho 0.35 0.28 0.28 0.32 0.31 0.27 0.33 Er 0.95 0.79 0.77 0.87 0.87 0.78 0.95 Tm 0.141 0.112 0.110 0.128 0.122 0.113 0.133 Yb 1.08 0.85 0.86 0.99 0.93 0.92 1.00 Lu 0.165 0.120 0.122 0.135 0.128 0.136 0.132 Eu/Eu* 0.82 0.92 0.90 0.76 0.83 0.80 0.76 (La/Yb)N 14.00 14.68 17.22 19.36 16.45 15.98 17.78 LREE 75.76 60.18 70.08 95.24 76.30 69.96 89.48 HREE 5.87 4.64 4.50 5.47 5.34 4.45 5.46 LREE/HREE 12.91 12.97 15.58 17.41 14.28 15.74 16.39 Sc 2.25 2.08 2.17 2.57 2.27 2.10 1.69 Ⅴ 14.4 12.6 15.7 15.7 12.7 5.7 7.0 Cr 15.7 3.1 10.1 4.1 5.5 13.9 4.3 Co 1.99 1.88 2.02 2.00 2.32 1.72 2.08 Ni 3.51 2.76 3.93 3.64 3.03 4.49 7.65 Rb 217 213 208 221 219 226 224 Sr 111.3 105.0 109.7 113.9 118.2 43.8 45.9 Y 20.5 15.3 14.0 19.1 19.3 15.2 20.3 Nb 13.8 13.7 14.4 12.4 13.3 13.5 13.6 Cs 4.60 4.21 4.28 4.77 4.35 4.10 4.02 Ba 255 230 241 271 243 129 199 Ta 1.61 1.50 1.44 1.72 1.43 1.30 1.16 Th 28.4 26.3 25.8 26.7 27.5 28.4 25.7 U 5.08 3.51 4.52 4.17 4.07 4.39 4.61 Zr 89.2 73.6 77.4 73.8 71.8 77.6 60.7 Hf 3.90 3.31 3.54 3.34 3.14 3.60 2.95 Nb/Ta 8.56 9.13 9.94 7.22 9.32 10.33 11.70 La/Nb 1.63 1.35 1.54 2.29 1.69 1.62 1.95 Th/Nb 2.06 1.92 1.80 2.15 2.06 2.11 1.89 Th/La 1.27 1.42 1.17 0.94 1.21 1.29 0.97 注:主量元素单位为10-2;微量、稀土元素单位为10-6;A/CNK代表Al2O3/(CaO+Na2O+K2O)摩尔比;A/NK代表Al2O3/(Na2O+K2O)摩尔比;里特曼指数为[(K2O+Na2O)×(K2O+Na2O)]/(SiO2/43);分异指数(DI)=Qz+Or+Ab+Ne+Lc+Kp;Mg#=100×(MgO/40.31)/(MgO/40.31+Fe2O3T×2/159.7). 表 3 东安金矿区细粒正长花岗岩样品Lu-Hf同位素组成
Table 3. Zircon Lu-Hf isotopic compositions of the fine-grained syenogranite in Dong'an goldfield
样品 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1(Hf) TDM2(Hf) fLu/Hf DA-N2-1 188 0.069 899 0.001 697 0.282 699 0.000 027 -2.57 1.35 0.969 209 798 1 143 -0.95 DA-N2-2 189 0.053 772 0.001 304 0.282 668 0.000 029 -3.66 0.32 1.041 927 833 1 209 -0.96 DA-N2-3 198 0.056 565 0.001 351 0.282 588 0.000 028 -6.52 -2.35 0.987 513 949 1 386 -0.96 DA-N2-4 188 0.076 916 0.001 792 0.282 634 0.000 026 -4.87 -0.96 0.916 402 893 1 290 -0.95 DA-N2-5 189 0.061 102 0.001 440 0.282 701 0.000 027 -2.51 1.47 0.945 839 790 1 136 -0.96 DA-N2-6 183 0.065 569 0.001 647 0.282 655 0.000 027 -4.13 -0.31 0.948 724 860 1 244 -0.95 DA-N2-7 185 0.091 261 0.002 308 0.282 695 0.000 024 -2.73 1.05 0.841 565 818 1 160 -0.93 DA-N2-8 182 0.057 451 0.001 505 0.282 775 0.000 027 0.12 3.94 0.960 646 685 973 -0.95 DA-N2-9 185 0.077 236 0.002 009 0.282 744 0.000 028 -0.98 2.84 0.974 718 739 1 046 -0.94 DA-N2-10 185 0.075 839 0.002 238 0.282 633 0.000 030 -4.90 -1.12 1.055 964 906 1 297 -0.93 DA-N2-11 177 0.046 079 0.001 285 0.282 717 0.000 023 -1.95 1.79 0.829 658 764 1 107 -0.96 DA-N2-12 182 0.070 831 0.002 010 0.282 737 0.000 022 -1.23 2.52 0.785 353 750 1 063 -0.94 DA-N2-13 183 0.063 357 0.001 753 0.282 745 0.000 017 -0.94 2.87 0.608 889 732 1 042 -0.95 DA-N2-14 183 0.056 918 0.001 685 0.282 678 0.000 025 -3.34 0.47 0.884 451 829 1 195 -0.95 注:Hf同位素分析过程中采用的标准值为球粒陨石(176Lu/177Hf)CHUR=0.033 2,(176Hf/177Hf)CHUR,0= 0.282 772(Blichert-Toft and Albarède,1997);亏损地幔(176Lu/177Hf)DM=0.038 4,(176Hf/177Hf)DM=0.283 250( Griffin et al., 2002 );Lu衰变常数(Lu=1.86×10-1a-1(吴福元等,2007b)). -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., 2000.Early-Middle Archean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains.Geochim.Cosmochim.Acta, 64:4205-4225. doi: 10.1016/S0016-7037(00)00493-2 [2] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, 