• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    一种海洋水合物地层钻井用新型钻井液

    刘天乐 李丽霞 蒋国盛 王韧 孙嘉鑫 彭力 ChixotkinVictor

    刘天乐, 李丽霞, 蒋国盛, 王韧, 孙嘉鑫, 彭力, ChixotkinVictor, 2015. 一种海洋水合物地层钻井用新型钻井液. 地球科学, 40(11): 1913-1921. doi: 10.3799/dqkx.2015.172
    引用本文: 刘天乐, 李丽霞, 蒋国盛, 王韧, 孙嘉鑫, 彭力, ChixotkinVictor, 2015. 一种海洋水合物地层钻井用新型钻井液. 地球科学, 40(11): 1913-1921. doi: 10.3799/dqkx.2015.172
    Liu Tianle, Li Lixia, Jiang Guosheng, Wang Ren, Sun Jiaxin, Peng Li, Chixotkin Victor, 2015. A New Drilling Fluid for Drilling in Marine Gas Hydrate Bearing Sediments. Earth Science, 40(11): 1913-1921. doi: 10.3799/dqkx.2015.172
    Citation: Liu Tianle, Li Lixia, Jiang Guosheng, Wang Ren, Sun Jiaxin, Peng Li, Chixotkin Victor, 2015. A New Drilling Fluid for Drilling in Marine Gas Hydrate Bearing Sediments. Earth Science, 40(11): 1913-1921. doi: 10.3799/dqkx.2015.172

    一种海洋水合物地层钻井用新型钻井液

    doi: 10.3799/dqkx.2015.172
    基金项目: 

    国家自然科学基金项目 40974071

    国家自然科学基金项目 5127417

    湖北省自然科学基金项目 2012FFA047

    中国地质大学(武汉)实验技术项目 CUGL140819

    教育部留学回国人员科研启动基金项目 教外司留[2015]1098号

    详细信息
      作者简介:

      刘天乐(1984-), 男, 讲师, 博士, 主要从事天然气水合物地层、多年冻土区等低温条件钻井与固井工艺技术方面的研究工作.E-mail: liutianle2008@163.com

      通讯作者:

      Chixotkin Victor, E-mail: 274485559@qq.com

    • 中图分类号: P67

    A New Drilling Fluid for Drilling in Marine Gas Hydrate Bearing Sediments

    • 摘要: 随着全球对天然气水合物勘探与开发的关注越来越多, 水合物地层钻井技术的研究也得到了日益重视.但是, 水合物地层钻井存在井内水合物分解与重新生成从而影响井内安全的严重问题.为了解决这一问题, 针对水合物地层的钻井特点, 结合现有的纳米材料, 通过大量实验优选出一种适合海洋天然气水合物地层钻井用的纳米SiO2钻井液: 海水+2%纳米SiO2+3%膨润土+1%Na-CMC+3%SMP-2+1%PVP(K90)+2%KCl, 并对其低温常规性能和水合物生成抑制性能进行了实验评价.实验结果表明, 该钻井液具有适中的密度、良好的低温流变性和泥页岩水化抑制性, 并能够长时间有效抑制近井壁地层中的水合物分解气在钻井液循环系统中重新生成水合物, 有利于保障井内安全和钻井作业的顺利实施.

       

    • 图  1  天然气水合物生成与分解模拟实验系统示意

      Fig.  1.  Schematic of the experimental system for gas-hydrate formation and decomposition

      图  2  不同温度下的纳米SiO2钻井液动塑比

      Fig.  2.  The yield point and plastic viscosity ratio of nano-SiO2drilling fluid at different temperatures

      图  3  不同温度下的纳米SiO2钻井液触变性

      Fig.  3.  The thixotropic behavior of nano-SiO2 drilling fluid at different temperatures

      图  4  泥页岩试样经海水、Aqua-ColTMS钻井液和纳米SiO2钻井液浸泡2小时的表面完整性

      Fig.  4.  The integrity of shale samples surface in sea water, Aqua-ColTMS drilling fluid and nano-SiO2 drilling fluid after 2 h

