• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    柴北缘西段古-新近纪古气候演化

    贾艳艳 邢学军 孙国强 史基安 刘士杰

    贾艳艳, 邢学军, 孙国强, 史基安, 刘士杰, 2015. 柴北缘西段古-新近纪古气候演化. 地球科学, 40(12): 1955-1967. doi: 10.3799/dqkx.2015.176
    引用本文: 贾艳艳, 邢学军, 孙国强, 史基安, 刘士杰, 2015. 柴北缘西段古-新近纪古气候演化. 地球科学, 40(12): 1955-1967. doi: 10.3799/dqkx.2015.176
    Jia Yanyan, Xing Xuejun, Sun Guoqiang, Shi Ji'an, Liu Shijie, 2015. The Paleogene-Neogene Paleoclimate Evolution in Western Sector of Northern Margin of Qaidam Basin. Earth Science, 40(12): 1955-1967. doi: 10.3799/dqkx.2015.176
    Citation: Jia Yanyan, Xing Xuejun, Sun Guoqiang, Shi Ji'an, Liu Shijie, 2015. The Paleogene-Neogene Paleoclimate Evolution in Western Sector of Northern Margin of Qaidam Basin. Earth Science, 40(12): 1955-1967. doi: 10.3799/dqkx.2015.176

    柴北缘西段古-新近纪古气候演化

    doi: 10.3799/dqkx.2015.176
    基金项目: 

    甘肃省科技计划 1308RJZA310

    甘肃省重点实验室专项 1309RTSA041

    详细信息
      作者简介:

      贾艳艳(1987-),女,博士,主要从事含油气盆地石油地质学及沉积储层研究.E-mail:jiayanyandz2@163.com

      通讯作者:

      史基安,E-mail:jashi@lzb.ac.cn

    • 中图分类号: P66

    The Paleogene-Neogene Paleoclimate Evolution in Western Sector of Northern Margin of Qaidam Basin

    • 摘要: 古气候是陆相湖盆层序地层形成的主要沉积动力学因素之一.古-新近纪柴北缘西段及周边地区古气候演化过程复杂,目前就古气候演化过程还存在争议,利用地球化学方法对重点井的岩心和岩屑进行元素、TOC和碳氧稳定同位素测定.各古气候指标之间的相关性分析表明:Sr/Ba、Rb/Sr、Sr/Ca、TOC和氯离子含量可作为研究区恢复古气候的指标,δ13C与δ18O不能指示出该区的古气候演化过程.重点井全井段的岩屑氯离子含量分析表明:柴北缘西段古-新近纪古气候经历了干旱-潮湿-干旱的演化过程,从路乐河组到下干柴沟组上段沉积期古气候由干旱逐渐向潮湿的方向演化,呈现了7个旋回,湖盆水体盐度降低,总体来说气候潮湿,水体为微咸水;从上干柴沟组到狮子沟组沉积期古气候从潮湿向干旱方向演化,呈现了12个旋回,古水介质经历了微咸水至半咸水的演化过程.

       

    • 图  1  柴北缘西段地理位置及分析井位置分布

      Fig.  1.  The location of western sector of northern margin of Qaidam basin and analysis wells

      图  2  Sr/Ba、Sr/Rb、Sr/Ca、TOC、δ13C和δ18O与氯离子含量的相关关系

      Fig.  2.  The correlation between Sr/Ba, Sr/Rb, Sr/Ca, TOC, δ13C, δ18O and chloride ion content

      图  3  碳氧稳定同位素与有机碳含量相关关系

      Fig.  3.  The correlation between carbon, oxygen stable isotope and organic carbon content

      图  4  柴北缘西段古近系-新近系岩屑氯离子含量分布

      分子为岩屑氯离子含量,分母为取样数量

      Fig.  4.  The Paleogene-Neogene Chloride ion content distribution of rock debris in western sector of northern margin of Qaidam basin

      图  5  路乐河组沉积期氯离子含量(10-6)演化特征

      Fig.  5.  Evolution characteristics of Chloride ion content (10-6) of Lulehe Formation

      图  6  下干柴沟组下段沉积期氯离子含量(10-6)演化特征

      Fig.  6.  Evolution characteristics of Chloride ion content (10-6) of Lower Xiaganchaigou Formation