399(6733):252-255.doi: 10.1038/20426 [3] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258.doi: 10.1016/s0012-821x(97)00040-x [4] Boynton, W.V., 1984.Cosmochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson, P., ed., Rare Earth Element Geochemistry, Developments in Geochemistry, 2.Elsevier, Amsterdam, 63-114. [5] Chappell, B.W., 1999.Aluminium Saturation in Ⅰ-and S-type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551.doi: 10.1016/S0024-4937(98)00086-3 [6] Chen, J., 2011.Metallogenic Setting and Metallogenesis of Nonferrous-Precious Metals in Lesser Hinggan Mountain, Heilongjiang Province(Dissertation).Jilin University, Jilin(in Chinese with English abstract). [7] Gao, X.F., 2007.Sr-Nd-Pb Isotope Mapping of Mesozoic Igneous Rocks in NE China:Constraints on Tectonic Evolution of the Eastern CAOB(Dissertation).School of the Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [8] Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2007.Metallogenic Epoch and Its Geodynamic Significance of Porphyry Cu-Mo Deposits in the Eastern Edge of Xing-Meng Orogenic Belt.Chinese Science Bulletin, 52(20):2407-2417(in Chinese with English abstract). [9] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359.doi: 10.1016/0009-2541(94)00145-X [10] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3):237-269.doi: 10.1016/S0024-4937(02)00082-8 [11] Han, Z.Z., Jin, Z.Y., Lü, J., et al., 2010.Characteristics of Diagenesis and Mineralization of the Ore-Bearing Granite and Its Tectonic Setting in the Early Mesozoic Era in the Luming-Xing'an-Qianjin Area, Southeast of the Lesser Hinggan Mountains.Geology and Prospecting, 46(5):852-862(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201005010.htm [12] He, C., Li, S.Y., Gao, H.X., et al., 2010.Cuihongshan Skarn Type Iron Polymetallic Mineralization Geologic Conditions of Heilongjiang Province.Jilin Geology, 29(3):56-58(in Chinese with English abstract). [13] Hong, D.W., Wang, S., Xie, X.L., et al., 2000.Genesis of Positive εNd(t Granitoids in the Da Hinggan Mts-Mongolia Orogenic Belt and Growth Continental Crust.Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200002016.htm [14] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200904009.htm [15] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm [16] Isozaki, Y., 1997.Jurassic Accretion Tectonics of Japan.The Island Arc, 6(1):25-51.doi: 10.1111/j.1440-1738.1997.tb00039.x [17] Jing, H.X., Sun, D.Y., Gou, J., et al., 2015.Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block.Earth Science, 40(6):982-994 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201506004.htm [18] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Charaeterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.J.Petrol., 38(3):371-391.doi: 10.1093/petroj/38.3.371 [19] Li, B.L., Shen, X., 2012.Discussion on Middle Jurassic Metallogenic Mechanism of Au-Mo Polymetallic Hydrothermal Deposits in Eastern Jilin.Global Geology, 15(1):19-25.doi: 10.3969/j.issn.1673-9736.2012.01.03 [20] Li, J.Y., 2006.