Development of Carbonate Platform and Its Response to Cenozoic Tectonic in Reed Bank Area, the South China Sea
-
摘要: 为了探索碳酸盐台地在海盆演化过程中的作用,对南海南部礼乐滩区域碳酸盐台地的发育及其与新生代构造沉降特征的相关性进行研究.对多道地震数据的分析表明:在研究区广泛发育包括碳酸盐台地和生物礁在内的碳酸盐沉积,其发育时间主要集中在晚渐新世至早中新世期间,在中中新世后开始退积和淹没.通过对穿越礼乐滩区的两条NW-SE向测线NH973-2和DPS93-2的构造沉降反演,进行沉降量、沉降速率计算和构造分析.结果表明:沉降速率及沉降量随不同时期的构造活动而发生变化,可分为缓慢沉降期(古新世-早渐新世,张裂阶段)、隆升剥蚀期(晚渐新世-早中新世,漂移阶段)、加速沉降期(早中新世末期,后漂移阶段1)、强烈沉降期(中新世,后漂移阶段2)和稳定沉降期(晚中新世至今,后漂移阶段3)5个发育期.碳酸盐台地的发育期和南海海盆的漂移阶段相对应,构造沉降的分析表明该期间具有构造抬升作用,其与相对上升的海平面结合有利于碳酸盐沉积的发育.在南海扩张期间主地幔对流的控制下,南部陆缘区礼乐地块和礼乐滩盆地之间较大的地壳厚度差异会导致侧向上地温梯度的差异,从而形成礼乐滩盆地之下的次生对流.该次生对流控制了研究区在晚渐新世至早中新世期间的隆升剥蚀作用.Abstract: In order to research the role of carbonate platform in the evolution of basin, the development of the carbonate platform and its correlation with the Cenozoic tectonic subsidence characteristics in the Reed Bank area in the southern South China Sea are explored in this study. The rate and amount of tectonic subsidence, and the tectonics are analyzed on the basis of two multi-channel seismic profiles across the Reed Bank area in NW-SE direction. Detailed seismic interpretations prove the occurrence of a wide distributed carbonate platform developed between the Late Oligocene to Early Miocene, which was submerged after the Middle Miocene. Reconstruction of the tectonic subsidence history shows that the tectonic subsidence was controlled by the tectonic activities in different periods, and could be divided into 5 episodes: the slow subsidence episode (Paleocene to Early Oligocene, rifting stage), the uplift and erosion episode (Late Oligocene to Early Miocene, drifting stage), the accelerating subsidence episode(the latest Early Miocene, post-drift stage 1), the intensive subsidence episode(Miocene, post-drift stage 2), and the steady subsidence episode (Late Miocene to present, post-rift stage 3). The development stage of the carbonate platform was consistent with the drifting stage of the South China Sea, during which the tectonic subsidence analysis suggests an uplift and erosion characteristics. This stable shallow water environment was favorable to the development of carbonates. During the drifting stage, large-scale mantle under the oceanic basin and the lateral temperature gradients under the continental margin might have triggered a secondary mantle convection under the rifted Reed Bank basin, resulting in the uplift and erosion activities in this stage, and the wide-development of carbonate platform.
