• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地惠州凹陷北部边界断裂复合联接和转换

    田巍 何敏 杨亚娟 刘海伦 袁勋 吴森 朱定伟 梅廉夫

    田巍, 何敏, 杨亚娟, 刘海伦, 袁勋, 吴森, 朱定伟, 梅廉夫, 2015. 珠江口盆地惠州凹陷北部边界断裂复合联接和转换. 地球科学, 40(12): 2037-2051. doi: 10.3799/dqkx.2015.181
    引用本文: 田巍, 何敏, 杨亚娟, 刘海伦, 袁勋, 吴森, 朱定伟, 梅廉夫, 2015. 珠江口盆地惠州凹陷北部边界断裂复合联接和转换. 地球科学, 40(12): 2037-2051. doi: 10.3799/dqkx.2015.181
    Tian Wei, He Min, Yang Yajuan, Liu Hailun, Yuan Xun, Wu Sen, Zhu Dingwei, Mei Lianfu, 2015. Complex Linkage and Transformation of Boundary Faults of Northern Huizhou Sag in Pearl River Mouth Basin. Earth Science, 40(12): 2037-2051. doi: 10.3799/dqkx.2015.181
    Citation: Tian Wei, He Min, Yang Yajuan, Liu Hailun, Yuan Xun, Wu Sen, Zhu Dingwei, Mei Lianfu, 2015. Complex Linkage and Transformation of Boundary Faults of Northern Huizhou Sag in Pearl River Mouth Basin. Earth Science, 40(12): 2037-2051. doi: 10.3799/dqkx.2015.181

    珠江口盆地惠州凹陷北部边界断裂复合联接和转换

    doi: 10.3799/dqkx.2015.181
    基金项目: 

    国家科技重大专项课题子课题 2011ZX05023-001-015

    详细信息
      作者简介:

      田巍(1986-),男,博士研究生,主要从事含油气盆地构造分析.E-mail: tianweijordan@163.com

      通讯作者:

      梅廉夫,E-mail: lfmei@cug.edu.cn

    • 中图分类号: P548

    Complex Linkage and Transformation of Boundary Faults of Northern Huizhou Sag in Pearl River Mouth Basin

    • 摘要: 边界断裂控制断陷盆地的形成和构造格局,不同边界断裂联接模式对不同类型盆地演化具有差异性.基于井控高精度3D地震资料,通过对边界断裂几何学特征描述和“四级小层”刻画,结合裂陷Ⅰ幕边界断裂不同区段的活动差异性以及与沉积中心迁移的空间匹配关系,剖析珠江口盆地惠州凹陷北部边界断裂的形成和演化.惠州凹陷北部边界断裂始新世早期分段孤立发育,逐渐以纵向和横向双向联接的模式发展.纵向联接为断层软联接和硬联接复合联接和转换,形成转换斜坡和横向背斜,控制凹(洼)陷的结构与演化,制约沉积中心及层序的迁移.横向联接表现为转换斜坡内横向断层的多阶段联接,联接过程可划分为孤立正断层、同向叠置及硬联接3个阶段,控制转换斜坡带内沉积体系的发育和展布.研究给出了一个裂陷盆地边界断裂时空演化、复合联接和转换模式的独特案例,对丰富裂陷盆地边界断裂及其与沉积层序、凹陷演化和区域动力学机制的响应关系的研究具有积极的意义和价值.

       

    • 图  1  惠州凹陷北部区域位置

      中海油深圳分公司(2003)修改

      Fig.  1.  Regional location of northern Huizhou sag

      图  2  惠州凹陷北部构造纲要

      区域位置见图 1中红色框

      Fig.  2.  Structural framework of northern Huizhou sag

      图  3  不同洼陷的结构样式

      剖面AA′.HZ10洼;剖面BB′.HZ09洼;剖面CC′.HZ08洼和HZ14洼.测线位置依次见图 2

      Fig.  3.  Structural styles of different depressions

      图  4  横向断层剖面

      平面位置见图 2DD′EE′

      Fig.  4.  The cross-sections showing the transverse faults

      图  5  惠州凹陷北部文昌组底界面(Tg)三维地质模型

      ①为亲F10横向断裂;②为亲F13横向断裂

      Fig.  5.  Three-dimensional geological model of Wenchang bottom surface (Tg), northern Huizhou sag