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences, 26(3-4):207-224.doi: 10.1016/j.jseaes.2005.09.001 [21] Li, J.Y., Niu, B.G., Song, B., et al., 1999.The Crustal Formation and Evolution of the Northern Changbai Mountain.Atlas of Geophysics of China, Beijing, 116-118(in Chinese). [22] Li, L.S., Wei, Y.M., Sun, D.F., 2009.Prospecting Method of Geochemistry in Huojihe Area of Xunke, Heilongjiang.Global Geology, 28(1):68-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ200901010.htm [23] Li, L.X., Song, Q.H., Wang, D.H., et al., 2009.Re-Os Isotopic Dating of Molybdenite from the Fu'anpu Molybdenum Deposit of Jilin Province and Discussion on Its Metallogenesis.Rock and Mineral Analysis, 28(3):283-287(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YKCS200903026.htm [24] Liu, J.L., Sun, F.Y., Lin, B.L., et al., 2015.Geochronology, Geochemistry and Ziron Hf Isotope of Miantian Granodiorite Intrusion in Yanbian Region, Southern Jilin Province and Its Geological Significance.Earth Science, 40(1):49-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201501004.htm [25] Liégeois, J.P., 1998.Preface-Some Words on the Post Collisional Magmatism.Lithos, (45):15-17. http://www.africamuseum.be/publication_docs/Liegeois1998-Post-collisional-magmatism-preface.pdf [26] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.No.4.Berkeley Berkeley Geochronology Center Special Publication, Berkeley, California. [27] Ouyang, H.G., Mao, J.W., Santosh, M., et al., 2013.Geodynamic Setting of Mesozoic Magmatism in NE China and Surrounding Regions:Perspectives from Spatio-Temporal Distribution Patterns of Ore Deposits.Journal of Asian Earth Sciences, 78:222-236.doi: 10.1016/j.jseaes.2013.07.011 [28] Pearce, J.A., 1996.Sources and Setting of Granitic Rocks.Episodes, 19(4):120-125. http://www.scienceopen.com/document?vid=a5c39830-2627-4f35-9821-ecf7382f7f4b [29] Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediments and Its Consequence for the Crust and Mantle.Chemical Geology, (145):325-394.doi: 10.1016/S0009-2541(97)00150-2 [30] Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated Ⅰ-Type Graintes in the Coastal Area of Northeastern Fujian Porvince:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Acta Petrologica Sinica, 24(11):2468-2484(in Chinese with English abstract). http://www.oalib.com/paper/1473393 [31] Qu, H., Shi, R.M., 2007.Analysis on Structure Conditions of Dong'an Gold Deposit in Heilongjiang Province.Gold Science and Technology, 15(1):23-25(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJKJ200701005.htm [32] Raith, J.G., 1995.Petrogenesis of the Concordia Granite Gneiss and Its Relation to W-Mo Mineralization in Western Namaqualand, South Africa.Precambrian Research, 70(3-4):303-335. doi: 10.1016/0301-9268(94)00049-W [33] Saunders, A.D., Norry, M.J., Tarney, J., 1988.Origin of MORB and Chemically Depleted Mantle Reservoirs:Trace Element Constraints.J.Petrology, Special Lithosphere Issue, (1):415-445.doi: 10.1093/petrology/Special_Volume.1.415 [34] Shi, Y.M., Cui, B., Jia, W.L., 2007.Geological Features of Luming Molybdenum Deposit at Tieli in the Heilongjiang Provinces.Geology and Prospecting, 43(2):19-22(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200702003.htm [35] Shi, Z.Y., Zhou, Z.H., Wang, Y.Z., et al., 2008.Applied result of Geochemical Exploration of Large-Middle Mo Deposit in the Central Part of Jilin Province.Jilin Geology, 27(2):90-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JLDZ200802020.htm [36] Smithies, R.H., Champion, D.C., 2000.The Archaean High-Mg Diorite Suite:Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth.Journal of Petrology, 41(12):1653-1671.doi: 