Quantitative Analysis of Soil Pores under Sewage Irrigation Using Computerized Tomography
-
摘要: 污水中的悬浮物、盐分和有机营养物对土壤孔隙状况产生了深刻的影响.通过室内模拟和CT(computed tomography)扫描的方法, 定量研究污水灌溉条件下土壤孔隙数、孔隙度及形态特征.结果表明: 与对照点相比, 污水灌溉区上层土壤总孔隙数和大孔隙数(当量直径≥1.00 mm)均显著升高, 而下层土壤总孔隙数、大孔隙数、粗孔隙数(当量直径为0.26~1.00 mm)、总孔隙度、大孔隙度和粗孔隙度均显著降低(p<0.05);在模拟悬浮液和盐液灌溉条件下, 土壤总孔隙数、粗孔隙数和粗孔隙度均有所升高, 而大孔隙数、总孔隙度、大孔隙度和孔隙成圆率均有所降低; 在模拟营养液灌溉条件下, 土壤总孔隙数、大孔隙数、粗孔隙数和粗孔隙度均有所增加, 而孔隙成圆率有所降低; 对于研究区土壤来说, 悬浮液灌溉对土壤孔隙的影响效应强于盐液灌溉; 对于同种性质的污水灌溉来说, 污灌对对照点土壤孔隙的影响效应强于污灌区土壤.Abstract: The suspension solids, salts and organic nutrients in sewage efflunts can significantly affect soil porosity condition. Based on the laboratory simulation and computed tomography, the numbers of soil pores, porosity and shape were quantitatively studied under the condition of irrigation with sewage. The results show that the soils irrigated with sewage effluents exhibited higher total pore numbers and macropore numbers(≥1.00 mm in diameter) in the upper layer but lower total pore numbers, macropore numbers, coarse pore numbers (0.26-1.00 mm in diameter), total porosity, macroporosity and coarse porosity in the subsoil layer when compared with the soils irrigated with groundwater (p < 0.05). Under the condition of irrigation with suspension or with salt solution, total pore numbers, coarse pore numbers and coarse porosity increased, while macropore numbers, total porosity, macroporosity and cycle rate decreased. Under the condition of irrigation with nutrient solution, total pore numbers, macropore numbers, coarse pore numbers and coarse porosity increased, while macroporosity and cycle rate decreased. For the soil in the study fields, the effect of irrigation with suspension on the soil pores was stronger than that with salt solution. For the same irrigation with suspension or with salt solution, the effect of sewage irrigation on pores in groundwater irrigated soils was stronger than that in sewage irrigated soils.
-
Key words:
- sewage irrigation /
- soil pore /
- computed tomography /
- farmland /
- environmental geology.
-
表 1 不同灌区土壤的基本理化性质
Table 1. Basic physical and chemical properties of soils irrigated with sewage and groundwater
灌区 层位(cm) pH 电导(μS·cm-1) 有机质(g·kg-1) Na+(mg·kg-1) Ca2+(mg·kg-1) CEC(cmol·kg-1) 粘粒(g·kg-1) 污灌区 0~20 8.13 286 24.58 36.23 13.22 14.65 405 20~40 8.19 293 11.60 32.50 20.17 13.33 345 对照点 0~20 8.16 173 19.10 11.09 23.09 14.79 349 20~40 8.59 206 8.99 14.44 24.62 15.10 342 注:CEC.阳离子交换量(cation exchange capacity). 表 2 灌溉污水和灌溉地下水的基本性质
Table 2. Characteristics of sewage effluents and groundwater used for irrigation of agricultural soils
pH 电导(μS·cm-1) SS(mg·L-1) 有机碳(mg·L-1) Na+(mg·L-1) Ca2+(mg·L-1) Mg2+(mg·L-1) SAR 污水 7.7 1 599 293 136.9 162.5 107.7 30.6 3.5 地下水 7.2 1 347 ND 16.7 46.2 139.8 52.9 0.8 注:SS.悬浮物(Suspended solids);SAR.钠吸附比(sodium adsorption ratio);ND.未检测(not detected). 表 3 不同灌区土壤中孔隙参数统计均值
Table 3. Average numbers of soil pores attributes in the different irrigated fields
表 4 悬浮液灌溉条件下污灌区土壤中孔隙参数统计均值
Table 4. Average numbers of pores attributes in sewage irrigated soils under the condition of irrigation with suspension
灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率 总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度 污灌区 0~20 120b 61a 59b 3.17a 2.96a 0.21b 0.659b 20~40 41c 18b 23d 0.60c 0.51c 0.08c 0.672a 对照点 0~20 161a 54a 107a 2.14b 1.79b 0.34a 0.638c 20~40 54c 16b 37c 0.48c 0.36c 0.12c 0.648bc 表 5 悬浮液灌溉条件下对照点土壤中孔隙参数统计均值
Table 5. Average numbers of pores attributes in groundwater irrigated soils under the condition of irrigation with suspension
灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率 总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度 污灌区 0~20 94b 41a 53c 2.70a 2.51a 0.18b 0.636ab 20~40 94b 39a 54c 1.97b 1.78b 0.20b 0.645a 对照点 0~20 136a 42a 95a 2.00b 1.69b 0.31a 0.625b 20~40 95b 23b 73b 1.08c 0.84c 0.24b 0.630b 表 6 盐液灌溉条件下污灌区土壤中孔隙参数统计均值