      图  5  泥页岩在海水、Aqua-ColTMS钻井液和纳米SiO2钻井液中线性膨胀变化趋势

      Fig.  5.  The trend of shale linear expansion in sea water, Aqua-ColTMS drilling fluid and nano-SiO2 drilling fluid

      图  6  磁力搅拌反应釜示意

      Fig.  6.  Autoclave with magnetic stirring

      图  7  水合物生成静态和动态抑制试验

      a.静态抑制;b.动态抑制

      Fig.  7.  The static and dynamic inhibition test for hydrate formation

      表  1  纳米SiO2钻井液和Aqua-ColTMS钻井液的常规性能

      Table  1.   The property of nano-SiO2 drilling fluid and Aqua-ColTMS drilling fluid

      4 ℃配方 密度(g/cm3) 塑性粘度(mPaos) 动切力(Pa) 滤失量(mL)
      配方1 1.10 16.5 7.5 6.5
      配方2 1.10 15.0 6.5 7.0
      下载: 导出CSV

      表  2  不同温度下的纳米SiO2钻井液常规性能

      Table  2.   The property of nano-SiO2 drilling fluid at different temperatures

      T(℃) 密度(g/cm3) 塑性粘度(mPaos) 动切力(Pa) 滤失量(mL)
      6 1.10 14 6.5 6.5
      3 1.10 17 7.8 6.5
      0 1.10 20 9.0 6.5
      -3 1.11 23 10.2 6.7
      -6 1.12 25 11.0 6.8
      下载: 导出CSV
    • [1] Bai, X.D., Pu, X.L., Zhang, H., 2007. Synthesis of Nano Filming Agent NM-1 and Its Application in Drilling Fluids. Drilling Fluid & Completion Fluid, 24(1): 13-14, 36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJYW200701002.htm
      [2] Bicetano, J., 2009. Drilling Fluid, Drill-in Fluid, Completion Fluid and Workover Fluid Additive Compositions Containing Thermoset Nanocomposites Particles, and Applications for Fluid Loss Control and Wellbore Strengthening, US 20 090 029 878A1.
      [3] Cai, J.H., Chenevert, M.E., Sharma, M.M., et al., 2011. Decreasing Water Invasion into Aatoka Shale Using Non-Modified Silica Nanoparticles. SPE Drill & Completion, 27(1): 103-112. http://www.researchgate.net/publication/254552526_Decreasing_Water_Invasion_Into_Atoka_Shale_Using_Nonmodified_Silica_Nanoparticles
      [4] Chen, H., Xie, X.N., Mao, K.N., 2015. Deep-Water Contourite Depositional System in Vicinity of Yi'tong Shoal on Northern Margin of the South China Sea. Earth Science—Journal of China University of Geosciences, 40(4): 733-743 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.061
      [5] Friedheim, J., Chenevert, M., Ji, L., et al., 2012. Laboratory Evaluation and Analysis of Physical Shale Inhibit Ion of an Innovative Water-Based Drilling Fluid with Nanoparticles for Drilling Unconventional Shales. SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, 22-24.
      [6] George, D.S., Hyndman, R.D., 2001. The Challenge of Deep Ocean Drilling for Natural Gas Hydrate. Geoscience Canada, 28(4): 179-186. http://www.researchgate.net/publication/228812952_The_challenge_of_deep_ocean_drilling_for_natural_gas_hydrate
      [7] Javeri, S.M., Haindade, Z.W., Jere, C.B., 2011. Mitigating Loss Circulation and Differential Sticking Problems Using Silicon Nanoparticles. SPE/IADC Middle East Drilling Technology Conference and Exhibition Held in Muscat, Oman, 24-26.
      [8] Jensen, L., Thomsen, K., Solms, N., 2008. Propane Hydrate Nucleation: Experimental Investigation and Correlation. Chemical Engineering Science, 63(12): 3069-3080. doi: 10.1016/j.ces.2008.03.006
      [9] Lei, C., Ren, J.Y., Zhang, J., 2015. Tectonic Province Divisions in the South China Sea: Implication for Basin Geodynamics. Earth Science—Journal of China University of Geosciences, 40(4): 744-762 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.062