      图  6  断陷期北部边界断层F10活动速率分布

      Fig.  6.  Bar diagram showing the activity rates of the main bounding fault F10 in syn-rift stage

      图  7  沿F10走向的断层位移曲线

      深色阴影区代表断层软联接,形成转换斜坡,浅色阴影区代表断层硬联接,形成横向褶皱

      Fig.  7.  Fault displacement profile along F10 showing the along-strike fault linkages

      图  8  洼陷层序迁移演化剖面

      测线位置见图 2中的FF′

      Fig.  8.  The cross-section showing the sequence migration and evolution of depression in Huibei

      图  9  沿平行于转换斜坡走向的地震剖面

      测线位置见图 2GG′

      Fig.  9.  Seismic profile parallel to relay ramp's strike

      图  10  横向断层活动速率分布及对比

      Fig.  10.  Distribution and contrast of activity rates for transfer faults

      图  11  "四级小层"迁移反应横向断层发育次序

      测线位置见图 2HH′

      Fig.  11.  The migration of "Fourth layer" reflecting the order of transfer faults development

      图  12  边界断裂陡坡带及分段断层联接部位主要地震相类型

      测线位置见图 13II′JJ′

      Fig.  12.  The main seismic facies types of steep slope zones and segment fault linkage part of border fault

      图  13  边界断裂系演化及其对沉积体系的控制作用

      Fig.  13.  Block diagrams showing the evolution of bounding fault system and the controlling effect on sedimentation

      图  14  转换斜坡带地震相特征

      测线位置见图 13KK′

      Fig.  14.  Characteristics of seismic facies in relay ramp

      图  15  断层复合联接和转换及结构演化与层序迁移

      Fig.  15.  Relationship between fault linkage, transform and structural evolution, sequence migration

      表  1  不同裂陷盆地边界断裂模式

      Table  1.   Border fault patterns under different rift basin types

      盆地类型 边界模式 实例 相关文献
      陆内裂陷盆地(大陆裂谷) 软联接为主(转换带) 东非裂谷系
      莱茵地堑系
      贝加尔裂谷
      Morley et al., 1990
      Younes and McClay, 2002
      Hus et al., 2006
      陆间裂陷盆地 硬联接为主(横向褶皱) 红海-亚丁湾
      苏伊士湾
      Jackson et al., 1988
      McClay et al., 1998
      Chris et al., 2002
      Bosworth et al., 2005
      被动大陆边缘盆地 复合联接(转换斜坡和横向褶皱并存) 大西洋两侧的大陆边缘
      南海北部陆坡
      Shelton, 1984
      Bally, 1981
      下载: 导出CSV