Table 6. Average numbers of pores attributes in sewage irrigated soils under the condition of irrigation with salt solution
灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率 总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度 污灌区 0~20 88b 37a 51b 1.96a 1.78a 0.18b 0.654a 20~40 26c 9b 17c 0.33b 0.26b 0.06c 0.656a 对照点 0~20 129a 36a 93a 1.65a 1.37a 0.28a 0.626b 20~40 33c 7b 26c 0.24b 0.16b 0.08c 0.638b 表 7 盐液灌溉条件下对照点土壤中孔隙参数统计均值
Table 7. Average numbers of pores attributes in groundwater irrigated soils under the condition of irrigation with salt solution
灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率 总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度 污灌区 0~20 91bc 36a 55b 2.02a 1.82a 0.20bc 0.641b 20~40 80c 31ab 50b 1.54ab 1.36a 0.17c 0.658a 对照点 0~20 119a 36a 83a 1.85a 1.59a 0.26a 0.621c 20~40 101ab 27b 74a 1.03b 0.80b 0.23ab 0.633b 表 8 营养液灌溉条件下污灌区土壤中孔隙参数统计均值
Table 8. Average numbers of soil pores attributes in sewage irrigated soils under the condition of irrigation with nutrient solution
灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率 总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度 污灌区 0~20 112b 47b 65b 3.05a 2.81a 0.23b 0.661a 20~40 48c 16c 32c 0.60b 0.49b 0.11c 0.651ab 对照点 0~20 175a 59a 116a 2.93a 2.55a 0.37a 0.627c 20~40 57c 19c 39c 0.80b 0.67b 0.13c 0.642b 表 9 营养液灌溉条件下对照点土壤中孔隙参数统计均值
Table 9. Average numbers of soil pores attributes in groundwater irrigated soils under the condition of irrigation with nutrient solution
灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率 总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度 污灌区 0~20 93b 40b 53b 2.30a 2.12a 0.19b 0.660a 20~40 36d 15c 22c 0.53b 0.46b 0.07c 0.666a 对照点 0~20 177a 57a 120a 2.70a 2.30a 0.40a 0.630b 20~40 66c 18c 48b 0.79b 0.64b 0.15b 0.639b -
[1] Al-Subu, M.M., Haddad, M., Mizyed, N., et al., 2003. Impacts of Irrigation with Water Containing Heavy Metals on Soil and Groundwater— A Simulation Study. Water, Air and Soil Pollution, 146(1-4): 141-152. doi: 10.1023/A:1023995119824 [2] Alvarez-Bernal, D., Contreras-Ramos, S.M., Trujillo-Tapia, N., et al., 2006. Effects of Tanneries Wastewater on Chemical and Biological Soil Characteristics. Applied Soil Ecology, 33(3): 269-277. doi: 10.1016/j.apsoil.2005.10.007 [3] Bao, S.D., 2000. Soil Agro-Chemical Analysis. The Third Edition. China Agricultural Press, Beijing, 188-193 (in Chinese). [4] Emdad, M.R., Raine, S.R., Smith, R.J., 2004. Effect of Water Quality on Soil Structure and Infiltration under Furrow Irrigation. Irrigation Science, 23(2): 55-60. doi: 10.1007/s00271-004-0093-y [5] Feng, J., Hao, Z.C., 2002. Distribution of Soil Macropores Characterized by CT. Advances in Water Science, 13(5): 611-617 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200205013.htm [6] Gao, C.X., Xue, X.X., Zhao, J.N., et al., 2014. Review on Macropore Flow in Soil. Acta Ecologica Sinica, 34(11): 2801-2811 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-ecologica-sinica_thesis/0201254794345.html [7] Gharaibeh, M.A., Eltaif, N.I., Al-Abdullah, B., 2007. Impact of Field Application of Treated Wastewater on Hydraulic Properties of Vertisols. Water, Air and Soil Pollution, 184: 347-353. doi: 10.1007/s11270-007-9423-z [8] Halliwell, D.J., Barlow, K.M., Nash, D.M., 2001. A Review of the Effects of Wastewater Sodium on Soil Physical Properties and Their Implications for Irrigation Systems. Australian Journal of Soil Research, 39: 1259-1267. doi: 10.1071/SR00047 [9] Huang, G.X., Sun, J.C., Zhang, Y., et al., 2011. Distribution of Arsenic in Sewage Irrigation Area of Pearl River Delta, China. Journal of Earth Science, 22(3): 396-410. doi: 10.1007/s12583-011-0192-7 [10] Lado, M., Ben-Hur, M., 2009. Treated Domestic Sewage Irrigation Effects on Soil Hydraulic Properties in Arid and Semiarid Zones: A Review. Soil & Tillage Research, 106(1): 