• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    污水灌溉下土壤孔隙特征的CT定量分析

    郭晓明 马腾 陈柳竹 刘林

    郭晓明, 马腾, 陈柳竹, 刘林, 2015. 污水灌溉下土壤孔隙特征的CT定量分析. 地球科学, 40(11): 1896-1903. doi: 10.3799/dqkx.2015.170
    引用本文: 郭晓明, 马腾, 陈柳竹, 刘林, 2015. 污水灌溉下土壤孔隙特征的CT定量分析. 地球科学, 40(11): 1896-1903. doi: 10.3799/dqkx.2015.170
    Guo Xiaoming, Ma Teng, Chen Liuzhu, Liu Lin, 2015. Quantitative Analysis of Soil Pores under Sewage Irrigation Using Computerized Tomography. Earth Science, 40(11): 1896-1903. doi: 10.3799/dqkx.2015.170
    Citation: Guo Xiaoming, Ma Teng, Chen Liuzhu, Liu Lin, 2015. Quantitative Analysis of Soil Pores under Sewage Irrigation Using Computerized Tomography. Earth Science, 40(11): 1896-1903. doi: 10.3799/dqkx.2015.170

    污水灌溉下土壤孔隙特征的CT定量分析

    doi: 10.3799/dqkx.2015.170
    基金项目: 

    国家重点基础研究发展计划(973计划)项目 2010CB428802

    国家自然科学基金项目 40872157

    国家自然科学基金项目 40830748

    高等学校博士学科点专项科研基金项目 20110145110003

    河南省高校科技创新团队支持计划 15IRTSTHN027

    详细信息
      作者简介:

      郭晓明(1982-), 男, 讲师, 博士, 从事水文地质相关教学工作, 主要从事包气带水文地质学的研究.E-mail: guoxiaoming@hpu.edu.cn

      通讯作者:

      马腾, E-mail: mateng@cug.edu.cn

    • 中图分类号: P641.1

    Quantitative Analysis of Soil Pores under Sewage Irrigation Using Computerized Tomography

    • 摘要: 污水中的悬浮物、盐分和有机营养物对土壤孔隙状况产生了深刻的影响.通过室内模拟和CT(computed tomography)扫描的方法, 定量研究污水灌溉条件下土壤孔隙数、孔隙度及形态特征.结果表明: 与对照点相比, 污水灌溉区上层土壤总孔隙数和大孔隙数(当量直径≥1.00 mm)均显著升高, 而下层土壤总孔隙数、大孔隙数、粗孔隙数(当量直径为0.26~1.00 mm)、总孔隙度、大孔隙度和粗孔隙度均显著降低(p<0.05);在模拟悬浮液和盐液灌溉条件下, 土壤总孔隙数、粗孔隙数和粗孔隙度均有所升高, 而大孔隙数、总孔隙度、大孔隙度和孔隙成圆率均有所降低; 在模拟营养液灌溉条件下, 土壤总孔隙数、大孔隙数、粗孔隙数和粗孔隙度均有所增加, 而孔隙成圆率有所降低; 对于研究区土壤来说, 悬浮液灌溉对土壤孔隙的影响效应强于盐液灌溉; 对于同种性质的污水灌溉来说, 污灌对对照点土壤孔隙的影响效应强于污灌区土壤.

       

    • 图  1  图像分析过程

      Fig.  1.  Process of CT image analysis

      表  1  不同灌区土壤的基本理化性质

      Table  1.   Basic physical and chemical properties of soils irrigated with sewage and groundwater

      灌区 层位(cm) pH 电导(μS·cm-1) 有机质(g·kg-1) Na+(mg·kg-1) Ca2+(mg·kg-1) CEC(cmol·kg-1) 粘粒(g·kg-1)
      污灌区 0~20 8.13 286 24.58 36.23 13.22 14.65 405
      20~40 8.19 293 11.60 32.50 20.17 13.33 345
      对照点 0~20 8.16 173 19.10 11.09 23.09 14.79 349
      20~40 8.59 206 8.99 14.44 24.62 15.10 342
      注:CEC.阳离子交换量(cation exchange capacity).
      下载: 导出CSV

