Changes of Stable Oxygen and Hydrogen Isotopes and Their Responses to Freezing Process in Dali-Nor Lake in Cold-Arid Areas of China
-
摘要: 利用自然界中广泛分布的环境同位素进行湖泊水体演化过程分析已经成为现代湖泊科学的重要研究方向.通过采集内蒙古达里诺尔湖(简称"达里湖") 2013年1月份的湖冰、湖水, 2012年夏季湖水与湖区大气降水等, 共分析了77个样品中稳定氢(H)、氧(O)同位素值的变化情况, 在此基础上对达里湖水体稳定H、O同位素组成变化及其对结冰过程的响应进行了详细分析, 结果显示: (1)伴随结冰过程的完成, 各站点深层冰体(厚度~65 cm)中δD、δ18O值比表层冰体(厚度~15 cm)中的值出现不同幅度的偏重.而冰下水体中δD、δ18O平均值则比冰体中的平均值分别偏轻约13.85‰、2.23‰.在冰层形成的快速与稳定阶段, δD、δ18O值的变化幅度也存在差异.同时, 冬季外源水体的输入对各站点间同位素值差异的影响比夏季更明显; (2)夏季湖水、冬季湖水与湖冰的同位素值均落在全球大气降水线与湖区大气降水线之外, 显示湖泊冰封之前, 蒸发对湖泊水体同位素偏移存在一定程度的影响; 而冬季湖水与湖冰的同位素值基本位于同一斜率区间, 且全部落在夏季湖水同位素值的右侧, 显示两者之间并不存在明显的蒸发分馏作用, 造成上述现象的因素只能归结于结冰过程.Abstract: Utilizing the environmental isotopes, which exist widely as one proxy of lake water evolution process, has become one important direction in lake sciences.In this paper, a total of 77 samples of lake water, ice and precipitation water were collected in Dali-Nor Lake, which locates in cold-arid areas of Inner Mongolia; and changes of δD and δ18O and their responses to freezing process in Dali-Nor Lake are analyzed. The comparison of the changes of δD and δ18O among lake ice, lake water and precipitate water shows that: (1) Following the freezing process, the values of ΔδD, Δδ18O between bottom (65 cm) and surface (15 cm) ice layers are both above zero.But in fast stage and stable stage during lake ice forming, the change range of water stable isotopes is different.Meanwhile, the values of δD and δ18O in water under the ice are about 13.85 ‰ and 2.23 ‰ lighter than those in lake ice.In addition, the river inflows have more obvious influence on value changes of δD and δ18O among different sites in winter than in summer. (2) The δD and δ18O values of water (both summer and winter) and ice are both in right side of the global meteoric water line (GMWL) and local meteoric water line (LMWL), which shows that the evaporation process has certain influence on the fractional distillation of water stable isotopes before the lake ice formed. On the other hand, the values of δD and δ18O in lake ice and winter lake water have the same slope range and both in right side of the values of δD and δ18O in summer lake water, which shows that the freezing process has obvious influence on the fractional distillation of water stable isotopes during the lake ice forming process.
-
Key words:
- hydrogen isotope /
- oxygen isotope /
- freezing process /
- Dali-Nor Lake /
- cold-arid area /
- geochemistry
-
图 5 达里湖湖水(冬季、夏季)、湖冰及湖区大气降水等的同位素组成
GMWL为全球降水曲线(Craig, 1961);LMWL为达里湖区域夏季降水曲线,根据2012年7—9月份达里湖区域大气降水样品的稳定同位素值计算,其公式为:δD=7.71δ18O-0.06,R2=0.897 5
Fig. 5. δD-δ18O relation of waters (winter and summer), ice and precipitation in Dali-Nor Lake
表 1 2013年1月达里湖湖水(冰)取样站点位置
Table 1. Sample locations of lake ice and water in the Dali-Nor Lake during January 2013
序号 站点名称 经度(°) 纬度(°) 水深(m) 冰厚(m) 1 A7 116.695 9 43.370 8 3.0 0.92 2 B4 116.598 7 43.332 6 6.8 1.01 3 C5 116.632 9 43.300 5 8.5 0.93 4 C7 116.722 3 43.300 0 7.3 1.01 5 D4 116.603 6 43.267 7 1.7 1.12 6 D6 116.666 9 43.266 7 7.0 1.21 7 E1 116.501 2 43.233 6 8.1 0.90 8 E2 116.516 9 43.216 9 9.5 1.06 9 E5 116.633 9 43.233 4 7.8 1.10 表 2 达里湖不同厚度冰层间δD、δ18O同位素差值变化
Table 2. The change of ΔδD and Δδ18O between different layers of lake ice