      表  2  横向断层几何要素统计

      Table  2.   Statistic of geometry elements for transfer faults

      断层名称 断开层位 文昌组
      延伸长度(km) 走向(°) 倾角(°) 最大断距(km)
      F10-1 Tg-T80 2.4 SEE116.2 40~50 1.105
      F10-2 Tg-T80 3.1 SEE135.1 70 1.489
      F10-3 Tg-T80 1.8 SEE106.7 35~50 0.671
      F13-1 Tg-T80 3.5 NW48.1 30~40 1.624
      F13-2 Tg-T80 6.9 NW59.7 40~50 1.464
      F13-3 Tg-T80 2.6 NW54.5 30~40 1.182
      下载: 导出CSV
    • [1] Anders, M.H., Schlische, R.W., 1994. Overlapping Faults, Intra-Basin Highs, and the Growth of Normal Faults. Journal of Geology, 102(2): 165-180. doi: 10.1086/629661
      [2] Bally, A.W., 1981. Geology of Passive Continental Margins. American Association of Petroleum Geologists Course Note Series, 19: 1-48. http://ci.nii.ac.jp/ncid/BA4906204X
      [3] Bally, A.W., 1982. Musings over Sedimentary Basin Evolution. Philosophical Transactions of the Royal Society of London, 305(1489): 325-338. doi: 10.1098/rsta.1982.0040
      [4] Barnett, J.A., Mortimer, J., Rippon, J.H., et al., 1987. Displacement Geometry in the Volume Containing a Single Normal Fault. AAPG Bulletin, 71(8): 925-937.
      [5] Beach, A., 1984. Structural Evolution of the Witch Ground Graben. Journal of the Geological Society of London, 141(4): 621-628. doi: 10.1144/gsjgs.141.4.0621
      [6] Bosworth, W., 1985. Geometry of Propagating Continental Rifts. Nature, 316(6029): 625-627. doi: 10.1038/316625a0
      [7] Bosworth, W., 1995. A High-Strain Rift Model for the Southern Gulf of Suez (Egypt). Geological Society Special Publication, 80(1): 75-102. doi: 10.1144/GSL.SP.1995.080.01.04
      [8] Bosworth, W., Huchon, P., McClay, K., 2005. The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences, 43(1): 334-378. doi: 10.1016/j.jafrearsci.2005.07.020
      [9] Briais, A., Patriat, P., Tapponier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. doi: 10.1029/92JB02280
      [10] Burke, K., 1980. Intra-Continental Rifts and Anlacogens. In: Continental Tectonics. National Academy of Sciences, Washington D.C., 42: 49.
      [11] Cartwright, J.A., Bruce, D., Trudgill, B., et al., 1995. Fault Growth by Segment Linkage: An Explanation for Scatter in Maximum Displacement and Trace Length Data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9): 1319-1326. doi: 10.1016/0191-8141(95)00033-A
      [12] Cartwright, J.A., Mansfield, C.S., Trudgill, B., 1996. The Growth of Faults by Segment Linkage. In: Buchanan, P.G., Nieuwland, D.A., eds., Modern Developments in Structural Interpretation, Validation and Modelling. Geological Society Special Publication, 99(1): 163-177. http://adsabs.harvard.edu/abs/1996GSLSP..99..163C
      [13] Chen, F.J., Jia, Q.S., Zhang, H.N., 2004. Transfer Zone and Its Relation with Distribution of Sand Bodies. Oil & Gas Geology, 25(2): 144-148(in Chinese with English abstract). http://www.researchgate.net/publication/284378335_Transfer_zone_and_its_relation_with_distribution_of_sand_bodies
      [14] Chen, Z.N., Chen, F.J., Wang, Q., 2005. Types of Normal Faults' Soft Linkage and Corresponding Transfer Zones. Geoscience, 19(4): 495-499(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200504002.htm
      [15] Childs, C., Watterson, J., Walsh, J.J., 1995. Fault Overlap Zones within Developing Normal Fault Systems. Journal of the Geological Society of London, 152(3): 535-550. doi: 10.1144/gsjgs.152.3.0535