      表  2  灌溉污水和灌溉地下水的基本性质

      Table  2.   Characteristics of sewage effluents and groundwater used for irrigation of agricultural soils

      pH 电导(μS·cm-1) SS(mg·L-1) 有机碳(mg·L-1) Na+(mg·L-1) Ca2+(mg·L-1) Mg2+(mg·L-1) SAR
      污水 7.7 1 599 293 136.9 162.5 107.7 30.6 3.5
      地下水 7.2 1 347 ND 16.7 46.2 139.8 52.9 0.8
      注:SS.悬浮物(Suspended solids);SAR.钠吸附比(sodium adsorption ratio);ND.未检测(not detected).
      下载: 导出CSV

      表  3  不同灌区土壤中孔隙参数统计均值

      Table  3.   Average numbers of soil pores attributes in the different irrigated fields

      下载: 导出CSV

      表  4  悬浮液灌溉条件下污灌区土壤中孔隙参数统计均值

      Table  4.   Average numbers of pores attributes in sewage irrigated soils under the condition of irrigation with suspension

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 120b 61a 59b 3.17a 2.96a 0.21b 0.659b
      20~40 41c 18b 23d 0.60c 0.51c 0.08c 0.672a
      对照点 0~20 161a 54a 107a 2.14b 1.79b 0.34a 0.638c
      20~40 54c 16b 37c 0.48c 0.36c 0.12c 0.648bc
      下载: 导出CSV

      表  5  悬浮液灌溉条件下对照点土壤中孔隙参数统计均值

      Table  5.   Average numbers of pores attributes in groundwater irrigated soils under the condition of irrigation with suspension

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 94b 41a 53c 2.70a 2.51a 0.18b 0.636ab
      20~40 94b 39a 54c 1.97b 1.78b 0.20b 0.645a
      对照点 0~20 136a 42a 95a 2.00b 1.69b 0.31a 0.625b
      20~40 95b 23b 73b 1.08c 0.84c 0.24b 0.630b
      下载: 导出CSV

      表  6  盐液灌溉条件下污灌区土壤中孔隙参数统计均值

      Table  6.   Average numbers of pores attributes in sewage irrigated soils under the condition of irrigation with salt solution

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 88b 37a 51b 1.96a 1.78a 0.18b 0.654a
      20~40 26c 9b 17c 0.33b 0.26b 0.06c 0.656a
      对照点 0~20 129a 36a 93a 1.65a 1.37a 0.28a 0.626b
      20~40 33c 7b 26c 0.24b 0.16b 0.08c 0.638b
      下载: 导出CSV

      表  7  盐液灌溉条件下对照点土壤中孔隙参数统计均值

      Table  7.   Average numbers of pores attributes in groundwater irrigated soils under the condition of irrigation with salt solution

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 91bc 36a 55b 2.02a 1.82a 0.20bc 0.641b
      20~40 80c 31ab 50b 1.54ab 1.36a 0.17c 0.658a
      对照点 0~20 119a 36a 83a 1.85a 1.59a 0.26a 0.621c
      20~40 101ab 27b 74a 1.03b 0.80b 0.23ab 0.633b
      下载: 导出CSV

      表  8  营养液灌溉条件下污灌区土壤中孔隙参数统计均值

      Table  8.   Average numbers of soil pores attributes in sewage irrigated soils under the condition of irrigation with nutrient solution

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 112b 47b 65b 3.05a 2.81a 0.23b 0.661a
      20~40 48c 16c 32c 0.60b 0.49b 0.11c 0.651ab
      对照点 0~20 175a 59a 116a 2.93a 2.55a 0.37a 0.627c
      20~40 57c 19c 39c 0.80b 0.67b 0.13c 0.642b
      下载: 导出CSV

      表  9  营养液灌溉条件下对照点土壤中孔隙参数统计均值

      Table  9.   Average numbers of soil pores attributes in groundwater irrigated soils under the condition of irrigation with nutrient solution