      [10] Liu, T.L., Jiang, G.S., Tu, Y.Z., et al., 2009. Lab Tests on a Novel Water-Based Polyglycol Drilling Fluid. Petroleum Drilling Techniques, 37(6): 26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZT200906007.htm
      [11] Mihaela, M., 2012. Designing of Drilling Fluid Using Nano Scale Polymer Additives. Academia Romana, 57(3): 197-202. http://smartsearch.nstl.gov.cn/paper_detail.html?id=e5e10da7910d3933f9f28702688c9724
      [12] Ning, F.L., Jiang, G.S., Zhang, L., et al., 2008. Analysis of Key Factors Affecting Wellbore Stability in Gas Hydrate Formations. Petroleum Drilling Techniques, 36(3): 59-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZT200803016.htm
      [13] Ning, F.L., Wu, X., Zhang, L., et al., 2006. Experimental Study on Performance of Water-Based Drilling Fluid Used to Drill Formations with Gas Hydrate. Natural Gas Industry, 26(1): 52-55 (in Chinese with English abstract). http://www.researchgate.net/publication/297319418_Experimental_study_on_performance_of_water-based_drilling_fluid_used_to_drill_formations_with_gas_hydrate
      [14] Peng, Z., Wang, Z.H., He, H.J., et al., 2011. Application of Nanometer Materials in Oilfield Chemistry. Advances in Fine Petrochemicals, 12(7): 8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXSI201107005.htm
      [15] Sayyadnejad, M.A., Chaffarian, H.R., Saeidi, M., 2008. Removal of Hydrogen Sulfide by Zinc Oxide Nanoparticles in Drilling Fluid. Int. Environ. Sci. Tech., 5(4): 565-569. doi: 10.1007/BF03326054
      [16] Sloan, E.D., 2003. Fundamental Principles and Applications of Natural Gas Hydrates. Nature, 426(6964): 353-359. doi:1038/nature 02135
      [17] Sun, T., Chen, L.Y., Qiu, C.J., et al., 2004. Study on Performance of Low Temperature Drilling Fluids Used for Gas Hydrate Exploration. Natural Gas Industry, 24(2): 61-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200402020.htm
      [18] Tan, C.P., Clennell, M.B., Tohidi, B., et al., 2005. Managing Wellbore Instability Risk in Gas-Hydrate Bearing Sediments. Society of Petroleum Engineers, New York. doi: org/10.2118/92960-MS
      [19] Wang, H., Wang, F.H., 2005. Discussion on the Application of Nanometer Science and Technology in Drilling Fluid. Drilling Fluid & Completion Fluid, 22(2): 50-53 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_drilling-fluid-completion_thesis/0201219214170.html
      [20] Wang, P.K., Zhu, Y.H., Lu, Z.Q., et al., 2011. Gas Hydrate in the Qilian Mountain Permafrost and Its Distribution Characteristics. Geological Bulletin of China, 30(12): 1839-1850 (in Chinese with English abstract). http://www.researchgate.net/publication/283857405_Gas_hydrate_in_the_Qilian_Mountain_permafrost_and_its_distribution_characteristics
      [21] Yang, J.H., Tohidi, B., 2011. Characterization of Inhibition Mechanisms of Kinetic Hydrate Inhibitors Using Ultrasonic Test Technique. Chemical Engineering Science, 66(3): 278-283. doi: 10.1016/j.ces.2010.10.025