      [16] Chris, A.L., Gawthorpe, R., Sharp, I.R., 2002. Growth and Linkage of the East Tanka Fault Zone, Suez Rift: Structural Style and Syn-Rift Stratigraphic Response. Journal of the Geological Society of London, 159(2): 175-187. doi: 10.1144/0016-764901-100
      [17] Cowie, P.A., 1998. On Fault Tip Displacement Gradients and Process Zone Dimensions. Journal of Structural Geology, 20(8): 983-997. doi: 10.1016/S0191-8141(98)00029-7
      [18] Cowie, P.A., Scholz, C.H., 1992. Displacement-Length Scaling Relationship for Faults: Data Synthesis and Discussion. Journal of Structural Geology, 14(10): 1149-1156. doi: 10.1016/0191-8141(92)90066-6
      [19] Dart, C.J., Collier, R.E., Gawthorpe, R.L. et al., 1994. Sequence Stratigraphy of Pliocene-Quaternary Syn-Rift Gilbert Type Deltas, Northern Peloponnesos, Greece. Marine Petroleum Geology, 11(5): 545-560. doi: 10.1016/0264-8172(94)90067-1
      [20] Davison, I., 1994. Linked Faults Systems: Extensional, Strike-Slip and Contractional. In: Hancock, P.L., ed., Continental Deformation. Pergamon Press Ltd., Oxford, 14: 121-142. http://www.researchgate.net/publication/313090091_Linked_fault_systems_Extensional_strike-slip_and_contractional
      [21] Dawers, N.H., Anders, M.H., 1995. Displacement-Length Scaling and Fault Linkage. Journal of Structural Geology, 17(5): 607-614. doi: 10.1016/0191-8141(94)00091-D
      [22] Dawers, N.H., Anders, M.H., et al., 1993. Growth of Normal Faults: Displacement-Length Scaling. Geology, 21(12): 1107-1110. doi: 10.1130/0091-7613(1993)021<1107:GONFDL>2.3.CO;2
      [23] Dickinson, W.R., 1978. Plate Tectonic Evolution of Sedimentary Basin. AAPG Special Volumes, A157: 1-56. http://www.researchgate.net/publication/292693726_Plate_tectonic_evolution_of_sedimentary_basins
      [24] Faulds, J.E., Varga, R.J., 1998. The Role of Accommodation Zone and Transfer Zone in the Regional Segmentation of Extended Terranes. Geology Society of America Special Paper, 323: 1-45. doi: 10.1130/0-8137-2323-X.1
      [25] Fossen, H., 1997. Geometric Analysis and Scaling Relations of Deformation Bands in Porous Sandstone. Journal of Structural Geology, 19(12): 1479-1493. doi: 10.1016/S0191-8141(97)00075-8
      [26] Gawthorpe, R.L., Hurst, J.M., 1993. Transfer Zones in Extensional Basins: Their Structural Style and Influence on Drainage Development and Stratigraphy. Journal of the Geological Society of London, 150(6): 1137-1152. doi: 10.1144/gsjgs.150.6.1137
      [27] Gawthorpe, R.L., Sharp, I., Underhill, J.R., et al., 1997. Linked Sequence Stratigraphic and Structural Evolution of Propagating Normal Faults. Geology, 25(9): 795-798. doi: 10.1130/0091-7613(1997)025<0795:LSSASE>2.3.CO;2
      [28] Giba, M., Walsh, J.J., Nicol, A., 2012. Segmentation and Growth of an Obliquely Reactivated Normal Fault. Journal of Structural Geology, 39: 253-267. doi: 10.1016/j.jsg.2012.01.004
      [29] Gibbs, A.D., 1984. Structural Evolution of Extensional Basin Margins. Journal of the Geological Society of London, 141(4): 609-620. doi: 10.1144/gsjgs.141.4.0609
      [30] Gibson, J.R., Walsh J.J., Watterson, J., 1989. Modelling of Bed Contours and Cross-Sections Adjacent to Planar Normal Faults. Journal of Structural Geology, 11(3): 317-328. doi: 10.1016/0191-8141(89)90071-0
      [31] Goguel, J., 1952. Traite de Tectonique, Masson, Paris. In: Thalmann, H.E., Trans., Tectonics. Freeman, San Francisco.
      [32] Gregory, J.W., 1984. Contribution to the Physical Geography of British East Africa. Geographical Journal, 4(4): 289-315.