10.1093/petrology/41.12.1653 [37] Su, R.K., Yu, J.B., Chu, Y.J., et al., 2006.Geological Characteristics and Prospecting Potential of Dong'an Gold Ore Field in Heilongjiang.Gold Science and Technology, 14(1):10-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKJ200601003.htm [38] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [39] Taira, A., 2001.Tectonic Evolution of the Japanese Island Arc System.Annu Rev.Earth Planet Sci., (29):109-134.doi: 10.1146/annurev.earth.29.1.109 [40] Tang, J., Xu, W.L., Wang, F., et al., 2013.Geochronology and Geochemistry of Neoproterozoic Magmatism in the Erguna Massif, NE China:Petrogenesis and Implications for the Break Up of the Rodinia Supercontinent.Precambrian Research, (224):597-611.doi: 10.1016/j.precamres.2012.10.019 [41] Vervoort, J.D., Patchett, P.J., 1996.Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta, 60(19):3717-3733.doi: 10.1016/0016-7037(96)00201-3 [42] Wang, C.H., Song, Q.H., Wang, D.H., et al., 2009.Re-Os Isotopic Dating of Molybdenite from the Daheishan Molybdenum Deposit of Jilin Province and Its Geological Significance.Rock and Mineral Analysis, (3):269-273(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903023.htm [43] Wang, Q., Zhao, Z.H., Xiong, X.L., 2000.The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt.Acta Petrologica et Mineralogica, (4):297-306+315(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200004001.htm [44] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821X(83)90211-X [45] Weaver, B.L., 1991.The Origin of Ocean Island Basalt End-Member Compositions:Trace Element and Isotopic Constraints.Earth and Planetary Science Letters, 104(2):381-397.doi: 10.1016/0012-821X(91)90217-6 [46] Wen S., Li B.L., Li L.B., et al., 2013.Zircon U-Pb Age and Geochemistry of Nanquanyan Diorite in the Lanjia Gold Deposit, Jilin Province.Earth Science, 38(2):305-315(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201302011.htm [47] Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000.Phanerozoic Crustal Growth:U-Pb and Sm-Nd Isotopic Evidence from the Granite in Northeastern China.Tectonophysics, (328):89-113.doi: 10.1016/S0040-1951(00)00179-7 [48] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002.A-Type Granites in Northeastern China:Age and Geochemical Constraints on their Petrogenesis.Chemical Geology, 187(1-2):143-173 doi: 10.1016/S0009-2541(02)00018-9 [49] Wu, F.Y., Jahn, B.M., Wilde, S.M., et al., 2003a.Highly Fractionated Ⅰ-Typed Granites in NE China(Ⅰ):Geochronology and Petrogenesis.Lithos, 66:241-273.doi: 10.1016/S0024-4937(02)00222-0 [50] Wu, F.Y., Jahn, B.M., Wilde, S.W., et al., 2003b..Highly Fractionated Ⅰ-Typed Granites in NE China(Ⅱ):Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic.Lithos, 67:191-204. doi: 10.1016/S0024-4937(03)00015-X [51] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007a.Discussion on the Petrogenesis of Graniets.Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm [52] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702002.htm [53] Wu, F.Y., Yang, J.H., Lo, C.H., et al., 2007.The Heilongjiang Group:A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China.Island Arc, 16(1):156-172. doi: 10.1111/j.1440-1738.2007.00564.x [54] Xu, M.J., Xu, W.L., Wang, F., et al., 2013.Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing'an Range, NE China and Its Tectonic Implications.Acta Petrologica Sinica, 29(2):354-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201302003.htm [55] Xu, W.L., Ge, W.C., Pei, F.P., et al., 2008.Geochronological Frame of Mesozoic Volcanism in NE China and Its Significance.Bulletin of Mineralogy, Petrology and Geochemistry, 27(Suppl.1):286-287 (in Chinese with English abstract). [56] Xu, W.L., Wang, F., Pei, F.P., et al., 2013.Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations.Acta Petrologica Sinica, 29(2):339-353(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201302002.htm [57] Xue M.X., Sun F.Y., Li B.L., et al., 2011.Estimation of Mineral Resource Reserve Based on the SD Method for the No.5 Au Ore-Body in the Dong'an Gold Deposit, Heilongjiang Province.Geology and Exploration, 47(6):1177-1184(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201106029.htm [58] Yang, J.H., Wu, F.Y., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246:336-352.doi: 10.1016/j.epsl.2006.04.029 [59] Yang, Y.C., Han, S.J., Sun, D.Y., et al., 2012.Geological and Geochemical Features and Geochronology of Porphyry Molybdenum Deposits in the Lesser Xing'an Range-Zhangguangcai Range Metallogenic Belt.Acta Petrologica Sinica, 28(2):379-390(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201202004.htm [60] Yu, J.J., Wang, F., Xu, W.L., et al., 2012.Early Jurassic Mafic Magmatism in the Lesser Xing'an-Zhangguangcai Range, NE China, and Its Tectonic Implications:Constraints from Zircon U-Pb Chronology and Geochemistey.Lithos, (142-143):256-266.doi: 10.1016/j.lithos.2012.03.016 [61] Zhang, L.C., Chen, Z.G., Zhou, X.H., et al., 2007.Characteristics of Deep Sources and Tectonicmagmatic Evolution of the Early Cretaceous Volcanics in Genhe Area, Da-Hinggan Mountains:Constraints of Sr-Nd-Pb-Hf Isotopic Geochemistries.Acta Petrologica Sinica, 23(11):2823-2835(in Chinese with English abstract). http://www.oalib.com/paper/1473282 [62] Zhang, Y.L., Ge, W.C., Gao, Y., et al., 2010.Zircon U-Pb Ages and Hf Isotopes of Granites in Longzhen Area and Their Geological Implications.Acta Petrologica Sinica, 26(4):1059-1073(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201004006.htm [63] Zhang, Y.M., Gu X.X., Liu, R.P., et al., 2014.Geochronology of Intrusive Rocks and Associated Ores of the Gaogangshan Porphyry Molybdenum Deposit in Heilongjiang Province.Bulletin of Mineralogy, Petrology and Geochemistry, 33(5):624-635(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201405009.htm [64] Zhi, Y.B., 2015.Study on the Mineralization Tectonic Setting and Genesis of the Dong'an Gold Deposit, Lesser Khingan Range(Dissertation).Jilin University, Jilin(in Chinese with English abstract). [65] 陈静, 2011. 黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用(学位论文). 吉林: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1011098837.htm [66] 高晓峰, 2007. 东北地区中生代火成岩Sr-Nd-Pb同位素填图及其对区域构造演化的制约(学位论文). 广州: 中国科学院研究生院. http://cdmd.cnki.com.cn/Article/CDMD-80165-2007101613.htm [67] 葛文春, 吴福元, 周长勇, 等, 2007.兴蒙造山带东段斑岩型Cu、Mo矿床成矿时代及其地球动力学意义.科学通报, 52(20):2407-2417. doi: 10.3321/j.issn:0023-074x.2007.20.012 [68] 韩振哲, 金哲岩, 吕军, 等, 2010.小兴安岭东南鹿鸣-兴安-前进地区早中生代含矿花岗岩成岩成矿特征.地质与勘探, 46(5):852-862. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201005010.htm [69] 何财, 李少云, 高贺祥, 等, 2010.黑龙江省翠宏山矽卡岩型铁多金属矿床的成矿地质条件.吉林地质, 29(3):56-58. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201003014.htm [70] 洪大卫, 王式, 谢锡林, 等, 2000.兴蒙造山带正εNd(t值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. [71] 候可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm [72] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [73] 敬海鑫, 孙德有, 苟军, 等, 2015.兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征.地球科学, 40(6):982-994. http://earth-science.net/WebPage/Article.aspx?id=3099 [74] 李锦轶, 牛宝贵, 宋彪, 等, 1999.长白山北段地壳的形成和演化.北京:地质出版社, 116-118. [75] 李林山, 魏玉明, 孙德福, 2009.黑龙江逊克霍吉河地区地球化学找矿方法.世界地质, 28(1):68-74. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200901010.htm [76] 李立兴, 松权衡, 王登红, 等, 2009.吉林福安堡钼矿中辉钼矿铼-锇同位素定年及成矿作用探讨.岩矿测试, 28(3):283-287. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903026.htm [77] 刘金龙, 孙丰月, 林博磊, 等, 2015.吉林延边地区棉田岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 40(1):49-60. http://earth-science.net/WebPage/Article.aspx?id=3020 [78] 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm [79] 曲晖, 史瑞民, 2007.黑龙江东安金矿成矿的构造条件分析.黄金科学技术, 15(1):23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ200701005.htm [80] 时永明, 崔彬, 贾维林, 2007.黑龙江省铁力市鹿鸣钼矿床地质特征.地质与勘探, 43(2):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-KJCB201212044.htm [81] 史致元, 周志恒, 王玉增, 等, 2008.吉林省中部大中型钼矿发现过程中勘查地球化学方法的应用效果.吉林地质, 27(2):90-96. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200802020.htm [82] 苏仁奎, 于建波, 褚耀君, 等, 2006.黑龙江东安金矿区地质特征及找矿前景.黄金科学技术, 14(1):10-13. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ200601003.htm [83] 王成辉, 松权衡, 王登红, 等, 2009.吉林大黑山超大型钼矿辉钼矿铼-锇同位素定年及其地质意义.岩矿测试, 28(3):269-273. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903023.htm [84] 王强, 赵振华, 熊小林, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4):297-306, 315. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200004001.htm [85] 闻爽, 李碧乐, 李立宝, 等, 2013.吉林省兰家金矿南泉眼闪长岩U-Pb年代学和地球化学特征.地球科学, 38(2):305-315. http://earth-science.net/WebPage/Article.aspx?id=2369 [86] 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm [87] 吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [88] 徐美君, 许文良, 王枫, 等, 2013.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义.岩石学报, 29(2):354-368. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302003.htm [89] 许文良, 葛文春, 裴福萍, 等, 2008.东北地区中生代火山作用的年代学格架及其构造意义.矿物岩石地球化学通报, 27(增刊1):286-287. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089738.htm [90] 许文良, 王枫, 裴福萍, 等, 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报, 29(2):339-353. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm [91] 薛明轩, 孙丰月, 李碧乐, 等, 2011.基于SD法估算东安金矿床5号矿体资源储量.地质与勘探, 47(6):1177-1184. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106029.htm [92] 杨言辰, 韩世炯, 孙德有, 等, 2012.小兴安岭-张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究.岩石学报, 28(2):379-390. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202004.htm [93] 张连昌, 陈志广, 周新华, 等, 2007.大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约.岩石学报, 23(11):2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013 [94] 张彦龙, 葛文春, 高妍, 等, 2010.龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义.岩石学报, 26(4):1059-1073. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004006.htm [95] 章永梅, 顾雪祥, 刘瑞萍, 等, 2014.黑龙江高岗山斑岩型钼矿床成岩成矿时代及其地质意义.矿物岩石地球化学通报, 33(5):624-635. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201405009.htm [96] 支宇博, 2015. 小兴安岭东安金矿成矿构造背景及矿床成因研究(学位论文). 吉林: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1015591635.htm