      图  7  下干柴沟组上段沉积期氯离子含量(10-6)演化特征

      Fig.  7.  Evolution characteristics of Chloride ion content (10-6) of Upper Xiaganchaigou Formation

      图  8  上干柴沟组沉积期氯离子含量(10-6)演化特征

      Fig.  8.  Evolution characteristics of Chloride ion content (10-6) of Shangganchaigou Formation

      图  9  下油砂山组沉积期氯离子含量(10-6)演化特征

      Fig.  9.  Evolution characteristics of Chloride ion content (10-6) of Xiayoushashan Formation

      图  10  上油砂山组沉积期氯离子含量(10-6)演化特征

      Fig.  10.  Evolution characteristics of Chloride ion content (10-6) of Shangyoushashan Formation

      图  11  狮子沟组沉积期氯离子含量(10-6)演化特征

      Fig.  11.  Evolution characteristics of Chloride ion content (10-6) of Shizigou Formation

      表  1  柴达木盆地古-新近纪泥岩氯度(10-6)与湖水类型关系

      Table  1.   The relationship of Paleogene-Neogene mudstone chlorine level (10-6) and water type of Qaidam basin

      淡水 微咸水 半咸水 咸水 盐水
      柴达木盆地湖水 0~200 200~1 650 1 650~12 800 12 800~28 500 大于28 500
      海水 0~260 260~2 750 2 750~16 604 16 604~33 224 大于33 224
      下载: 导出CSV
    • [1] An, Z.S., Zhang, P.Z., Wang, E.C., et al., 2006. Changes of the Monsoon-Arid Environment in China and Growth of the Tibetan Plateau since the Miocene. Quaternary Sciences, 26(5): 678-693(in Chinese with English abstract). http://www.oalib.com/paper/1571236
      [2] Andrea, B.R., Bojar, A.V., Franz, N., et al., 2009. Monitoring Cenozoic Climate Evolution of Northeastern Tibet: Stable Isotope Constraints from the Western Qaidam Basin, China. International Journal of Earth Sciences, 98(5): 1063-1075. doi: 10.1007/s00531-008-0304-5
      [3] Chen, H.D., Li, J., Zhang, C.G., et al., 2011. Discussion of Sedimentary Environment and Its Geological Enlightenment of Shanxi Formation in Ordos Basin. Acta Petrologica Sinica, 27(8): 2213-2229(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98201108001
      [4] Chen, J.A., Zeng, Y., Wang, J.F., et al., 2013. The Geochemical Records of Rb and Sr of Different Forms in Lake Sediments. Bulletin of Mineralogy, Petrology and Geochemistry, 32(4): 408-417(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2013.04.004
      [5] Chen, L.X., Liu, J.P., Zhou, X.J., et al., 1999. Impact of Uplift of Qinghai-Xizang Plateau and Change of Land-Ocean Distribution on Climate over Asia. Quaternary Sciences, 19(4): 314-329(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199904003.htm
      [6] Fang, X.M., Song, C.H., Dai, S., et al., 2007. Cenozoic Deformation and Uplift of the NE Qinghai-Tibet Plateau: Evidence from High-Resolution Magnetostratigraphy and Basin Evolution. Earth Science Frontiers, 14(1): 230-242(in Chinese with English abstract).
      [7] Fang, X.M., Wu, F.L., Han, W.X., et al., 2008. Plio-Pleistocene Drying Process of Asian Inland-Sporopollen and Salinity Records from Yahu Section in the Central Qaidam Basin. Quaternary Sciences, 28(5): 874-882(in Chinese with English abstract). http://www.cqvip.com/QK/97036X/20085/28351896.html
      [8] Fritz, S.C., 1996. Paleolimnological Records of Climatic Change in North America. Limnology and Oceanography, 41(5): 882-889. doi: 10.4319/lo.1996.41.5.0882
      [9] Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., et al., 2002. Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416(6877): 159-163. doi: 10.1038/416159a