      [33] Gudmundsson, A., 1987. Geometry, Formation and Development of Tectonics Fractures on the Reykjanes Peninsula, Southwest Iceland. Tectonophysics, 139(3): 295-308. doi: 10.1016/0040-1951(87)90103-X
      [34] Gupta, A., Scholz, C., 2000. A Model of Normal Fault Interaction Based on Observations and Theory. Journal of Structural Geology, 22(7): 865-879. doi: 10.1016/S0191-8141(00)00011-0
      [35] Hus, R., Acocella, V., Funiciello, R., et al., 2005. Sandbox Models of Relay Ramp Structures and Evolution. Journal of Structural Geology, 27(3): 459-473. doi: 10.1016/j.jsg.2004.09.004
      [36] Hus, R., Batist, M.D., Klerkx, J., et al., 2006. Fault Linkage in Continental Rifts: Structure and Evolution of a Large Relay Ramp in Zavarotny, Lake Baikal (Russia). Journal of Structural Geology, 28(7): 1338-1351. doi: 10.1016/j.jsg.2006.03.031
      [37] Jackson, J.A., White, N.J., Garfunkel, Z., et al., 1988. Relations between Normal-Fault Geometry, Tilting and Vertical Motions in Extensional Terrains: An Example from the Southern Gulf of Suez. Journal of Structural Geology, 10(2): 155-170. doi: 10.1016/0191-8141(88)90113-7
      [38] Larsen, P., 1988. Relay Structures in a Lower Permian Basement-Involved Extension System, East Greenland. Journal of Structural Geology, 10(1): 3-8. doi: 10.1016/0191-8141(88)90122-8
      [39] Leeder, M.R., Gawthorpe, R.L., 1987. Sedimentary Models for Extensional Tilt-Block/Graben Basins. In: Coward, M.P., Dewey, J.F., Hancock, P.L., eds., Continental Extensional Tectonics. Geological Society Special Publication, 28: 139-152. http://adsabs.harvard.edu/abs/1987gslsp..28..139l
      [40] Li, S.Z., 2012. Cenozoic Faulting of the Bohai Bay Basin and Its Bearing on the Destruction of the Eastern North China Craton. Journal of Asian Earth Sciences, 47: 80-93. doi: 10.1016/j.jseaes.2011.06.011
      [41] Lister, G.S., Etheridge, M.A., Symonds, P.A., 1986. Detachment Faulting and the Evolution of Passive Continental Margins. Geology, 14(3): 246-250. doi: 10.1130/0091-7613(1986)14<246:DFATEO>2.0.CO;2
      [42] McClay, K.R., Nichols, G.J., Khalil, S.M., et al., 1998. Extensional Tectonics and Sedimentation, Eastern Gulf of Suez, Egypt. In: Purser, B., Bosence, D.W., eds., Sedimentation and Tectonics of the Gulf of Aden-Red Sea Rift System. Chapman and Hall, London, 223-238. doi: 10.1007/978-94-011-4930-3-14
      [43] Morley, C.K., 1999. Patterns of Displacement along Large Normal Faults: Implications for Basin Evolution and Fault Propagation, Based on Examples from East Africa. AAPG Bulletin, 83(4): 613-634. http://ci.nii.ac.jp/naid/80011049175
      [44] Morley, C.K., Nelson, R.A., Patton T.L., et al., 1990. Transfer Zones in East African Rift System and Their Relevance to Hydrocarbon Exploration in Rifts. AAPG Bulletin, 74(8): 1234-1253. http://www.researchgate.net/publication/248149866_Transfer_zones_in_the_East_African_rift_system_and_their_relevance_to_hydrocarbon_exploration_in_rif
      [45] Muraoka, H. Kamata, H., 1983. Displacement Distribution along Minor Fault Traces. Journal of Structural Geology, 5(5): 483-495. doi: 10.1016/0191-8141(83)90054-8
      [46] Patterson, M.B., 1983. Structure and Acoustic Stratigraphy of the Lake Tanganyika Rift Valley: A Single-Channel Seismic Survey of the Lake, North of Kalemie, Zaire(Dissertation). Duke University, Durham, North Carolina, 89. http://www.researchgate.net/publication/35121363_Structure_and_acoustic_stratigraphy_of_the_Lake_Tanganyika_rift_valley_a_single_channel_seismic_survey_of_the_lake_north_of_Kalemie_Zaire