-
Key words:
- the South China Sea /
- Reed Bank area /
- carbonate platform /
- tectonics /
- secondary convection
-
图 6 地震剖面中典型碳酸盐识别特征及Sampagita-1井岩性
a, b, c.NH973-2测线北部地层层序及碳酸盐识别特征;d.礼乐滩区Sampagita-1井岩性, 钻井数据来自Steuer et al.(2014)
Fig. 6. Typical identification of characteristics of carbonate in seismic section and the lithology of the well of Sampagita-1
表 1 古水深分布
Table 1. The distribution of paleo-water depth
反射界面 Tg T70 T60 T40 T32 T20 T0 地质时代(Ma) 65.0 32.0 19.0 15.3 10.5 5.5 0 古水深(m) 0 100.00 50.00 352.96 745.98 1 155.38 1 605.72 注:表中数据来自文献(丁巍伟等, 2011). 表 2 南海南部时速统计
Table 2. Time-speed statistics in southern South China Sea
TWT(s) Vn(km·s-1) TWT(s) Vn(km·s-1) TWT(s) Vn(km·s-1) TWT(s) Vn(km·s-1) 0.0 1 500 1.8 2 244 3.6 2 928 5.6 3 414 0.2 1 510 2.0 2 330 3.8 2 989 5.8 3 453 0.4 1 550 2.2 2 418 4.0 3 044 6.0 3 492 0.5 1 600 2.4 2 494 4.1 3 068 6.2 3 529 0.6 1 646 2.5 2 532 4.3 3 120 6.4 3 578 0.8 1 775 2.6 2 577 4.5 3 164 6.6 3 621 1.0 1 900 2.8 2 642 4.6 3 187 6.8 3 662 1.2 1 993 3.0 2 720 4.8 3 238 7.0 3 700 1.4 2 071 3.2 2 800 5.0 3 280 1.5 2 107 3.4 2 871 5.2 3 327 1.6 2 144 3.5 2 891 5.4 3 370 表 3 各层岩性参数统计
Table 3. Statistics of lithologic parameters of each layer
反射层 各层岩性(%) 各层岩性参数 泥岩 砂岩 灰岩 rho_G(kg/m3) SurPor CC(m) T20~T0 48.4 28.5 23.1 2 698 0.61 0.000 49 T32~T20 36.6 25.9 37.5 2 698 0.62 0.000 52 T40~T32 29.9 9.6 60.5 2 707 0.66 0.000 61 T60~T40 18.2 18.8 63.0 2 701 0.65 0.000 59 T70~T60 18.2 13.3 68.5 2 704 0.66 0.000 62 Tg~T70 62.6 34.6 2.8 2 695 0.58 0.000 43 注:表中数据来自赵中贤等(2010),其中,rho_G为岩性颗粒密度,SurPor为孔隙度,CC为压实常数. -
[1] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4): 6299-6328. doi: 10.1029/92jb02280 [2] Buck, W.R., 1986. Small-Scale Convection Induced by Passive Rifting: The Cause for Uplift of Rift Shoulders. Earth and Planetary Science Letters, 77: 362-372. doi: 10.1016/0012-821X(86)90146-9 [3] Calvès, G., Clift, P.D., Inam, A., 2008. Anomalous Subsidence on the Rifted Volcanic Margin of Pakistan: No Influence from Deccan Plume. Earth and Planetary Science Letters, 272(1-2): 231-239. doi: 10.1016/j.epsl.2008.04.042 [4] Clift, P.D., 1997. Temperature Anomalies under the Northeast Atlantic Rifted Volcanic Margins. Earth and Planetary Science Letters, 146(1-2): 195-211. doi: 10.1016/s0012-821x(96)00228-2 [5] Clift, P., Lee, G.H., Duc, N.A., et al., 2008. Seismic Reflection Evidence for a Dangerous Grounds Miniplate: No Extrusion Origin for the South China Sea. Tectonics, 27(3): 1-16. doi: 10.1029/2007tc002216 [6] Cullen, A., Reemst, P., Henstra, G., et al., 2010. Rifting of the South China Sea: New Perspectives. Petroleum Geoscience, 16(3): 273-282. doi: 10.1144/1354-079309-908 [7] Ding, W.W., Li, J.B., Dong, C.Z., et al., 2014. Carbonate Platforms in the Reed Bank Area, South China Sea: Seismic Characteristics, Development and Controlling Factors. Energy, Exploration & Exploitation, 32(1): 243-262. doi: 10.1260/0144-5987.32.1.243 [8] Ding, W.W., Li, J.B., Li, M.B., 2011. Seismic Stratigraphy, Tectonic Structure and Extension Model across the Reed Bank Basin in the South Margin of South China Sea: Evidence from NH973-2 Multichannel Seismic Profile. Earth Science—Journal of China University of Geosciences, 36(5): 895-904(in Chinese with English abstract). doi: 10.3799/dqkx.2011.094 [9] Faccenna, C., Becker, T.W., 2010. Shaping Mobile Belts by Small-Scale Convection. Nature, 465(7298): 602-605. doi: 10.1038/nature09064 [10] Franke, D., Barckhausen, U., Baristeas, N., et al., 2011. The Continent-Ocean Transition at the Southeastern Margin of the South China Sea. Marine and Petroleum Geology, 28(6): 1187-1204. doi: 10.1016/j.marpetgeo.2011.01.004 [11] Gao, H.F., Zeng, X.H., Liu, Z.H., et al., 2005. Simulating of Subsidence History and Analysis of Tectonic Evolutionary Characteristics of Liyue Basin in South China Sea. Geotectonica et Metallogenia, 29(3): 385-390(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2005.03.014 [12] Hinz, K., Fritsch, J., Kempter, E.H.K., et al., 1989. Thrust Tectonics along the North-Western Continental Margin of Sabah/Borneo. Geologische Rundschau, 78(3): 705-730. doi: 10.1007/bf01829317 [13] Hutchison, C.S., 2004. Marginal Basin Evolution: The Southern South China Sea. Marine and Petroleum Geology, 21(9): 1129-1148. doi: 10.1016/j.marpetgeo.2004.07.002 [14] King, S.D., Anderson, D.L., 1998. Edge-Driven Convection. Earth and Planetary Science Letters, 160(3-4): 289-296. doi: 10.1016/s0012-821x(98)00089-2 [15] Kudrass, H.R., Wiedicke, M., Cepek, P., et al., 1986. Mesozoic and Cainozoic Rocks Dredged from the South China Sea (Reed Bank Area) and Sulu Sea and Their Significance for Plate-Tectonic Reconstructions. Marine and Petroleum Geology, 3(1): 19-30. doi: 10.1016/0264-8172(86)90053-x [16] Kusznir, N., Karner, G., 2007. Continental Lithospheric Thinning and Breakup in Response to Upwelling Divergent Mantleflow: Application to the Woodlark, Newfoundland and Iberia Margins. In: Karner, G.D., Manatschal, G., Pinheiro, L.M., eds., Imaging, Mapping and Modeling Continental Lithosphere Extension and Breakup. Geological Society of London, Special Publication, London, 389-419. doi: 10.1144/SP282.16 [17] Li, G., Zhang, L.L., Zhu, L., 2011. Research on the Tectonic Features and Gravity-Magnetic Characteristics of Continental Margins in the South China Sea. Progress in Geophysics, 26(3): 858-875 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201103012.htm [18] Li, J.B., 2011. Dynamics of the Continental Margins of South China Sea: Scientific Experiments and Research Progresses. Chinese Journal of Geophysics, 54(12): 2993-3003(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.002 [19] Li, P.C., Zhao, Z.X., Zhang, C.M., et al., 2011. Depositional Process and Evolution of Liyue Basin in Southern South China Sea. Earth Science—Journal of China University of Geosciences, 36(5): 837-844(in Chinese with English abstract). doi: 10.3799/dqkx.2011.087 [20] Li, S.Z., Suo, Y.H., Liu, X., et al., 2012. Basic Structural Pattern and Tectonic Models of the South China Sea: Problems, Advances and Controversies. Marine Geology & Quaternary Geology, 32(6) : 35-53 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013MGQG...32...35L [21] Lin, C.S., Zhang, Y.M., 1995. Quantitative Stretching Models and Computer Simulation of Rift Basin. Earth Science Frontiers, 2(3-4): 79-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY503.011.htm [22] Liu, B.M., Xia, B., Jin, Q.H., et al., 2003. Basin Tectonic Evolution and Hydrocarbon Prospect of the Carbonate Reservoirs in South China Sea. Marine Origin Petroleum Geology, 8(1-2): 10-16(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2003.01.002 [23] Lü, C.L., Yao, Y.J., Wu, S.G., et al., 2011. Seismic Responses and Sedimentary Characteristics of the Miocene Wan'an Carbonate