      [10] Han, W.X., 2008. Climatic Records of Cenozoic Sediments from Qaidam Basin and Their Implieations on Drying of Asian Inland(Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      [11] Henderson, A.C.G., 2003. A Carbon- and Oxygen-Isotope Record of Recent Environmental Change from Qinghai Lake, NE Tibetan Plateau. Chinese Science Bulletin, 48(14): 1463. doi: 10.1360/02wd0272
      [12] Hu, S.H., Zhang, T., Gao, J.P., et al., 2012. The Miocene Climate Changes in Honggouzi Area of Western Qaidam Basin and Dominating Factors on Erosion Rate. Acta Sedimentologica Sinica, 30(6): 1106-1114(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201206012.htm
      [13] Ji, L.M., Qiao, Z.Z., Zhang, H.Q., et al., 2007. Micropalaeontology of Eocene Lower Ganchaigou Formation in the Kunteyi Depression of the Northern Margin of the Qaidam Basin. Acta Micropalaeontologica Sinica, 24(1): 82-88(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0674.2007.01.007
      [14] Jin, Z.D., Zhang, E.L., 2002. Paleoclimate Implication of Rb/Sr Ratios from Lake Sediments. Science Technology and Engineering, 2(3): 20-22(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXJS200203008.htm
      [15] Kelts, K., Talbot, M., 1990. Lacustrine Carbonates as Geochemical Archives of Environmental Change and Biotic/Abiotic Interactions. In: Brock, T.D., ed., Brock/Springer Series in Contemporary Bioscience. Springer Berlin Heidelbery, Berlin, 288-315. doi: 10.1007/978-3-642-84077-7_15
      [16] Kemp, J., Radke, L.C., Olley, J., et al., 2012. Holocene Lake Salinity Changes in the Wimmera, Southeastern Australia, Provide Evidence for Millennial-Scale Climate Variability. Quaternary Research, 77(1): 65-76. doi: 10.1016/j.yqres.2011.09.013
      [17] Lazar, B., Erez, J., 1992. Carbon Geochemistry of Marine-Derived Brines: I. 13C Depletions due to Intense Photosynthesis. Geochimica et Cosmochimica Acta, 56(1): 335-345. doi: 10.1016/0016-7037(92)90137-8
      [18] Li, M.H., Kang, S.C., 2007. Responses of Lake Sediments to Paleoenvironmental and Paleoclimatic Changes in Tibetan Plateau. Journal of Salt Lake Research, 15(1): 63-72 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YHYJ200701011.htm
      [19] Li, M.J., Zheng, M.L., Cao, C.C., et al., 2005. Formation and Evolution of Qaidam Paleogene and Neogene Basin. Journal of Northwest University(Natural Science Edition), 35(1): 87-90(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ20050100M.htm
      [20] Liu, T.S., Zheng, M.P., Guo, Z.T., 1998. Initiation and Evolution of the Asian Monsoon System Timely Coupled with the Ice-Sheet Growth and the Tectonic Movements in Asia. Quaternary Sciences, 18(3): 194-204 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199803001.htm
      [21] Liu, H.N., Deng, L.L., Gong, Y.C., et al., 2008. Carbonate Cements from Xujiahe Sandstone and Its Forming Mechanism, West Sichuan Depression. Natural Gas Technology, 2(5): 24-27, 78. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRJJ200805013.htm
      [22] Liu, Z.F., Wang, C.S., 1998. The Effects of Tibetan Plateau Uplift to Cenozoic Global Climate Change. Exploration of Nature, 17(3): 30-33(in Chinese).