厚度 取样点 A7 B4 C5 C7 D4 D6 E1 E2 E5 ΔδD(‰) 35~15 cm 2.50 -0.46 -0.43 2.75 0.69 0.58 2.86 5.46 1.15 65~15 cm 2.69 1.32 0.28 3.03 0.97 0.51 4.55 8.23 5.45 Δδ18O(‰) 35~15 cm 0.44 -0.23 0.20 0.72 0.23 -0.03 0.17 1.13 -0.03 65~15 cm 0.62 0.44 0.15 0.35 0.15 0.08 0.57 1.72 1.77 表 3 达里湖区域降水及湖水中δD、δ18O平均值
Table 3. The average value of δD, δ18O in precipitation, lake water and ice
夏季降水 夏季湖水 冬季湖水 冬季湖冰 冬季平均(湖冰+湖水) δD -64.23 -37.66 -41.15(-36.55)* -27.30 -34.23 δ18O -8.33 -3.38 -2.24(-1.49)* -0.009 -1.123 注:带“*”的表示括号内数值为去掉A7、E2两点以后的冬季湖泊水体各站位的δD、δ18O的平均值. -
[1] An, C.B., Chen, F.H., 2009. The Pattern of Holocene Climate Change in the Arid Central Asia: A Case Study Based on Lakes. Journal of Lake Sciences, 21(3): 329-334(in Chinese with English abstract). doi: 10.18307/2009.0303 [2] Ashton, G.D., 2011. River and Lake Ice Thickening, Thinning, and Snow Ice Formation. Cold Regions Science and Technology, 68(1-2): 3-19. doi: 10.1016/j.coldregions.2011.05.004 [3] Aslamova, I.A., Kozlovb, V.V., Kirillinc, G.B., et al., 2014. Ice-Water Heat Exchange during Ice Growth in Lake Baikal. Journal of Great Lakes Research, 40(3): 599-607. doi10.1016/j. jglr. 2014.06.004 doi: 10.1016/j.jglr.2014.06.004 [4] Bao, W.M., Hu, H.Y., Qu, S.M., et al., 2007. Application of Stable Isotope Method to the Water Balance of Lakes. Yellow River, 29(8): 29-30(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2007.08.014 [5] Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702 [6] Duguay, C.R., Flato, G.M., Jeffries, M.O., et al., 2003. Ice-Cover Variability on Shallow Lakes at High Latitudes: Model Simulations and Observations. Hydrological Processes, 17(17): 3465-3483. doi:10.1002/ hyp.1394 [7] Gibson, J.J., Reid, R., 2014. Water Balance along a Chain of Tundra Lakes: A 20-Year Isotopic Perspective. Journal of Hydrology, 519: 2148-2164. doi: 10.1016/j.jhydrol.2014.10.011 [8] Gong, T.L., Tian, L.D., Liu, D.N., et al., 2007. A Preliminary Study of Stable Isotope Cycle Processes in Lake Water in the Yamzho Lake Basin. Journal of Glaciology and Geocryology, 29(6): 914-920(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0240.2007.06.010 [9] Hepp, J., Tuthorn, M., Zech, R., et al., 2014. Reconstructing Lake Evaporation History and the Isotopic Composition of Precipitation by a Coupled δ18O-δ2H Biomarker Approach. Journal of Hydrology, 519: 2164-2173. doi: 10.1016/j.jhydrol.2014.10.012 [10] Hu, H.Y., Bao, W.M., Qu, S.M., et al., 2007. Fractionation Mechanism of Stable Hydrogen and Oxygen Isotope in Water Body Evaporating. Journal of China Hydrology, 27(3): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0852.2007.03.001 [11] Hu, R.J., Jiang, F.Q., Wang, Y.J., et al., 2007. On the Importance of Research on the Lakes in Arid Land of China. Arid Zone Research, 24(2): 137-140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHQJ200702000.htm [12] Jiang, J.H., Huang, Q., 2004. Analysis on Utilization of the Lacustrine Water Resources and the Salinization of Lacustring in West China. Arid Land Geography, 27(3): 300-304 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHDL200403003.htm [13] Jonsson, C.E., Leng, M.J., Rosqvist, G.C., et al., 2009. Stable Oxygen and Hydrogen Isotopes in Sub-Arctic Lake Waters from Northern Sweden. Journal of Hydrology, 376: 143-151. doi: 10.1016/j.jhydrol.2009.07.021 [14] Li, Y.W., Han, T.C., 2000. Situation of Lakes Water Resources