Characteristics of Milankovitch Cycle in Eocene Formation, Eastern Depression of the North Yellow Sea Basin
-
摘要: 米兰科维奇旋回是记录在沉积地层中的表现形式, 其代表的时间涵义是进行高分辨率地层划分和对比的有效手段, 从地层中揭示的米兰科维奇旋回, 可以完善地层学尤其是旋回地层学理论.以北黄海东部坳陷为研究对象, 根据J. Laskar的解决方案计算出该区始新统的米兰科维奇旋回周期为: 125 ka和99 ka的偏心率周期, 51 ka和39 ka的地轴斜率周期, 23 ka和19 ka的岁差周期.通过对3口井的GR(自然伽马)和SP(自然电位)测井曲线进行频谱分析, 发现其频谱峰值与天文周期存在着良好的对应关系, 因此可以判定该区域地层中保存着完好的米兰科维奇沉积旋回.地层旋回厚度存在13.03~15.89 m的长周期、3.70~5.21 m的中周期和2.17~2.94 m的短周期, 并由此计算地层的沉积速率为121.20~127.12 m/Ma.从隆起沿着斜坡往湖盆中心, 沉积持续时间越长且沉积厚度也越厚, 但沉积速率相对稳定.通过连续小波变换对始新统地层进行小层划分, 划分出6期沉积体, 以每个沉积体为独立窗口进行频谱分析计算出沉积的持续时间和速率, 从气候变化的影响分析每个阶段的沉积环境.从下往上层序地层E6期为低水位体系域, E5和E4为湖泊扩张体系域, E3为高位体系域, E2和E1为湖泊收缩体系域.以上方法可以证明米兰科维奇进行沉积旋回分析是一种有效的方法.Abstract: Milankovitch cycle is the manifestation of sedimentary stratigraphy recorded, its time implication is an effective means of high resolution stratigraphic division and correlation, from the reservation information of Milankovitch cycles, which enrich stratigraphic theory, especially cyclostratigraphic theory. Characteristics of Milankovitch cycle in the eastern depression of the North Yellow Sea basin are explored in this study. Major parameters of Milankovitch cycle are worked out by J. Laskar solution in the Eocene formation: the eccentricity cycle is 125 ka and 99 ka; the obliquity cycle is 51 ka and 39 ka; and the precession cycle is 23 ka and 19 ka. It is found by frequency spectrum analysis of the GR and SP well logging of three wells that the spectrum peak cycle corresponds well to its astronomy cycle, indicating well-preserved Milankoitch cycle in the formation. Stratigraphic cycle thickness is of 13.03 to 15.89 m long-cycle, 3.70 to 5.21 m mid-cycle and 2.17 to 2.94 m short-cycle, by which the formation sedimentation rate is calculated as between 121.20 to 127.12 m/Ma. The sedimentary duration is increasingly longer and the deposition thickness is increasingly thicker from uplift along the slope toward the center of the lake basin. However, the sedimentation rate is relatively stable.As to sublayer division of Encene with the continuous wavelet transform, it can be divided into six sedimentary bodies, with each body as a separate window for spectrum analysis to calculate the duration and rate of sedimentation. From the perspective of the impact of climate change on the sedimentary environment, it is concluded that, E6 period was low water system tract, E5 and E4 were lake expand system tract, E3 was highstand systerm tract, E2 and E1 were lakes contraction system tract from the bottom to top sequence stratigraphy. It is confirmed that Milankovitch cycle is an effective approach for depositional cycle analysis.