      [23] Ma, Y.Z., Li, J.J., Fang, X.M., 1998. The Records of Red Layer Palynoflora Aged 30.6-5.0 Ma and Climate Evolution in Linxia Area. Chinese Science Bulletin, 43(3): 301-304(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZWXB809.014.htm
      [24] Matthews, M.B., Ayalon, A., Matthews, A., et al., 1996. Carbon and Oxygen Isotope Study of the Active Water-Carbonate System in a Karstic Mediterranean Caveimplication for Palaeoclimate Research in Semiarid Regions. Geochimica et Cosmochimica Acta, 60(2): 337-347. doi: 10.1016/0016-7037(95)00395-9
      [25] Miao, Y.F., Fang, X.M., Song, Z.C., et al., 2008. Eocene Sporopollen Records and Ancient Climate Change of Northern Tibetan Plateau. Science in China: Earth Sciences, 38(2): 187-196(in Chinese).
      [26] Patrickson, S.J., Sack, D., Brunelle, A.R., et al., 2010. Late Pleistocene to Early Holocene Lake Level and Paleoclimate Insights from Stansbury Island, Bonneville Basin, Utah. Quaternary Research, 73(2): 237-246. doi: 10.1016/j.yqres.2009.12.006
      [27] Ramstein, G., Fluteau, F., Besse, J., et al., 1997. Effect of Orogeny, Plate Motion and Land-Sea Distribution on Eurasian Climate Change over the Past 30 Million Years. Nature, 386(6627): 788-795. doi: 10.1038/386788a0
      [28] Rea, D.K., Leinen, M., Janecek, T.R., 1985. Geologic Approach to the Long-Term History of Atmospheric Circulation. Science, 227(4688): 721-725. doi: 10.1126/science.227.4688.721
      [29] Shi, Y.F., Tang, M.C., Ma, Y.Z., 1998. Linkage between the Second Uplifting of the Qinghai-Xizang (Tibetan) Plateau and the Initiation of the Asian Monsoon System. Science in China: Earth Sciences, 28(3): 263-271(in Chinese). doi: 10.1007/bf02878967
      [30] Solotchina, E.P., Sklyarov, E.V., Solotchin, P.A., et al., 2014. Mineralogy and Crystal Chemistry of Carbonates from the Holocene Sediments of Lake Kiran (Western Transbaikalia): Connection with Paleoclimate. Russian Geology and Geophysics, 55(4): 472-482. doi: 10.1016/j.rgg.2014.03.005
      [31] Song, B.W., Xu, Y.D., Liang, Y.P., et al., 2014. Evolution of Cenozoic Sedimentary Basins in Western China. Earth Science—Journal of China University of Geosciences, 39(8): 1035-1051. doi: 10.3799/dqkx.2014.093
      [32] Song, B.W., Zhang, K.X., Lu, J.F., et al., 2013. The Middle Eocene to Early Miocene Integrated Sedimentary Record in the Qaidam Basin and Its Implications for Paleoclimate and Early Tibetan Plateau Uplift. Canadian Journal of Earth Sciences, 50(2): 183-196. doi: 10.1139/cjes-2012-0048
      [33] Song, C.H., Bai, J.F., Zhao, Y.D., et al., 2005. The Color of Lacustrine Sediments Recorded Climatic Changes from 13 to 4.5 Myr in Linxia Basin. Acta Sedimentologica Sinica, 23(3): 507-513(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2005.03.018
      [34] Stuiver, M., 1970. Oxygen and Carbon Isotope Ratios of Fresh-Water Carbonates as Climatic Indicators. Journal of Geophysical Research, 75(27): 5247-5257. doi: 10.1029/jc075i027p05247
      [35] Sun, Z.C., Cao, L., Zhang, H.Q., et al., 2003. Evolution of Ostracoda of the Great Ice Age of Last Glacial Stage in Qaidam Basin. Journal of Palaeogeography, 5(3): 365-377(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2003.03.009
