PFC3D Mesoscopic Simulation of Self-Boring In-Situ Shear Pressure-Meter Model Test
-
摘要: 自钻式原位剪切旁压试验(self-boring in-situ shear pressure-meter)以其独特的多级加载方式, 能够直接测出土体的强度和变形参数, 然而, 目前对探头周围土体变形机理研究较少.为揭示自钻式原位剪切旁压仪试验过程中测定器周围土颗粒变形机理, 应用PFC3D(particle flow code in three dimensions)颗粒流程序对自钻式原位剪切旁压试验进行了仿真数值模拟, 对多级加载过程中探头周围土体的位移场和应力场发展变化以及数值试样各阶段变形模量和土颗粒运动轨迹进行了分析研究.试验结果表明: 随着剪应力的逐级施加, 中间区域颗粒的位移量不断增大, 且位移矢量方向性更加显著.径向应力在探头附近两侧形成近似呈对称分布的数个"应力核"; 竖向应力在探头两侧形成扁平状应力带, 且在肩部形成应力集中区.中部区域球颗粒的运动轨迹成台阶状, 且随距探头距离的增大由近到远可分为3个特征区域; 球颗粒的Z向和XY向位移量亦随之呈负指数形式衰减, Z向位移量衰减速率更快.Abstract: The self-boring in-situ shear pressure-meter test can obtain the strength and deformation parameters directly through its unique multi-level loading mode; however, the deformation mechanism of the soil surrounding the probe has seldom been studied. To reveal the deformation mechanism of the sand sample surrounding the probe of the self-boring in-situ shear pressure-meter (SBISP) during the loading process, the SBISP model test is simulated by PFC3D (particle flow code in three dimensions) program in this study. The development of the displacement and stress field of the soil surrounding the probe, as well as the deformation modulus of each grade of the numerical sample and the motion trails of the soil particles, are studied under multi-level loading process. The results of numerical experiments show that the displacement of particles in central area increases with the shear stress imposed stepwise, and the direction of displacement vector shows a clearly preferred direction. Several radial stress cores of approximately symmetrical distribution have formed near both sides of the probe. At the same time, the vertical stress has formed flat stress zones, and it has produced some stress concentration areas in the shoulder of the probe. The motion trails of the particles are step-like lines in the central area which can be divided into three characteristic zones as the distance to the probe increases. The vertical and horizontal displacements of particles descend in a negative exponential form, but the vertical displacement has a faster attenuation rate.
-
表 1 冈垣砂物理性质指标
Table 1. Physical property indexes of okagaki sand
项目 颗粒密度ρs(g/cm3) 平均粒径D50(mm) 有效粒径D10(mm) 不均匀系数Uc 最大孔隙比emax 最小孔隙比emin 冈垣砂 2.63 0.26 0.16 2.2 0.94 0.56 表 2 模型墙细观参数
Table 2. Meso-parameters of model wall
墙编号 法向刚度kn(N·m-1) 切向刚度ks(N·m-1) 摩擦系数fc 1 1×1010 1×1010 0.6 2、3、5、6、7、8 1×1010 - - 表 3 数值试样分区及细观参数
Table 3. Partitions and meso-parameters of numerical sample
区域 D的倍数范围 粒径(mm) 法向刚度kn(N·m-1) 颗粒密度ρs(kg·m-3) 摩擦系数fc 中间区域 1~10 2.0~3.2 2.0×105 2 630 1.0 外围区域 10~14 5.0~6.2 4.3×105 2 630 1.0 注:D为探杆直径. -
[1] Cundall, P.A., Strack, O.D.L., 1979. A Discrete Numerical Model for Graunlar Assemblies. Geotechnique, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47 [2] Deng, Y.B., Zhou, J., Liu, W.B., et al., 2011. PFC Numerical Simulation of Augered Piling of Soil Displacement Screw Piles. Chinese Journal of Geotechnical Engineering, 33(9): 1391-1398 (in Chinese with English abstract). http://www.cqvip.com/QK/95758X/201109/39265705.html [3] Gibson, R.E., Anderson, W.F., 1961. In-Situ Measurement of Soil Properties with the Pressuremeter. Civil Engineering Public Works Review, 56: 615-618. http://www.researchgate.net/publication/308548418_In-situ_measurement_of_soil_properties_with_the_pressuremeter [4] Ma, W.W., 1999. Physics (Volume One). Higher Education Press, Beijing, 38-39 (in Chinese). [5] Meng, G.T., 1997. The Mechanism, Method and Application of In-Situ Test for Soils. Geological Publishing House, Beijing, 161-204 (in Chinese). [6] Shen, Z.J., 1996. Soil Sampling on Site or In-Situ Testing—A Preliminary Research on Development of Soil Parameter Test Technology. Chinese