152-163. doi: 10.1016/j.still.2009.04.011 [11] Li, F.H., Huang, G.H., Ding, Y., et al., 2006. Effects of Soil Sodicity, Gypsum Application, and Filtration Disposal on Hydraulic Conductivity under Irrigation with Domestic Effluent Water. Transactions of the CSAE, 22(1): 48-52 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-NYGU200601011.htm [12] Li, L.Q., Du, H.L., Feng, L.R., et al., 2001. Study on Properties of Physics and Chemistry of Cinnamon Soil with Wastewater Irrigation. Journal of Shanxi Agricultural University, 21(1): 73-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXNY200101023.htm [13] Lu, R.K., 2000. Chemical Analysis Methods of Agricultural Soil. China Agricultural Science and Technology Press, Beijing, 22-169 (in Chinese). [14] Magesan, G.N., Williamson, J.C., Yates, G.W., et al., 2000. Wastewater C: N Ratio Effects on Soil Hydraulic Conductivity and Potential Mechanisms for Recovery. Bioresource Technology, 71: 21-27. doi: 10.1016/S0960-8524(99)00054-1 [15] Nunan, N., Ritz, K., Rivers, M., et al., 2006. Investigating Microbial Micro-Habitat Structure Using X-Ray Computed Tomography. Geoderma, 133(3-4): 398-407. doi: 10.1016/j.geoderma.2005.08.004 [16] Sander, T., Gerke, H.H., Rogasik, H., 2008. Assessment of Chinese Paddy-Soil Structure Using X-Ray Computed Tomography. Geoderma, 145(3-4): 303-314. doi: 10.1016/j.geoderma.2008.03.024 [17] State Bureau of Environmental Protection, 2002. Water and Wastewater Monitoring Analysis Method (the Forth Edition). China Environmental Science Press, Beijing, 102-415 (in Chinese). [18] Wang, Z., Chang, A.C., Wu, L., et al., 2003. Assessing the Soil Quality of Long-Term Reclaimed Wastewater-Irrigated Cropland. Geoderma, 114(3-4): 261-278. doi: 10.1016/S0016-7601(03)00044-2 [19] Xia, J.B., Liu, Q., Xie, W.J., et al., 2009. Effect of Wastewater Irrigation on Soil Hydrological Properties in Reed Marsh. Transactions of the CSAE, 25(12): 63-68 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103100824.html [20] Yadav, R.K., Goyal, B., Sharma, R.K., et al., 2002. Post-Irrigation Impact of Domestic Sewage Effluent on Composition of Soils, Crops and Ground Water—A Case Study. Environment International, 28(6): 481-486. doi: 10.1016/S0160-4120(02)00070-3 [21] Yang, J., Zheng, Y.M., Chen, T.B., et al., 2006. Leaching of Heavy Metals in Soil Column under Irrigation Reclaimed Water: A Simulation Experiment. Geographical Research, 25(3): 449-456 (in Chinese with English abstract). http://www.oalib.com/paper/1569529 [22] Zhao, S.W., Zhao, Y.G., Wu, J., S., 2010. Quantitative Analysis of Soil Pores under Natural Vegetation Seccesssions on the Loess Plateau. Science in China (Series D), 40(2): 223-231 (in Chinese). http://www.irgrid.ac.cn/handle/1471x/516834?mode=full&submit_simple=Show+full+item+record [23] 鲍士旦, 2000. 土壤农化分析(第三版). 北京: 中国农业出版社, 188-193. [24] 冯杰, 郝振纯, 2002. CT扫描确定土壤大孔隙分布. 水科学进展, 13(5): 611-617. doi: 10.3321/j.issn:1001-6791.2002.05.014 [25] 高朝侠, 徐学选, 赵娇娜, 等, 2014. 土壤大孔隙流研究现状与发展趋势. 生态学报, 34(11): 2801-2811. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201411001.htm [26] 李法虎, 黄冠华, 丁贇, 等, 2006. 污灌条件下土壤碱度、石膏施用以及污水过滤处理对水力传导度的影响. 农业工程学报, 22(1): 48-52. doi: 10.3321/j.issn:1002-6819.2006.01.011 [27] 李恋卿, 杜慧玲, 冯两蕊, 等, 2001. 不同年限污水灌溉对石灰性褐土理化性质的影响. 山西农业大学学报, 21(1): 73-75. doi: 10.3969/j.issn.1671-8151.2001.01.022 [28] 鲁如坤, 2000. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 22-169. [29] 国家环境保护总局, 2002. 水和废水监测分析方法(第四版). 北京: 中国环境科学出版社, 102-415. [30] 夏江宝, 刘庆, 谢文军, 等, 2009. 废水灌溉对芦苇地土壤水文特征的影响. 农业工程学报, 25(12): 63-68. doi: 10.3969/j.issn.1002-6819.2009.12.011 [31] 杨军, 郑袁明, 陈同斌, 等, 2006. 中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险. 地理研究, 25(3): 449-456. doi: 10.3321/j.issn:1000-0585.2006.03.010 [32] 赵世伟, 赵勇刚, 吴金水, 2010. 黄土高原植被演替下土壤孔隙的定量分析. 中国科学(D辑), 40(2): 223-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201002009.htm