-
表 1 北黄海东部坳陷始新统地层的米兰科维奇主频、旋回厚度、厚度比、沉积持续时间和沉积速率
Table 1. Dominant frequency, thickness, thickness ratio, sedimentation duration and sedmentation rate of Milankovitch cycles of Eocene formation in eastern depression of North Yellow Sea basin
测井曲线 井号 井段(m) 厚度(m) 偏心率 地轴斜率 岁差 沉积持续时间(Ma) 沉积速率(m/Ma) A A′ B C E F 125 ka 99 ka 51 ka 39 ka 23 ka 19 ka GR NYS3 1 342.0~2 593.0 1 251 频率 0.008 200 0.009 600 0.025 580 0.027 180 0.044 000 0.057 600 10.247 122.08 旋回厚度(m) 15.26 13.03 4.89 4.60 2.84 2.17 厚度比 1.00 0.85 0.32 0.30 0.19 0.14 NYS2 1 330.0~2 277.0 947 频率 0.008 300 0.009 700 0.027 500 0.033 800 0.045 400 0.061 250 7.865 121.20 旋回厚度(m) 15.05 12.89 4.55 3.70 2.75 2.04 厚度比 1.00 0.86 0.35 0.28 0.21 0.14 NYS1 1 147.4~1 875.4 728 频率 0.008 200 - 0.026 200 0.029 700 0.042 600 0.052 200 5.998 121.36 旋回厚度(m) 15.17 - 4.77 4.21 2.94 2.40 厚度比 1.00 - 0.31 0.28 0.19 0.16 SP NYS3 1 342.0~2 593.0 1 251 频率 0.008 000 0.009 600 0.024 000 0.027 180 0.044 000 0.057 600 9.998 125.12 旋回厚度(m) 15.64 13.03 5.21 4.60 2.84 2.17 厚度比 1.00 0.83 0.33 0.29 0.18 0.14 NYS2 1 330.0~2 178.0 848 频率 0.008 067 0.009 400 0.027 100 0.029 100 0.044 800 0.053 000 6.839 124.00 旋回厚度(m) 15.50 13.27 4.61 4.30 2.79 2.36 厚度比 1.00 0.86 0.30 0.28 0.21 0.15 NYS1 1 147.4~1 875.4 728 频率 0.007 900 0.011 000 0.025 200 0.026 800 0.042 600 0.052 200 5.727 127.12 旋回厚度(m) 15.89 11.37 4.96 4.66 2.94 2.40 厚度比 1.00 0.72 0.31 0.29 0.18 0.15 表 2 北黄海东部坳陷始新统米氏旋回周期的相对强度和比值
Table 2. Relative power and rate of Milankovitch cycles of Eocene formation in the eastern depression of North Yellow Sea basin
井号 偏心率 地轴斜率 岁差 A A′ B C E F NYS3 相对强度 1 589.00 1 698.00 1 235.00 1 172.00 1 943.00 1 870.00 强度比值 1.000 1.069 0.777 0.738 1.223 1.177 NYS2 相对强度 1 260.00 3 247.00 1 197.00 375.80 1 576.00 607.90 强度比值 1.000 2.577 0.950 0.298 1.251 0.482 NYS1 相对强度 2 547.00 - 3 550.00 2 146.00 4 664.00 1 573.00 强度比值 1.000 - 1.394 0.843 1.831 0.618 NYS3 相对强度 3 777.00 5 598.00 1 162.00 412.80 442.80 865.60 强度比值 1.000 1.482 0.308 0.109 0.117 0.229 NYS2 相对强度 1 599.00 1 231.00 646.50 527.80 1 132.00 547.30 强度比值 1.000 0.77 0.404 0.33 0.708 0.342 NYS1 相对强度 4 592.00 4 642.00 2 311.00 1 464.00 1 542.00 1 799.00 强度比值 1.000 1.011 0.503 0.319 0.336 0.392 平均值 相对强度 2 560.67 3 283.20 1 683.58 1 016.40 1 883.30 1 210.47 强度比值 1.000 1.28 0.66 0.4 0.74 0.47 表 3 NYS3井始新统米氏旋回厚度、厚度比、沉积持续时间和沉积速率
Table 3. Thickness, thickness ratio, sedimentation duration and sedimentation rate of Milankovitch cycles of Eocene formation of NYS3 well
井深(m) 层段 地轴斜率 岁差 沉积持续时间(Ma) 沉积速率(m/Ma) C E F 1342.00~1533.00 E1 旋回厚度 4.778 - 2.389 1.559 122.520 厚度比 1.000 - 0.500 1533.00~1732.10 E2 旋回厚度 - 3.553 2.764 1.369 145.455 厚度比 - 0.429 0.333 1732.10~1880.00 E3 旋回厚度 - 3.083 2.313 1.103 134.060 厚度比 - 1.001 0.751 1880.00~2073.00 E4 旋回厚度 - - 2.681 1.847 104.468 厚度比 - - 0.333 2073.00~2264.00 E5 旋回厚度 4.775 2.985 2.171 1.560 122.427 厚度比 1.000 0.626 0.455 2264.00~2593.00 E6 旋回厚度 4.569 2.570 - 2.808 117.146 厚度比 1.000 0.562 - 表 4 NYS2井始新统米氏旋回厚度、厚度比、沉积持续时间和沉积速率
Table 4. Thickness, thickness ratio, sedimentation duration and sedimentation rate of Milankovitch cycles of Eocene formation of NYS2 well
井深(m) 层段 地轴斜率 岁差 沉积持续时间(Ma) 沉积速率(m/Ma) B C E F 1 330.00~1 528.00 E1 旋回厚度 - 4.128 2.751 - 1.871 105.85 厚度比 - 1.000 0.667 - 1 528.00~1 650.25 E2 旋回厚度 5.094 - - 1.910 1.224 99.88 厚度比 1.000 - - 0.375 1 650.25~1 894.00 E3 旋回厚度 - 3.549 2.485 - 2.028 120.18 厚度比 - 1.000 0.700 - 1 894.00~2 074.00 E4 旋回厚度 - 4.687 3.125 - 1.978 91.00 厚度比 - 1.000 0.667 - 2 074.00~2 277.00 E5 旋回厚度 - - 2.818 - 1.657 122.52 厚度比 - - 1.000 - 表 5 NYS1井始新统米氏旋回厚度、厚度比、沉积持续时间和沉积速率