Journal of Geotechnical Engineering, 18(5): 90-91 (in Chinese). [7] Xu, G.L., Zhang, X.L., Wang, C.Y., et al., 2009. The New Self-Boring Shear Pressure-Meter and Its Application. China University of Geosciences Press, Wuhan, 64-75 (in Chinese). [8] Xu, G.L., Zhang, X.L., Wang, C.Y., 2010. Development and Application of Self-Boring In-Situ Shear Pressuremeter. Chinese Journal of Geotechnical Engineering, 32(6): 950-955 (in Chinese with English abstract). [9] Zhang, X.L., Xu, G.L., Wang, C.Y., et al., 2007. Development and Application of Self-Boring In-Situ Shear Pressuremeter. Rock and Soil Mechanics, 28(Suppl. ): 909-913, 918 (in Chinese with English abstract). [10] Zhang, X.L., Xu, G.L., Wang, C.Y., 2008. Self-Boring In-Situ Shear Pressuremeter and Its Application to Pile Foundation Engineering. Subgrade Engineering, 137(2): 63-65 (in Chinese). [11] Zhang, Y.F., Xu, G.L., Shen, Y.J., et al., 2012. PFC Numerical Simulation of Self-Boring In-Situ Shear Pressuremeter Model Test. Journal of Engineering Geology, 20(5): 855-861 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201205030.htm [12] Zhang, Y.F., Xu, G.L., Shen, Y.J., et al., 2014. PFC3D Numerical Experiments of Self-Boring In-Situ Shear Pressuremeter Model Test under Different Consolidation Pressures. Rock and Soil Mechanics, 35(2): 591-600 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ytlx201402041 [13] Zhou, J., Chi, Y., Chi, Y.W., et al., 2000a. The Method of Particle Flow and PFC2D Code. Rock and Soil Mechanics, 21(3): 271-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200003019.htm [14] Zhou, J., Chi, Y.W., Chi, Y., et al., 2000b. Simulation of Biaxial Test on Sand by Particle Flow Code. Chinese Journal of Geotechnical Engineering, 22(6): 701-704 (in Chinese with English abstract). [15] Zhou, J., Chi, Y., 2003. Mesomechanical Simulation of Sand Mechanical Properties. Rock and Soil Mechanics, 24(6): 901-906 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200306006.htm [16] Zhou, J., Zhang, G., Zeng, Q.Y., 2007. Model Tests and PFC2D Numerical Analysis of Active Laterally Loaded Piles. Chinese Journal of Geotechnical Engineering, 29(5): 650-656 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ytgcxb200705004 [17] 邓益兵, 周健, 刘文白, 等, 2011. 螺旋挤土桩下旋成孔过程的颗粒流数值模拟. 岩土工程学报, 33(9): 1391-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109017.htm [18] 马文蔚, 1999. 物理学(上册). 北京: 高等教育出版社, 38-39. [19] 孟高头, 1997. 土体原位测试机理、方法及其工程应用. 北京: 地质出版社, 161-204. [20] 沈珠江, 1996. 原状取土还是原位测试——土质参数测试技术发展方向刍议. 岩土工程学报, 18(5): 94-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC605.015.htm [21] 徐光黎, 张晓伦, 王春艳, 等, 2009. 新型自钻式剪切旁压仪及其应用. 武汉: 中国地质大学出版社, 64-75. [22] 徐光黎, 张晓伦, 王春艳, 2010. 自钻式原位剪切旁压仪的开发及应用. 岩土工程学报, 32(6): 950-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006028.htm [23] 张晓伦, 徐光黎, 王春艳, 等, 2007. 自钻式原位剪切旁压仪及其工程应用. 岩土力学, 28(增刊): 909-913, 918. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1184.htm [24] 张晓伦, 徐光黎, 王春艳, 2008. 自钻式旁压剪切仪及其应用于桩基工程的讨论. 路基工程, 137(2): 63-65. doi: 10.3969/j.issn.1003-8825.2008.02.030 [25] 张亚飞, 徐光黎, 申艳军, 等, 2012. 自钻式原位剪切旁压模型试验颗粒流模拟. 工程地质学报, 20(5): 855-861. doi: 10.3969/j.issn.1004-9665.2012.05.029 [26] 张亚飞, 徐光黎, 申艳军, 等, 2014. 自钻式原位剪切旁压模型不同固结荷载颗粒流数值试验. 岩土力学, 35(2): 591-600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402041.htm [27] 周健, 池永, 池毓蔚, 等, 2000a. 颗粒流方法及PFC2D程序. 岩土力学, 21(3): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200003019.htm [28] 周健, 池毓蔚, 池永, 等, 2000b. 砂土双轴试验的颗粒流模拟. 岩土工程学报, 22(6): 701-704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200006013.htm [29] 周健, 池永, 2003. 砂土力学性质的细观模拟. 岩土力学, 24(6): 901-906. doi: 10.3969/j.issn.1000-7598.2003.06.006 [30] 周健, 张刚, 曾庆有, 2007. 主动侧向受荷桩模型试验与颗粒流数值模拟研究. 岩土工程学报, 29(5): 650-656. doi: 10.3321/j.issn:1000-4548.2007.05.004