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 93b 40b 53b 2.30a 2.12a 0.19b 0.660a
      20~40 36d 15c 22c 0.53b 0.46b 0.07c 0.666a
      对照点 0~20 177a 57a 120a 2.70a 2.30a 0.40a 0.630b
      20~40 66c 18c 48b 0.79b 0.64b 0.15b 0.639b
      下载: 导出CSV
    • [1] Al-Subu, M.M., Haddad, M., Mizyed, N., et al., 2003. Impacts of Irrigation with Water Containing Heavy Metals on Soil and Groundwater— A Simulation Study. Water, Air and Soil Pollution, 146(1-4): 141-152. doi: 10.1023/A:1023995119824
      [2] Alvarez-Bernal, D., Contreras-Ramos, S.M., Trujillo-Tapia, N., et al., 2006. Effects of Tanneries Wastewater on Chemical and Biological Soil Characteristics. Applied Soil Ecology, 33(3): 269-277. doi: 10.1016/j.apsoil.2005.10.007
      [3] Bao, S.D., 2000. Soil Agro-Chemical Analysis. The Third Edition. China Agricultural Press, Beijing, 188-193 (in Chinese).
      [4] Emdad, M.R., Raine, S.R., Smith, R.J., 2004. Effect of Water Quality on Soil Structure and Infiltration under Furrow Irrigation. Irrigation Science, 23(2): 55-60. doi: 10.1007/s00271-004-0093-y
      [5] Feng, J., Hao, Z.C., 2002. Distribution of Soil Macropores Characterized by CT. Advances in Water Science, 13(5): 611-617 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200205013.htm
      [6] Gao, C.X., Xue, X.X., Zhao, J.N., et al., 2014. Review on Macropore Flow in Soil. Acta Ecologica Sinica, 34(11): 2801-2811 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-ecologica-sinica_thesis/0201254794345.html
      [7] Gharaibeh, M.A., Eltaif, N.I., Al-Abdullah, B., 2007. Impact of Field Application of Treated Wastewater on Hydraulic Properties of Vertisols. Water, Air and Soil Pollution, 184: 347-353. doi: 10.1007/s11270-007-9423-z
      [8] Halliwell, D.J., Barlow, K.M., Nash, D.M., 2001. A Review of the Effects of Wastewater Sodium on Soil Physical Properties and Their Implications for Irrigation Systems. Australian Journal of Soil Research, 39: 1259-1267. doi: 10.1071/SR00047
      [9] Huang, G.X., Sun, J.C., Zhang, Y., et al., 2011. Distribution of Arsenic in Sewage Irrigation Area of Pearl River Delta, China. Journal of Earth Science, 22(3): 396-410. doi: 10.1007/s12583-011-0192-7
      [10] Lado, M., Ben-Hur, M., 2009. Treated Domestic Sewage Irrigation Effects on Soil Hydraulic Properties in Arid and Semiarid Zones: A Review. Soil & Tillage Research, 106(1): 152-163. doi: 10.1016/j.still.2009.04.011
      [11] Li, F.H., Huang, G.H., Ding, Y., et al., 2006. Effects of Soil Sodicity, Gypsum Application, and Filtration Disposal on Hydraulic Conductivity under Irrigation with Domestic Effluent Water. Transactions of the CSAE, 22(1): 48-52 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-NYGU200601011.htm
      [12] Li, L.Q., Du, H.L., Feng, L.R., et al., 2001. Study on Properties of Physics and Chemistry of Cinnamon Soil with Wastewater Irrigation. Journal of Shanxi Agricultural University, 21(1): 73-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXNY200101023.htm
      [13] Lu, R.K., 2000. Chemical Analysis Methods of Agricultural Soil. China Agricultural Science and Technology Press, Beijing, 22-169 (in Chinese).
      [14] Magesan, G.N., Williamson, J.C., Yates, G.W., et al., 2000. Wastewater C: N Ratio Effects on Soil Hydraulic Conductivity and Potential Mechanisms for Recovery. Bioresource Technology, 71: 21-27. doi: 10.1016/S0960-8524(99)00054-1