Platform in the Southern South China Sea. Earth Science—Journal of China University of Geosciences, 36(5): 931-938(in Chinese with English abstract). doi: 10.3799/dqkx.2011.098 [24] Mckenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. doi: 10.1016/0012-821x(78)90071-7 [25] Péron-Pinvidic, G., Manatschal, G., 2008. The Final Rifting Evolution at Deep Magma-Poor Passive Margins from Iberia-Newfoundland: A New Point of View. International Journal of Earth Sciences, 98(7): 1581-1597. doi: 10.1007/s00531-008-0337-9 [26] Reston, T.J., 2009. The Extension Discrepancy and Syn-Rift Subsidence Deficit at Rifted Margins. Petroleum Geoscience, 15(3): 217-237. doi: 10.1144/1354-079309-845 [27] Ruan, A.G., Niu, X.W., Qiu, X.L., et al., 2011. A Wide Angle Ocean Bottom Seismometer Profile across Liyue Bank, the Southern Margin of South China Sea. Chinese Journal of Geophysics, 54(12): 3139-3149 (in Chinese with English abstract). doi: 10.1002/cjg2.1682 [28] Schlüter, H.U., Hinz, K., Block, M., 1996. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1-2): 39-78. doi: 10.1016/0025-3227(95)00137-9 [29] Steuer, S., Franke, D., Meresse, F., et al., 2014. Oligocene-Miocene Carbonates and Their Role for Constraining the Rifting and Collision History of the Dangerous Grounds, South China Sea. Marine and Petroleum Geology, 58: 644-657. doi: 10.1016/j.marpetgeo.2013.12.010 [30] Sun, L.T., Sun, Z., Zhan, W.H., et al., 2010. Petroleum Potential Prediction of the Lile Basin in Nansha. Earth Science—Journal of China University of Geosciences, 35(1): 137-145(in Chinese with English abstract). doi: 10.3799/dqkx.2010.014 [31] Sun, L.T., Sun, Z., Zhou, D., et al., 2008. Stratigraphic and Structural Characteristics of Lile Basin in Nansha Area. Geotectonica et Metallogenia, 32(2): 151-158(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2008.02.003 [32] Sun, Z., Zhao, Z.X., Zhou, D., et al., 2011. The Stratigraphy and the Sequence Achitecture of the Basins in Nansha Region. Earth Science—Journal of China University of Geosciences, 36(5): 798-806(in Chinese with English abstract). doi: 10.3799/dqkx.2011.082 [33] Sun, Z., Zhong, Z.H., Keep, M., et al., 2009.3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34: 544-556. doi: 10.1016/j.jseaes.2008.09.002 [34] Taylor, B., Hayes. D.E., 1980. The Tectonic Evolution of the South China Basin. In: Hayes, D.E., ed., The Tectonic And Geologic Evolution of Southeast Asian Seas and Islands. Geophysical Monography, AGU, Washington, D.C., 89-104. doi: 10.1029/GM023p0089 [35] Taylor, B., Hayes. D.E., 1983. Origin and History of the South China Basin. In: Hayes, D.E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2. Geophysical Monography, AGU, Washington, D.C., 27: 23-56. doi: 10.1029/GM027p0023 [36] van Wijk, J.W., Baldridge, W.S., van Hunen, J., et al., 2010. Small-Scale Convection at the Edge of the Colorado Plateau: Implications for Topography, Magmatism, and Evolution of Proterozoic Lithosphere. Geology, 38(7): 611-614. doi: 10.1130/g31031.1 [37] van Wijk, J., van Hunen, J., Goes, S., 2008. Small-Scale Convection during Continental Rifting: Evidence from the Rio Grande Rift. Geology, 36(7): 575. doi: 10.1130/g24691a.1 [38] Wu, S.G., Zhao, X.Y., Dong, D.D., et al., 2011. Seismic Response and Development of Carbonate Platform in Liyue Basin, Nansha Sea Area. Earth Science—Journal of China University of