and Major Environmental Problems in Inner Mongolia. Inner Mongolia Environmental Protection, 12(2): 17-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMHB200002003.htm [15] Li, Z.J., Yang, Y., Peng, X.M., et al., 2009. The Analysis of the Field Observation Data of Fresh Ice Growing Process in Hongqipao Reservoir of Heilongjiang. Journal of Xi'an University of Technology, 25(3): 270-274 (in Chinese with English abstract). http://www.cqvip.com/QK/92202A/20093/31978656.html [16] Liang, Y., Xiao, H.Y., Liu, X.Z., et al., 2014. Identifying Provenance of Inorganic Nitrogen and Organic Matter in Different Ecotype Lakes Using δ13C and δ15N. Journal of Lake Sciences, 26(5): 691-697 (in Chinese with English abstract). doi: 10.18307/2014.0506 [17] Lü, Y., Wang, R.H., Cai, Z.Y., 2009. Climatic Change and Influence in Arid And Semi-Arid Area of China. Journal of Arid Land Resources and Environment, 23(11): 65-71 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/20113020122.html [18] Ma, J.Z., Huang, T.M., Ding, Z.Y., et al., 2007. Environmental Isotopes as the Indicators of the Groundwater Recharge in the South Bada in Jaran Desert. Advances in Earth Science, 22(9): 922-930 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_advances-earth-science_thesis/0201253015455.html [19] Mayr, C., Lucke, A., Stichler, W., et al., 2007. Precipitation Origin and Evaporation of Lakes in Semi-Arid Patagonia (Argentina) Inferred from Stable Isotopes (δ18O, δ2H). Journal of Hydrology, 334: 53-63. doi: 10.1016/j.jhydrol.2006.09.025 [20] Mugler, I., Sachse, D., Werner, M., et al., 2008. Effect of Lake Evaporation on δD Values of Lacustrine n-Alkanes: A Comparison of Nam Co(Tibetan Plateau) and Holzmaar(Germany). Organic Geochemistry, 39: 711-729. doi: 10.1016/j.orggeochem.2008.02.008 [21] Ohba, T., Hirabayashi, J., Nogami, K., 2000. D/H and 18O/16O Ratios of Water in the Crater Lake at Kusatsu-Shirane Volcano, Japan. Journal of Volcanology and Geothermal Research, 97: 329-346. doi: 10.1016/S0377-0273(99)00169-9 [22] Pu, P.M., Tu, Q.Y., Wang, S.M., 1989. Research Progress of Limnology in China. Journal of Lake Science, 1(1): 1-11(in Chinese). doi: 10.18307/1989.0101 [23] Qin, B.Q., 1999. A Preliminary Investigation of Lake Evolution in 20-Century in Inland Mainland Asia with Relation to the Global Warming. Journal of Lake Sciences, 11(1): 11-19 (in Chinese with English abstract). doi: 10.18307/1999.0102 [24] Schefuss, E., Schouten, S., Schneider, R.R., 2005. Climatic Controls on Central African Hydrology during the Past 20 000 Years. Nature, 437(7061): 1003-1006. doi: 10.1038/nature03945 [25] Scott, J., Rosen, M.R., Saito, L., et al., 2011. The Influence of Irrigation Water on the Hydrology and Lake Water Budgets of Two Small Arid-Climate Lakes in Khorezm, Uzbekistan. Journal of Hydrology, 410: 114-125. doi: 10.1016/j.jhydrol.2011.09.028 [26] Stichler, W., Maloszewski, P., Bertleff, B., et al., 2008. Use of Environmental Isotopes to Define the Capture Zone of a Drinking Water Supply Situated near a Dredge Lake. Journal of Hydrology, 362: 220-233. doi: 10.1016/j.jhydrol.2008.08.024 [27] Sun, Y.Y., He, J., Lü, C.W., et al., 2013. Forms Composition of Inorganic Carbon in Sediments from Dali Lake. Acta Ecologica Sinica, 33(2): 610-618 (in Chinese with English abstract). doi: 10.5846/stxb201111111714 [28] Teng, H., Deng, Y., Huang, F.B., et al., 2011. Experimental Study on the Simulation of Freezing Processes in Calm Waters and Thermal Changes on Reservoir Ice Cover. Advances in Water Science, 22(5): 720-726 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201105021.htm [29] Williams, W.D., 1991. Chinese and Mongolian Saline Lakes: A Limnological Overview. Hydrobiologia, 210(1-2): 39-66. doi: 10.1007/bf00014322 [30] Xiao, J.L., Si, B., Zhai, D.Y., et al., 2008. Hydrology of Dali Lake in Central-Eastern Inner Mongolia and Holocene East Asian Monsoon Variability. Journal of Paleolimnology, 40(1): 519-528. doi: 10.1007/s10933-007-9179-x [31] Xu, Y.W., Kang, S.C., Zhang, Y.L., et al., 2011. A Method for Estimating the Contribution of Evaporative Vapor from the Lake Nam Co to Local Atmospheric Vapor Based on Stable Isotopes of Water Bodies. Chinese Science Bulletin, 56(13): 1042-1049 (in Chinese). doi: 10.1007/s11434-011-4467-2 [32] Yang, G.S., Ma, R.H., Zhang, L., et al., 2010. Lake Status, Major Problems and Protection Strategy in China. Journal of Lake Sciences, 22(6): 799-810(in Chinese with English abstract). http://www.researchgate.net/publication/284682256_Lake_status_major_problems_and_protection_strategy_in_China [33] Yu, T.T., Gan, Y.Q., Zhou, A.G., et al., 2010. Characteristics of Oxygen and Hydrogen Isotope Distribution of Surface Runoff in the Lhasa River Basin. Earth Science—Journal of China University of Geosciences, 35(5): 873-878(in Chinese with English abstract). doi: 10.3799/dqkx.2010.101 [34] Zhang, H.A., Wang, N.A., Li, Z.L., et al., 2011. Features of Hydrogen and Oxygen Isotopes in Lakes and Groundwater in Southeast Badain Jaran Desert. Journal of Desert Research, 31(6): 1623-1629(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGSS201106043.htm [35] Zhang, X.P., Yao, T.D., 1997. Estimation of Lake Evaporation by Stable Isotopic Ratio. Journal of Glaciolgy and Geocryology, 19(2): 62-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BCDT702.007.htm [36] Zhang, X.P., Yao, T.D., Tian, L.D., 2003. Study on the Fractionation Mechanism of Stable Isotope in Evaporating Water Body. Journal of Glaciology and Geocryology, 25(1): 65-71(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0240.2003.01.010 [37] Zhang, Y., Li, C.Y., Pei, G.X., et al., 2012. Field Observtion of Ice Growing Process in Wuliangsuhai Lake. Yellow River, 36(8): 8-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RMHH201408007.htm [38] Zhang, Y.H., Wu, Y.Q., Wen, X.H., et al., 2006. Application of Environmental Isotopes in Water Cycle. Advances in Water Science, 17(5): 738-747(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200605024.htm [39] Zhen, Z.L., Li, C.Y., Li, W.B., et al., 2014. Characteristics of Environmental Isotopes of Surface Water and Groundwater and Their Recharge Relationship in Lake Dali Basin. Journal of Lake Sciences, 26(6): 916-922 (in Chinese with English abstract). doi: 10.18307/2014.0614 [40] Zhen, Z.L., Zhang, S., Shi, X.H., et al., 2013. Research on the Evolution of Dali Lake Area Based on the Remote Sensing Technology. China Rural Water and Hydropower, (7): 6-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNSD201307003.htm [41] Zheng, S.H., Hou, F.G., Ni, B.L., 1983. The Study of Hydrogen and Oxygen Isotope of Precipitation in China. Chinese Science Bulletin, 28(13): 801-806(in Chinese). doi: 10.1360/csb1983-28-13-801 [42] 安成邦, 陈发虎, 2009. 