      [47] Peacock, D.C.P., 2002. Propagation, Interaction and Linkage in Normal Fault Systems. Earth-Science Reviews, 58(1-2): 121-142. doi: 10.1016/S0012-8252(01)00085-X
      [48] Peacock, D.C.P., Sanderson, D.J., 1991. Displacements, Segment Linkage and Relay Ramps in Normal Fault Zones. Journal of Structural Geology, 13(6): 721-733. doi: 10.1016/0191-8141(91)90033-F
      [49] Peacock, D.C.P., Sanderson, D.J., 1994. Geometry and Development of Relay Ramps in Normal Fault Systems. AAPG Bulletin, 78(2): 147-165. http://ci.nii.ac.jp/naid/30002458733
      [50] Rosendahl, B.R., 1987. Architecture of Continental Rifts with Special Reference to East Africa. Annual Review of Earth and Planetary Sciences, 15: 31-43. doi: 10.1146/annurev.ea.15.050187.002305
      [51] Schliche, R.W., Young, S.S., Ackemann, R.V., et al., 1996. Geometry and Scaling Relationships of a Population of very Small Rift-Related Normal Faults. Geology, 24(8): 683-686. doi: 10.1130/0091-7613(1996)024<0683:GASROA>2.3.CO;2
      [52] Schlische, R.W., Anders, M.H., 1996. Stratigraphic Effects and Tectonics Implications of the Growth of Normal Faults and Extensional Basins. In: Beraton, K.K., ed., Reconstructing the History of Basin and Range Extension Using Sedimentology and Stratigraphy. Geological Society of America Special Paper, 303: 183-203. http://www.researchgate.net/publication/255494688_Stratigraphic_effects_and_tectonic_implications_of_the_growth_of_normal_faults_and_extensional_basins
      [53] Schwartz, D.P., Coppersmith, K.J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research, 89(NB7): 5681-5698. doi: 10.1029/JB089iB07p05681
      [54] Scott, D.L., Rosendahl, B.R., 1989. North Viking Graben: An East African Prospective. AAPG Bulletin, 73(2): 155-165. http://www.researchgate.net/publication/279553994_North_Viking_Graben_An_East_African_perspective
      [55] Shelton, J.W., 1984. Listric Normal Faults: An Illustrated Summary. AAPG Bulletin, 68(7): 801-815. http://www.researchgate.net/publication/238259609_Listric_normal_faults_An_illustrated_summary_Am
      [56] Simony, P.S., Carr, S.D., 1997. Large Lateral Ramps in the Eocene Valkyr Shear Zone: Extensional Ductile Faulting Controlled by Plutonism in Southern British Columbia. Journal of Structural Geology, 19(6): 769-784. doi: 10.1016/S0191-8141(97)00011-4
      [57] Sun, Z., Zhou, D., Zhong, Z., et al., 2006. Research on the Dynamics of the South China Sea Opening: Evidence from Analogue Modeling. Science in China (Series. D), 49(10): 1053-1069. doi: 10.1007/s11430-006-1053-6
      [58] Sun, S.M., Peng, S.M., Wang, X.W., 2003. Segmentation Characteristics of Lanliao Fault in Dongpu Depression. Acta Petrolei Sinica, 24(4): 26-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200304007.htm
      [59] Taylor, B., Hayes, D.E., 1980. The Tectonic Evolution of the South China Basin. In: Hays, D.E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Part 1. Geophys. Monoqr. Amer. Geophys. Union, Washington D.C. , 23: 89-104. http://ci.nii.ac.jp/naid/10007428136
      [60] Trudgill, B., Cartwright, J., 1994. Relay-Ramp Forms and Normal-Fault Linkages, Canyonlands National Park, Utah. Geological Society of America Bulletin, 106(9): 1143-1157. doi: 10.1130/0016-7606(1994)106<1143:RRFANF>2.3.CO;2