      [36] Wang, C.W., Hong, H.L., Li, Z.H., et al., 2013. Climatic and Tectonic Evolution in the North Qaidam since the Cenozoic: Evidence from Sedimentology and Mineralogy. Journal of Earth Science, 24(3): 314-327. doi: 10.1007/s12583-013-0332-3
      [37] Wang, J., Wang, Y.J., Liu, Z.C., et al., 1999. Cenozoic Environmental Evolution of the Qaidam Basin and Its Implications for the Uplift of the Tibetan Plateau and the Drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1-2): 37-47. doi: 10.1016/s0031-0182(99)00038-3
      [38] Wang, P.X., 2003. Evolution of the South China Sea and Monsoon History Revealed in Deep-Sea Records. Chinese Science Bulletin, 48(23): 2549-2561. doi: 10.1360/03wd0156
      [39] Wang, Q., Hao, L.W., Chen, G.J., et al., 2010. Forming Mechanism of Carbonate Cements in Siliciclastic Sandstone of Zhuhai Formation in Baiyun Sag. Acta Petrolei Sinica, 31(4): 553-558, 565(in Chinese with English abstract). http://www.researchgate.net/publication/288271545_Forming_mechanism_of_carbonate_cements_in_siliciclastic_sandstone_of_Zhuhai_Formation_in_Baiyun_Sag
      [40] Wang, X.Q., Wang, L.S., 2013. The Pollen and Spore Characteristics of the Diexi Ancient Dammed Lake on the Upstream of Minjiang River. Earth Science—Journal of China University of Geosciences, 38(5): 975-982. doi: 10.3799/dqkx.2013.095
      [41] Wang, Y., Zhao, Z.H., Lin, J.X., 2004. Paleoclimate and Geochemical Composition of AK1 Core Sediments in Lop Nur, Xinjiang. Acta Geoscientica Sinica, 25(6): 653-658(in Chinese with English abstract).
      [42] Xiong, X.H., Xiao, J.F., 2011. Geochemical Indicators of Sedimentary Environments—A Summary. Earth and Environment, 39(3): 405-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201103021.htm
      [43] Xu, L., Miao, Y.F., Fang, X.M., et al., 2009. Middle Eocene-Oligocene Climatic Changes Recorded by Sedimentary Colors in the Xining Basin, in Northeastern Tibetan Plateau, NW China. Journal of Lanzhou University(Natural Sciences), 45(1): 12-19(in Chinese with English abstract).
      [44] Xu, Z.H., Hu, S.Y., Wang, Z.C., et al., 2011. Restoration of Paleoclimate and Its Geological Significance: As an Example from Upper Triassic Xujiahe Formation in Sichuan Basin. Acta Sedimentologica Sinica, 29(2): 235-244(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201102005.htm
      [45] Yi, H.S., Lin, J.H., Zhou, K.K., et al., 2007. Carbon and Oxygen Isotope Characteristics and Palaeoenvironmental Implication of the Cenozoic Lacustrine Carbonate Rocks in Northern Qinghai-Tibetan Plateau. Journal of Palaeogeography, 9(3): 303-312(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2007.03.008
      [46] Yin, C.M., Li, W.M., Andrea, R., et al., 2007. Cenozoic Climate Changes in the Qaidam Basin, Western China: Evidenced from Carbon and Oxygen Stable Isotope. Journal of Jilin University(Earth Science Edition), 37(5): 901-907(in Chinese with English abstract). doi: 10.3969/j.issn.1671-5888.2007.05.009
      [47] Zachos, J., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686-693. doi: 10.1126/science.1059412