Geosciences, 36(5): 807-814(in Chinese with English abstract). doi: 10.3799/dqkx.2011.083 [39] Wu, S.M., Zhou, D., Liu, H.L., 2004. Tectonic Framework and Evolutionary Characteristics of Nansha Block, South China Sea. Geotectonica et Metallogenia, 28(1): 23-28(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2004.01.004 [40] Xie, X.N., Zhang, C., Ren, J.Y., et al., 2011. Effects of Distinct Tectonic Evolutions on Hydrocarbon Accumulation in Northern and Southern Continental Marginal Basins of South China Sea. Chinese Journal of Geophysics, 54(12): 3280-3291(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.026 [41] Yan, P., Liu, H.L., 2004. Tectonic-Stratigraphic Division and Blind Fold Structures in Nansha Waters, South China Sea. Journal of Asian Earth Sciences, 24(3): 337-348. doi: 10.1016/j.jseaes.2003.12.005 [42] Yang, C.P., Yao, Y.J., Li, X.J., et al., 2014. Sequence Stratigraphy and Sedimentary Cycle of Miocene Carbonate Buildups in Zengmu Basin, the Southern South China Sea. Earth Science—Journal of China University of Geosciences, 39(1): 91-98 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.009 [43] Yang, M.Z., Wu, J.M., Yang, R., et al., 1996. Stratigraphic Division and Nomenclature of the Southwestern Nansha Sea Area. Geological Research of South China Sea, (8): 37-47 (in Chinese with English abstract). http://www.researchgate.net/publication/312987458_Stratigraphic_division_and_nomenclature_of_the_southwestern_Nansha_sea_area [44] Yao, Y., Liu, H., Yang, C., et al., 2012. Characteristics and Evolution of Cenozoic Sediments in the Liyue Basin, SE South China Sea. Journal of Asian Earth Sciences, 60: 114-129. doi: 10.1016/j.jseaes.2012.08.003 [45] Yao, Y.J., Jiang, Y.K., Zeng, X.H., 2002. Cenozoic Tectonic Movements in Nansha Area, South China Sea. China Offshore Oil and Gas(Geology), 16(2): 113-117, 124(in Chinese with English abstract). http://www.cqvip.com/QK/85683X/20022/7131315.html [46] Zhang, L., Li, W.C., Zeng, X.H., 2003. Stratigraphic Sequence and Hydrocarbon Potential in Lile Basin. Petroleum Geology & Experiment, 25(5): 469-472, 480(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2003.05.009 [47] Zhang, Y.F., Liao, J., Sun, Z., et al., 2011. Characteristics of Tectonic Subsidence of Nansha Area. Earth Science—Journal of China University of Geosciences, 36(5): 949-955(in Chinese with English abstract). doi: 10.3799/dqkx.2011.100 [48] Zhao, Z.X., Sun, Z., Chen, G.H., et al., 2011. Cenozoic Structural Characteristics and Subsidence Evolution in Nansha. Earth Science—Journal of China University of Geosciences, 36(5): 815-822 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201105008.htm [49] Zhao, Z.X., Sun, Z., Wang, Z.F., et al., 2013. The Dynamic Mechanism of Post-Rift Accelerated Subsidence in Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34(3-4): 295-308. doi: 10.1007/s11001-013-9188-2 [50] Zhao, Z.X., Zhou, D., Liao, J., et al., 2010. Lithospheric Stretching Modeling of the Continental Shelf in the Pearl River Mouth Basin and Analysis of Post-Breakup Subsidence. Acta Geologica Sinica, 84(8): 1135-1145(in Chinese with English abstract). http://www.researchgate.net/publication/285877133_Lithospheric_stretching_modeling_of_the_continental_shelf_in_the_Pearl_River_Mouth_Basin_and_analysis_of_post-breakup_subsidence [51] Zhou, X.Z., Wei, C.X., Xia, K.Y., 1991. Contrast of Stratum Division in the Liyue Bank and Its Surrounding Areas. In: Nansha Islands Cruises of South China Sea Institute of Oceanology, ed., Geology, Geophysics and Coral in the Nansha Islands and Its Surrounding Areas. China Ocean Press, Beijing, 80- 92 (in Chinese with English abstract). [52] 丁巍伟, 李家彪, 黎明碧, 2011. 