      [61] Wang, H.X., Fu, X.F., Fu, G., et al., 2014. Three Zhaoqing Sag Fault Vertical Section is Determined Growth and Fuyang Oil Source Fault. Earth Science—Journal of China University of Geosciences, 39(11): 1639-1646(in Chinese with English abstract).
      [62] Walsh, J.J., Watterson, J., 1988. Analysis of the Relationship between Displacement and Dimensions of Faults. Journal of Structural Geology, 10(3): 239-247. doi: 10.1016/0191-8141(88)90057-0
      [63] Walsh, J.J., Watterson, J., 1991. Geometric and Kinematic Coherence and Scale Effects in Normal Fault Systems. Geological Society of London Special Publication, 56(1): 193-206. doi: 10.1144/GSL.SP.1991.056.01.13
      [64] Walsh, J.J., Watterson, J., 1987. Distributions of Cumulative Displacement and Seismic Slip on a Single Normal Fault Surface. Journal of Structural Geology, 9(8): 1039-1046. doi: 10.1016/0191-8141(87)90012-5
      [65] Watterson, J., 1986. Fault Dimensions, Displacements and Growth. Pure & Appl. Geophys. , 124(1-2): 365-363. doi: 10.1007/BF00875732
      [66] Wernicke, B., 1981. Low-Angle Normal Faults in the Basin and Range Province; Nappe Tectonics in an Extending Orogeny. Nature, 291(5817): 645-648. doi: 10.1038/291645a0
      [67] Younes, A.I., McClay, K., 2002. Development of Accommodation Zones in the Gulf of Suez-Red Sea Rift, Egypt. AAPG Bulletin, 86(6): 1003-1026.
      [68] Young, M.J., Gawthorpe, R.L., Sharp, I.R., 2000. Sedimentology and Sequence Stratigraphy of a Transfer Zone Coarse-Grained Delta, Miocene Suez Rift, Egypt. Sedimentology, 47(6): 1081-1104. doi: 10.1046/j.1365-3091.2000.00342.x
      [69] Yu, Y.X., Zhou, X.H., Tang, L.J., et al., 2009. Linkages of Normal Faults and Transfer Zones in the Liaodongwan Depression, Offshore Bohai Bay Basin. Geological Review, 55(1): 79-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901012.htm
      [70] Zhang, Y.H., Tang, L.J., Qiu, H.J., et al., 2013. Linkages of the Boundary Faults and Deformation Features in the West of Bachu Uplift, Tarim Basin. Earth Science—Journal of China University of Geosciences, 38(3): 573-580(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201303016.htm
      [71] Zhu, W.L., Zhang, G.C., Yang, S.K., et al., 2007. The Natural Gas Geology of Continental Margin Basins in Northern South China Sea. Petroleum Industry Press, Beijing (in Chinese).
      [72] 陈发景, 贾庆素, 张洪年, 2004. 传递带及其在砂体发育中的作用. 石油与天然气地质, 25(2): 144-148. doi: 10.3321/j.issn:0253-9985.2004.02.005
      [73] 陈昭年, 陈发景, 王琦, 2005. 正断层软联接及其传递带类型. 现代地质, 19(4): 495-499. doi: 10.3969/j.issn.1000-8527.2005.04.003
      [74] 孙思敏, 彭仕宓, 汪新文, 2003. 东濮凹陷兰聊断层的分段特征及其石油地质意义. 石油学报, 24(4): 26-30. doi: 10.3321/j.issn:0253-2697.2003.04.006
      [75] 王海学, 付晓飞, 付广, 等, 2014. 三肇凹陷断层垂向分段生长与扶杨油层油源断层的厘定. 地球科学——中国地质大学学报, 39(11): 1639-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201411008.htm
      [76] 余一欣, 周心怀, 汤良杰, 等, 2009. 渤海海域辽东湾坳陷正断层联接及其转换带特征. 地质评论, 55(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901012.htm
      [77] 张宇航, 汤良杰, 邱海峻, 等, 2013. 塔里木盆地巴楚隆起西段边界断层联接及变形特征. 地球科学——中国地质大学学报, 38(3): 573-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303016.htm
      [78] 朱伟林, 张功成, 杨少坤, 等, 2007. 南海北部大陆边缘盆地天然气地质. 北京: 石油工业出版社.
    • 加载中
    图(15) / 表(2)
    计量
    • 文章访问数:  2899
    • HTML全文浏览量:  152
    • PDF下载量:  278
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-05-13
    • 刊出日期:  2015-12-15

    目录

      /

      返回文章
      返回