      [48] Zhang, H., Jin, H.L., Xiao, H.L., et al., 2004. Soluble Salt Sediments of East Juyan Lake and Its Indicating Palaeoclimate Environment Changes. Journal of Desert Research, 24(4): 409-415(in Chinese with English abstract). http://www.researchgate.net/publication/284617918_Soluble_salt_sediments_of_east_Juyan_Lake_and_its_indicating_palaeoclimate_environment_changes
      [49] Zhang, R., Ji, Y.L., Sun, Y.E., 2011. A Study on PLC in Material of Automatic Sorting System. Coal Technology, 30(12): 119-120(in Chinese with English abstract).
      [50] Zhang, S.C., Wang, R.L., Jin, Z.J., et al., 2006. The Relationship between the Cambrian-Ordovician High-TOC Source Rock Development and Paleoenvironment Variations in the Tariam Basin, Western China: Carbon and Oxygen Isotope Evidence. Acta Geologica Sinica, 80(3): 459-466(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200603020.htm
      [51] Zhao, J.F., Chen, X.H., Du, Y.B., 2004. The Tertiary Sedimentary Evolution of the Qaidam Basin, Northwest China. Petroleum Exploration and Development, 31(3): 41-44(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200403010.htm
      [52] Zhao, J.F., Chen, X.H., Jin, L., 2005. Application of Stable Isotope in Tertiary Saline Lake of Qaidam Basin. Journal of Northwest University(Natural Science Edition), 35(3): 342-346(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XBDZ200503040.htm
      [53] Zheng, R.C., Liu, M.Q., 1999. Study on Palaeosalinity of Chang-6 Oil Reservoir Set in Ordos Basin. Oil & Gas Geology, 20(1): 20-25(in Chinese with English abstract). http://www.researchgate.net/publication/291273288_Study_on_palaeosalinity_of_Chang_6_oil_reservoir_set_in_Ordos_Basin
      [54] 安芷生, 张培震, 王二七, 等, 2006. 中新世以来我国季风-干旱环境演化与青藏高原的生长. 第四纪研究, 26(5): 678-693. doi: 10.3321/j.issn:1001-7410.2006.05.002
      [55] 陈洪德, 李洁, 张成弓, 等, 2011. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示. 岩石学报, 27(8): 2213-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108001.htm
      [56] 陈敬安, 曾艳, 王敬富, 等, 2013. 湖泊沉积物不同赋存状态Rb、Sr地球化学记录研究. 矿物岩石地球化学通报, 32(4): 408-417. doi: 10.3969/j.issn.1007-2802.2013.04.004
      [57] 陈隆勋, 刘骥平, 周秀骥, 等. 1999. 青藏高原隆起及海陆分布变化对亚洲大陆气候的影响. 第四纪研究, 19(4): 314-329. doi: 10.3321/j.issn:1001-7410.1999.04.004
      [58] 方小敏, 宋春晖, 戴霜, 等, 2007. 青藏高原东北部阶段性变形隆升: 西宁、贵德盆地高精度磁性地层和盆地演化记录. 地学前缘, 14(1): 230-242. doi: 10.3321/j.issn:1005-2321.2007.01.022
      [59] 方小敏, 吴福莉, 韩文霞, 等, 2008. 上新世-第四纪亚洲内陆干旱化过程——柴达木中部鸭湖剖面孢粉和盐类化学指标证据. 第四纪研究, 28(5): 874-882. doi: 10.3321/j.issn:1001-7410.2008.05.010
      [60] 韩文霞, 2008. 柴达木盆地新生代地层记录的亚洲内陆干旱气候演化(博士学位论文). 兰州: 兰州大学.
      [61] 胡思虎, 张涛, 高军平, 等, 2012. 柴西红沟子地区中新世气候变化与侵蚀速率控制因素. 沉积学报, 30(6): 1106-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206012.htm
      [62] 吉利明, 乔子真, 张海泉, 等, 2007. 柴达木盆地北缘昆特依凹陷始新统下干柴沟组微体古生物研究. 微体古生物学报, 24(1): 82-88. doi: 10.3969/j.issn.1000-0674.2007.01.007
      [63] 金章东, 张恩楼, 2002. 湖泊沉积物Rb/Sr比值的古气候意义. 科学技术与工程, 2(3): 20-22. doi: 10.3969/j.issn.1671-1815.2002.03.009
      [64] 李明慧, 康世昌. 2007. 青藏高原湖泊沉积物对古气候环境变化的响应. 盐湖研究, 15(1): 63-72. doi: 10.3969/j.issn.1008-858X.2007.01.012
      [65] 李明杰, 郑孟林, 曹春潮, 等, 2005. 柴达木古近纪-新近纪盆地的形成演化. 西北大学学报: 自然科学版, 35(1): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ20050100M.htm
      [66] 刘东生, 郑绵平, 郭正堂. 1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性. 第四纪研究, 18(3): 194-204. doi: 10.3321/j.issn:1001-7410.1998.03.002