Table 5. Thickness, thickness ratio, sedimentation duration and sedimentation rate of Milankovitch cycles of Eocene formation of NYS1 well
井深(m) 层段 偏心率 地轴斜率 岁差 持续时间(Ma) 沉积速率(m/Ma) A B C E F 1 147.40~1 344.40 E1 旋回厚度 - - 4.405 2.747 2.057 1.744 112.936 厚度比 - - 1.072 0.624 0.467 1 344.40~1 480.40 E2 旋回厚度 - 5.666 - - - 1.224 111.105 厚度比 - - - - 1 480.40~1 706.40 E3 旋回厚度 15.152 4.469 - - 1.865 121.212 厚度比 1.073 0.295 - - 1 706.40~1 874.40 E4 旋回厚度 - 5.502 - 2.342 - 1.557 107.878 厚度比 - 1.044 - 0.426 - -
[1] Bailey, R.J., 2001. Sequence Stratigraphy and Orbital Forcing in Permian (Rotliegend) Desert Deposits: A Discussion. Journal of the Geological Society, 158: 785-791. doi: 10.1144/jgs.158.5.785 [2] Brescia, M., d'Argenio, B., Ferreri, V., et al., 1996. Neural Net Aided Detection of Astronomical Periodicities in Geologic Records. Earth and Planetary Science Letters, 139(1-2): 33-40. doi: 10.1016/0012-821X(96)84608-5 [3] Gong, C.L., Lei, H.Y., Wang, Y.M., et al., 2009. Hydrocarbon Geologic Characters and Structural Evolution in the Eastern Depression of North Yellow Sea Basin. Marine Geology & Quaternary Geology, 29(1): 79-86 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009MGQG...29...79G [4] Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 194(4270): 1121-1132. doi: 10.1126/science.194.4270.1121 [5] Ji, Y.L., 2005. Sequence Stratigraphy. Tongji University Press, Shanghai, 157 (in Chinese). [6] Jing, H.X., Sun, D.Y., Gou, J., et al., 2015. Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block. Earth Science—Journal of China University of Geosciences, 40(6): 982-994 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.082 [7] Laskar, J., Fienga, A., Gastineau, M., et al., 2011. La2010: A New Orbital Solution for the Long-Term Motion of the Earth. Astronomy & Astrophysics, 532(A89): 1-15. doi: 10.1051/0004-6361/201116836 [8] Lever, H., 2004. Cyclic Sedimentation in the Shallow Marine Upper Permian Kennedy Group, Carnarvon Basin, Western Australia. Sedimentary Geology, 172(1-2): 187-209. doi: 10.1016/S1342-937X(05)70312-9 [9] Li, F.J., Wang, D.Y., Zheng, X.M., et al., 2003. The Application of Frequency Spectral Analysis of Logging Curves on Sedimentary Cycle Studies in Coal-Bearing Strata. Coal Geology & Exploration, 31(6): 14-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT200306004.htm [10] Li, F.J., Zheng, R.C., Luo, Q.L., et al., 2007. Analysis of Milankovitch Cycles of the Changxing Formation in Northeastern Sichuan Basin. Journal of China University of Mining & Technology, 36(6): 805-810 (in Chinese with English abstract). http://www.researchgate.net/publication/286745205_Analysis_of_Milankovitch_cycles_of_the_Changxing_formation_in_northeastern_Sichuan_basin [11] Li, Q.M., 1996. The Analysis and Application of Milankovitch Cycles by Logging Data. Acta Geophysica Sinica, 39(5): 699-704 (in Chinese with English abstract). http://www.researchgate.net/publication/295188059_The_analysis_and_application_of_Milankovitch_cycles_by_logging_data [12] Liang, J., Wen, Z.H., Xiao, G.L., et al., 2013. Reservoir Characteristics and Influential Factors in the Eastern Depression of the North Yellow Sea Basin. Marine Geology & Quaternary Geology, 33(2): 111-119 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2014MGQG...33..111L [13] Poletti, L., Premoli, S.I., Masetti, D., et al., 2004. Orbitally Driven Fertility Cycles in the Palaeocene Pelagic Sequences of the Southern Alps (Northern Italy). Sedimentary Geology, 164(1-2): 35-54. doi: 10.1016/j.sedgeo.2003.09.001 [14] Qiao, P.J., Zhu, W.L., Shao, L., et al., 2015. Carbonate Stable Isotope Stratigraphy of Well Xike-1, Xisha Islands. Earth Science—Journal of China University of Geosciences, 40(4): 725-732 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.060 [15] Tian, S.F., 2012. Cyclostratigraphy of Mesozoic and Cenozoic and Implication for Hydrocarbon Exploration—Case Study of the Huizhou Depression and Meishan Section (Dissertation). China University of Petroleum, Qingdao (in Chinese with English abstract). [16] Wang, L.F., Wang, Y.T., Hu, X.Q., 2010. Stratigraphy and Sedimentary Characters of the Western Depression, North Yellow Sea Basin. Marine Geology & Quaternary Geology, 30(3): 97-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201003019.htm [17] Wang, Y.J., Guo, Z.Q., Liu, W.H., et al., 2007. Analysis of Milankovitch Cycles of Quaternary in Sanhu Area, Eastern Qaidam Basin. Progress in Geophysics, 22(2): 544-551 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200702028.htm [18] Zhang, L., Zhou, Y.Z., Wang, L.L., et al., 2009. A Study on Hydrocarbon Generation Conditions in the North Yellow Sea Basin. Natural Gas Industry, 29(1): 21-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200901008.htm [19] Zhang, Z.S., Cai, D.G., Gan, L.D., 1999. Studying Sedimentation Rate by Means of Spectral Analysis of Logs. Journal of Jianghan Petroleum Institute, 21(4): 18-20, 22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX199904007.htm [20] 龚承林, 雷怀彦, 王英民, 等, 2009. 北黄海盆地东部坳陷构造演化与油气地质特征. 海洋地质与第四纪地质, 29(1): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200901018.htm [21] 纪友亮, 2005. 层序地层学. 上海: 同济大学出版社, 157. [22] 敬海鑫, 孙德有, 苟军, 等, 2015. 兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征. 地球科学——中国地质大学学报, 40(6): 982-994. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201506004.htm [23] 李凤杰, 王多云, 郑希民, 等, 2003. 测井曲线频谱分析在含煤地层沉积旋回研究中的应用. 煤田地质与勘探, 31(6): 14-18. doi: 10.3969/j.issn.1001-1986.2003.06.005 [24] 李凤杰, 郑荣才, 罗清林, 等, 2007. 四川盆地东北地区长兴组米兰科维奇周期分析. 中国矿业大学学报, 36(6): 805-810. doi: 10.3321/j.issn:1000-1964.2007.06.018 [25] 李庆谋, 1996. 测井曲线Milankovitch周期分析与应用. 地球物理学报, 39(5): 699-704. doi: 10.3321/j.issn:0001-5733.1996.05.013 [26] 梁杰, 温珍河, 肖国林, 等, 2013. 北黄海盆地东部坳陷储层特征及影响因素. 海洋地质与第四纪地质, 33(2): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201302018.htm [27] 乔培军, 朱伟林, 邵磊, 等, 2015. 西沙群岛西科1井碳酸盐岩稳定同位素地层学. 地球科学——中国地质大学学报, 40(4): 725-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201504014.htm [28] 田世峰, 2012. 中、新生代旋回地层学研究及其油气地质意义——以惠州凹陷和煤山剖面为例(博士学位论文). 青岛: 中国石油大学. [29] 王立飞, 王衍棠, 胡小强, 2010. 北黄海盆地西部坳陷地层与沉积特征. 海洋地质与第四纪地质, 30(3): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201003019.htm [30] 王永军, 郭泽清, 刘卫红, 等, 2007. 柴达木盆地东部三湖地区四系米兰柯维奇旋回分析. 地球物理学进展, 22(2): 544-551. doi: 10.3969/j.issn.1004-2903.2007.02.029 [31] 张莉, 周永章, 王嘹亮, 等, 2009. 北黄海盆地生烃条件研究. 天然气工业, 29(1): 21-25. doi: 10.3787/j.issn.1000-0976.2009.01.005 [32] 张占松, 蔡道钢, 甘利灯, 1999. 用测井曲线能谱分析技术研究沉积速率. 江汉石油学院学报, 21(4): 18-20, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX199904007.htm