      [22] Yao, B.C., 2005. The Forming Condition and Distribution Characteristics of the Gas Hydrate in the South China Sea. Marine Geology & Quaternary Geology, 25(2): 81-90 (in Chinese with English abstract). http://www.researchgate.net/publication/304109681_The_forming_condition_and_distribution_characteristics_of_the_gas_hydrate_in_the_South_China_Sea
      [23] Yuan, Y., Cai, J.H., Wang, J.J., et al., 2013. Experimental Study on Improving Filtration Properties of Drilling Fluid Using Silica Nano-Particles. Oil Drilling & Production Technology, 35(3): 30-33 (in Chinese with English abstract). doi: 1000-7393(2013)03-0030-04
      [24] Zhu, Y.H., Zhang, Y.Q., Wen, H.J., et al., 2010. Gas Hydrates in the Qilian Mountain Permafrost and Their Basic Characteristics. Acta Geoscientica Sinica, 31(1): 7-16, 130 (in Chinese with English abstract). http://www.oalib.com/paper/1558550
      [25] Zhang, Y.Q., Sun, J.H., Zhao, H.T., et al., 2007. Study on Drilling Fluid for Hydrate in Plateau Permafrost. Exploration Engineering (Rock & Soil Drilling and Tunneling), 34(9): 16-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TKGC200709006.htm
      [26] 白小东, 蒲晓林, 张辉, 2007. 纳米成膜剂NM-1的合成及其在钻井液中的应用研究. 钻井液与完井液, 24(1): 13-14, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW200701002.htm
      [27] 陈慧, 解习农, 毛凯楠, 2015. 南海北缘一统暗沙附近深水等深流沉积体系特征. 地球科学——中国地质大学学报, 40(4): 733-743. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201504016.htm
      [28] 雷超, 任建业, 张静, 2015. 南海构造变形分区及成盆过程. 地球科学——中国地质大学学报, 40(4): 744-762. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201504017.htm
      [29] 刘天乐, 蒋国盛, 涂运中, 等, 2009. 新型水基聚合醇钻井液性能评价. 石油钻探技术, 37(6): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200906007.htm
      [30] 宁伏龙, 蒋国盛, 张凌, 等, 2008. 影响含天然气水合物地层井壁稳定的关键因素分析. 石油钻探技术, 36(3): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200803016.htm
      [31] 宁伏龙, 吴翔, 张凌, 等, 2006. 天然气水合物地层钻井时水基钻井液性能实验研究. 天然气工业, 26(1): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200601017.htm
      [32] 彭振, 王中华, 何焕杰, 等, 2011. 纳米材料在油田化学中的应用. 精细石油化工进展, 12(7): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSI201107005.htm
      [33] 孙涛, 陈礼仪, 邱存家, 等, 2004. 天然气水合物勘探低温钻井液体系与性能研究. 天然气工业, 24(2): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200402020.htm
      [34] 王辉, 王富华, 2005. 纳米技术在钻井液中的应用探讨. 钻井液与完井液, 22(2): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW20050200E.htm
      [35] 王平康, 祝有海, 卢振权, 等, 2011. 祁连山冻土区天然气水合物岩性和分布特征. 地质通报, 30(12): 1839-1850. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201112006.htm
      [36] 姚伯初, 2005. 南海天然气水合物的形成和分布. 海洋地质与第四纪地质, 25(2): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200502017.htm
      [37] 袁野, 蔡记华, 王济君, 等, 2013. 纳米二氧化硅改善钻井液滤失性能的实验研究. 石油钻采工艺, 35(3): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201303010.htm
      [38] 祝有海, 张永勤, 文怀军, 等, 2010. 祁连山冻土区天然气水合物及其基本特征. 地球学报, 31(1): 7-16, 130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201001004.htm
      [39] 张永勤, 孙建华, 赵海涛, 等, 2007. 高原冻土水合物钻探冲洗液的研究. 探矿工程(岩土钻掘工程), 34(9): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC200709006.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  2829
    • HTML全文浏览量:  138
    • PDF下载量:  472
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-03-18
    • 刊出日期:  2015-11-15

    目录

      /

      返回文章
      返回