      [67] 刘昊年, 邓丽丽, 龚业超, 等. 2008. 川西坳陷须家河组砂岩中碳酸盐胶结物及形成机制. 天然气技术, 2(5): 24-27, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ200805013.htm
      [68] 刘志飞, 王成善. 1998. 青藏高原隆升对新生代全球气候变化的影响. 大自然探索, 17(3): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT803.006.htm
      [69] 马玉贞, 李吉均, 方小敏. 1998. 临夏地区30.6~5.0 Ma红层孢粉植物群与气候演化记录. 科学通报, 43(3): 301-304. doi: 10.3321/j.issn:0023-074X.1998.03.019
      [70] 苗运法, 方小敏, 宋之琛, 等. 2008. 青藏高原北部始新世孢粉记录与古环境变化. 中国科学: 地球科学, 38(2): 187-196. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200802005.htm
      [71] 施雅风, 汤懋苍, 马玉贞. 1998. 青藏高原二期隆升与亚洲季风孕育关系探讨. 中国科学: 地球科学, 28(3): 263-271. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199803011.htm
      [72] 宋博文, 徐亚东, 梁银平, 等, 2014. 中国西部新生代沉积盆地演化. 地球科学——中国地质大学学报, 39(8): 1035-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408008.htm
      [73] 宋春晖, 白晋锋, 赵彦德, 等, 2005. 临夏盆地13~4.4 Ma湖相沉积物颜色记录的气候变化探讨. 沉积学报, 23(3): 507-513. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200503017.htm
      [74] 孙镇城, 曹丽, 张海泉, 等, 2003. 柴达木盆地全球末次冰期介形类动物群的演变. 古地理学报, 5(3): 365-377. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200303008.htm
      [75] 王琪, 郝乐伟, 陈国俊, 等, 2010. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理. 石油学报, 31(4): 553-558, 565. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004005.htm
      [76] 王小群, 王兰生, 2013. 岷江叠溪古堰塞湖沉积物中孢粉特征. 地球科学——中国地质大学学报, 38(5): 975-982. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305008.htm
      [77] 王永, 赵振宏, 林景星, 2004. 罗布泊AK1孔沉积物地球化学组成与古气候. 地球学报, 25(6): 653-658. doi: 10.3321/j.issn:1006-3021.2004.06.010
      [78] 熊小辉, 肖加飞, 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201103021.htm
      [79] 徐丽, 苗运法, 方小敏, 等, 2009. 青藏高原东北部西宁盆地中始新世-渐新世沉积物颜色与气候变化. 兰州大学学报: 自然科学版, 45(1): 12-19. doi: 10.3321/j.issn:0455-2059.2009.01.003
      [80] 徐兆辉, 胡素云, 汪泽成, 等, 2011. 古气候恢复及其对沉积的控制作用——以四川盆地上三叠统须家河组为例. 沉积学报, 29(2): 235-244. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201102005.htm
      [81] 伊海生, 林金辉, 周恳恳, 等, 2007. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义. 古地理学报, 9(3): 303-312. doi: 10.3969/j.issn.1671-1505.2007.03.008
      [82] 尹成明, 李伟民, R. Andrea, 等, 2007. 柴达木盆地新生代以来的气候变化研究: 来自碳氧同位素的证据. 吉林大学学报: 地球科学版, 37(5): 901-907. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200705008.htm
      [83] 张洪, 靳鹤龄, 肖洪浪, 等, 2004. 东居延海易溶盐沉积与古气候环境变化. 中国沙漠, 24(4): 409-415. doi: 10.3321/j.issn:1000-694X.2004.04.006
      [84] 张锐, 纪友亮, 孙永娥, 2011. 柴达木盆地北缘马海凸起古近系-新近系层序地层格架. 煤炭技术, 30(12): 119-120. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201112059.htm
      [85] 张水昌, Wang, R.L., 金之钧, 等, 2006. 塔里木盆地寒武纪-奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据. 地质学报, 80(3): 459-466. doi: 10.3321/j.issn:0001-5717.2006.03.020
      [86] 赵加凡, 陈小宏, 杜业波, 2004. 柴达木第三纪湖盆沉积演化史. 石油勘探与开发, 31(3): 41-44. doi: 10.3321/j.issn:1000-0747.2004.03.011
      [87] 赵加凡, 陈小宏, 金龙, 2005. 柴达木盆地第三纪盐湖沉积环境分析. 西北大学学报(自然科学版), 35(3): 342-346. doi: 10.3321/j.issn:1000-274X.2005.03.024
      [88] 郑荣才, 柳梅青, 1999. 鄂尔多斯盆地长6油层组古盐度研究. 石油与天然气地质, 20(1): 20-25. doi: 10.3321/j.issn:0253-9985.1999.01.005
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  2778
    • HTML全文浏览量:  124
    • PDF下载量:  351
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-02-24
    • 刊出日期:  2015-12-15

    目录

      /

      返回文章
      返回