      [15] Nunan, N., Ritz, K., Rivers, M., et al., 2006. Investigating Microbial Micro-Habitat Structure Using X-Ray Computed Tomography. Geoderma, 133(3-4): 398-407. doi: 10.1016/j.geoderma.2005.08.004
      [16] Sander, T., Gerke, H.H., Rogasik, H., 2008. Assessment of Chinese Paddy-Soil Structure Using X-Ray Computed Tomography. Geoderma, 145(3-4): 303-314. doi: 10.1016/j.geoderma.2008.03.024
      [17] State Bureau of Environmental Protection, 2002. Water and Wastewater Monitoring Analysis Method (the Forth Edition). China Environmental Science Press, Beijing, 102-415 (in Chinese).
      [18] Wang, Z., Chang, A.C., Wu, L., et al., 2003. Assessing the Soil Quality of Long-Term Reclaimed Wastewater-Irrigated Cropland. Geoderma, 114(3-4): 261-278. doi: 10.1016/S0016-7601(03)00044-2
      [19] Xia, J.B., Liu, Q., Xie, W.J., et al., 2009. Effect of Wastewater Irrigation on Soil Hydrological Properties in Reed Marsh. Transactions of the CSAE, 25(12): 63-68 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103100824.html
      [20] Yadav, R.K., Goyal, B., Sharma, R.K., et al., 2002. Post-Irrigation Impact of Domestic Sewage Effluent on Composition of Soils, Crops and Ground Water—A Case Study. Environment International, 28(6): 481-486. doi: 10.1016/S0160-4120(02)00070-3
      [21] Yang, J., Zheng, Y.M., Chen, T.B., et al., 2006. Leaching of Heavy Metals in Soil Column under Irrigation Reclaimed Water: A Simulation Experiment. Geographical Research, 25(3): 449-456 (in Chinese with English abstract). http://www.oalib.com/paper/1569529
      [22] Zhao, S.W., Zhao, Y.G., Wu, J., S., 2010. Quantitative Analysis of Soil Pores under Natural Vegetation Seccesssions on the Loess Plateau. Science in China (Series D), 40(2): 223-231 (in Chinese). http://www.irgrid.ac.cn/handle/1471x/516834?mode=full&submit_simple=Show+full+item+record
      [23] 鲍士旦, 2000. 土壤农化分析(第三版). 北京: 中国农业出版社, 188-193.
      [24] 冯杰, 郝振纯, 2002. CT扫描确定土壤大孔隙分布. 水科学进展, 13(5): 611-617. doi: 10.3321/j.issn:1001-6791.2002.05.014
      [25] 高朝侠, 徐学选, 赵娇娜, 等, 2014. 土壤大孔隙流研究现状与发展趋势. 生态学报, 34(11): 2801-2811. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201411001.htm
      [26] 李法虎, 黄冠华, 丁贇, 等, 2006. 污灌条件下土壤碱度、石膏施用以及污水过滤处理对水力传导度的影响. 农业工程学报, 22(1): 48-52. doi: 10.3321/j.issn:1002-6819.2006.01.011
      [27] 李恋卿, 杜慧玲, 冯两蕊, 等, 2001. 不同年限污水灌溉对石灰性褐土理化性质的影响. 山西农业大学学报, 21(1): 73-75. doi: 10.3969/j.issn.1671-8151.2001.01.022
      [28] 鲁如坤, 2000. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 22-169.
      [29] 国家环境保护总局, 2002. 水和废水监测分析方法(第四版). 北京: 中国环境科学出版社, 102-415.
      [30] 夏江宝, 刘庆, 谢文军, 等, 2009. 废水灌溉对芦苇地土壤水文特征的影响. 农业工程学报, 25(12): 63-68. doi: 10.3969/j.issn.1002-6819.2009.12.011
      [31] 杨军, 郑袁明, 陈同斌, 等, 2006. 中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险. 地理研究, 25(3): 449-456. doi: 10.3321/j.issn:1000-0585.2006.03.010
      [32] 赵世伟, 赵勇刚, 吴金水, 2010. 黄土高原植被演替下土壤孔隙的定量分析. 中国科学(D辑), 40(2): 223-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201002009.htm
    • 加载中
    图(1) / 表(9)
    计量
    • 文章访问数:  2599
    • HTML全文浏览量:  119
    • PDF下载量:  417
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-03-22
    • 刊出日期:  2015-11-15

    目录

      /

      返回文章
      返回