南海南部陆缘礼乐盆地新生代的构造-沉积特征及伸展机制: 来自NH973-2多道地震测线的证据. 地球科学——中国地质大学学报, 36(5): 895-904. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105018.htm [53] 高红芳, 曾祥辉, 刘振湖, 等, 2005. 南海礼乐盆地沉降史模拟及构造演化特征分析. 大地构造与成矿学, 29(3): 385-390. doi: 10.3969/j.issn.1001-1552.2005.03.014 [54] 李刚, 张丽莉, 朱鲁, 2011. 南海大陆边缘构造活动与重磁场特征研究. 地球物理学进展, 26(3): 858-875. doi: 10.3969/j.issn.1004-2903.2011.03.011 [55] 李家彪, 2011. 南海大陆边缘动力学: 科学实验与研究进展. 地球物理学报, 54(12): 2993-3003. doi: 10.3969/j.issn.0001-5733.2011.12.002 [56] 李鹏春, 赵中贤, 张翠梅, 等, 2011. 南沙海域礼乐盆地沉积过程和演化. 地球科学——中国地质大学学报, 36(5): 837-844. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105011.htm [57] 李三忠, 索艳慧, 刘鑫, 等, 2012. 南海的基本构造特征与成因模型: 问题与进展及论争. 海洋地质与第四纪地质, 32(6): 35-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206009.htm [58] 林畅松, 张燕梅, 1995. 拉伸盆地模拟理论基础与新进展. 地学前缘, 2(3-4): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY503.011.htm [59] 刘宝明, 夏斌, 金庆焕, 等, 2003. 南海盆地演化及碳酸盐岩油气勘探. 海相油气地质, 8(1-2): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ2003Z1005.htm [60] 吕彩丽, 姚永坚, 吴时国, 等, 2011. 南沙海区万安盆地中新世碳酸盐台地的地震响应与沉积特征. 地球科学——中国地质大学学报, 36(5): 931-938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105022.htm [61] 阮爱国, 牛雄伟, 丘学林, 等, 2011. 穿越南沙礼乐滩的海底地震仪广角地震试验. 地球物理学报, 54(12): 3139-3149. doi: 10.3969/j.issn.0001-5733.2011.12.014 [62] 孙龙涛, 孙珍, 詹文欢, 等, 2010. 南沙海域礼乐盆地油气资源潜力. 地球科学——中国地质大学学报, 35(1): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001017.htm [63] 孙龙涛, 孙珍, 周蒂, 等, 2008. 南沙海区礼乐盆地沉积地层与构造特征分析. 大地构造与成矿学, 32(2): 151-158. doi: 10.3969/j.issn.1001-1552.2008.02.003 [64] 孙珍, 赵中贤, 周蒂, 等, 2011. 南沙海域盆地的地层系统与沉积结构. 地球科学——中国地质大学学报, 36(5): 798-806. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105006.htm [65] 吴时国, 赵学燕, 董冬冬, 等, 2011. 南沙海区礼乐盆地碳酸盐台地地震响应及发育演化. 地球科学——中国地质大学学报, 36(5): 807-814. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105007.htm [66] 吴世敏, 周蒂, 刘海龄, 2004. 南沙地块构造格局及其演化特征. 大地构造与成矿学, 28(1): 23-28. doi: 10.3969/j.issn.1001-1552.2004.01.004 [67] 解习农, 张成, 任建业, 等, 2011. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制. 地球物理学报, 54(12): 3280-3291. doi: 10.3969/j.issn.0001-5733.2011.12.026 [68] 杨楚鹏, 姚永坚, 李学杰, 等, 2014. 南海南部曾母盆地中新世碳酸盐岩的层序地层. 地球科学——中国地质大学学报, 39(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201401010.htm [69] 杨木壮, 吴进民, 杨锐, 等, 1996. 南沙海域西南部地层划分及命名. 南海地质研究, (8): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ199600003.htm [70] 姚永坚, 姜玉坤, 曾祥辉, 2002. 南沙海域新生代构造运动特征. 中国海上油气: 地质, 16(2): 113-117, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200202009.htm [71] 张莉, 李文成, 曾祥辉, 2003. 礼乐盆地地层发育特征及其与油气的关系. 石油实验地质, 25(5): 469-472, 480. doi: 10.3969/j.issn.1001-6112.2003.05.009 [72] 张云帆, 廖杰, 孙珍, 等, 2011. 南沙海域构造沉降特征. 地球科学——中国地质大学学报, 36(5): 949-955. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105024.htm [73] 赵中贤, 周蒂, 廖杰, 等, 2010. 珠江口盆地陆架区岩石圈伸展模拟及裂后沉降分析. 地质学报, 84(8): 1135-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008007.htm [74] 赵中贤, 孙珍, 陈广浩, 等, 2011. 南沙海域新生代构造特征和沉降演化. 地球科学——中国地质大学学报, 36(5): 815-822. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105008.htm [75] 周效中, 魏常兴, 夏戡原, 1991. 礼乐滩及其临近海区地层划分对比. 见: 中国科学院南沙综合科学考察队编. 南沙群岛及其临近海区地质地球物理及岛礁研究论文集(一). 北京: 海洋出版社, 80-92.