中东亚干旱区全新世气候变化的西风模式——以湖泊研究为例. 湖泊科学, 21(3): 329-334. doi: 10.3321/j.issn:1003-5427.2009.03.003 [43] 包为民, 胡海英, 瞿思敏, 等, 2007. 稳定同位素方法在湖泊水量平衡研究中的应用. 人民黄河, 29(8): 29-30. doi: 10.3969/j.issn.1000-1379.2007.08.014 [44] 巩同梁, 田立德, 刘东年, 等, 2007. 羊卓雍湖流域湖水稳定同位素循环过程研究. 冰川冻土, 29(6): 914-920. doi: 10.3969/j.issn.1000-0240.2007.06.010 [45] 胡海英, 包为民, 瞿思敏, 等, 2007. 稳定性氢氧同位素在水体蒸发中的研究进展. 水文, 27(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200703000.htm [46] 胡汝骥, 姜逢清, 王亚俊, 等, 2007. 论中国干旱区湖泊研究的重要意义. 干旱区研究, 24 (2): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200702000.htm [47] 姜加虎, 黄群, 2004. 我国西部地区湖泊水资源利用与湖水咸化状况分析. 干旱区地理, 27 (3): 300-304. doi: 10.3321/j.issn:1000-6060.2004.03.004 [48] 李亚威, 韩天成, 2000. 内蒙古湖泊水资源及主要环境问题. 内蒙古环境保护, 12(2): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB200002003.htm [49] 李志军, 杨宇, 彭旭明, 等, 2009. 黑龙江红旗泡水库冰生长过程现场观测数据的剖析. 西安理工大学学报, 25(3): 270-274. doi: 10.3969/j.issn.1006-4710.2009.03.004 [50] 梁越, 肖化云, 刘小真, 等, 2014. δ13C和δ15N指示不同生态类型湖泊无机氮及有机质来源. 湖泊科学, 26(5): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201405006.htm [51] 吕妍, 王让会, 蔡子颖, 2009. 我国干旱半干旱地区气候变化及其影响. 干旱区资源与环境, 23(11): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200911011.htm [52] 马金珠, 黄天明, 丁贞玉, 等, 2007. 同位素指示的巴丹吉林沙漠南缘地下水补给来源. 地球科学进展, 22(9): 922-930. doi: 10.3321/j.issn:1001-8166.2007.09.006 [53] 璞培民, 屠清瑛, 王苏民, 1989. 中国湖泊学研究进展. 湖泊科学, 1(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX198901001.htm [54] 秦伯强. 1999. 近百年来亚洲中部内陆湖泊演变及其原因分析. 湖泊科学, 11(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX199901001.htm [55] 孙园园, 何江, 吕昌伟, 等, 2013. 达里诺尔湖沉积物中无机碳的形态组成. 生态学报, 33(2): 610-618. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201302034.htm [56] 滕晖, 邓云, 黄奉斌, 等, 2011. 水库静水结冰过程及冰盖热力变化的模拟试验研究. 水科学进展, 22(5): 720-726. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201105021.htm [57] 徐彦伟, 康世昌, 张玉兰, 等, 2011, 夏季纳木错湖水蒸发对当地大气水汽贡献的方法探讨: 基于水体稳定同位素的估算. 科学通报, 56(13): 1042-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201113011.htm [58] 杨桂山, 马荣华, 张路, 等, 2010. 中国湖泊现状及面临的重大问题与保护策略. 湖泊科学, 22(6): 799-810. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201006003.htm [59] 余婷婷, 甘义群, 周爱国, 等, 2010. 拉萨河流域地表径流氢氧同位素空间分布特征. 地球科学——中国地质大学学报, 35(5): 873-878. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005017.htm [60] 张华安, 王乃昂, 李卓仑, 等, 2011. 巴丹吉林沙漠东南部湖泊和地下水的氢氧同位素特征. 中国沙漠, 31(6): 1623-1629. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201106043.htm [61] 章新平, 姚檀栋, 1997. 利用稳定同位素比率估计湖泊的蒸发. 冰川冻土, 19(2): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT702.007.htm [62] 章新平, 姚檀栋, 田立德, 2003. 水体蒸发过程中稳定同位素分馏的模拟. 冰川冻土, 25(1): 65-71. doi: 10.3969/j.issn.1000-0240.2003.01.010 [63] 张岩, 李畅游, 裴国霞, 等, 2012. 乌梁素海湖泊冰生长过程的现场观测. 人民黄河, 36(8): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201408007.htm [64] 张应华, 仵彦卿, 温小虎, 等, 2006. 环境同位素在水循环研究中的应用. 水科学进展, 17(5): 738-747. doi: 10.3321/j.issn:1001-6791.2006.05.025 [65] 甄志磊, 李畅游, 李文宝, 等, 2014. 内蒙古达里诺尔湖流域地表水和地下水环境同位素特征及补给关系. 湖泊科学, 26(6): 916-922. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201406014.htm [66] 甄志磊, 张生, 史小红, 等, 2013. 基于遥感技术的达里诺尔湖湖面演化研究. 中国农村水利水电, (7): 6-9. doi: 10.3969/j.issn.1007-2284.2013.07.002 [67] 郑淑蕙, 侯发高, 倪葆龄, 1983. 我国大气降水的氢氧稳定同位素研究. 科学通报, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm