Characterization of Crude Oils from Nanpu Depression by High Resolution Mass Spectrometry and Its Geochemical Significance
-
摘要: 南堡凹陷深部油气资源丰富, 油气成因研究薄弱.首次采用高分辨质谱(负离子电喷雾离子源(electrospray ionization, 简称ESI)傅里叶变换离子回旋共振质谱(Fourier transform ion cyclotron resonance mass spectrometry, 简称FT-ICR MS)技术对南堡凹陷原油中杂原子化合物的组成与分布特征及其地球化学意义进行了研究.应用负离子ESI FT-ICR MS检测出9种主要杂原子组合类型, 分别为N1、N1O1、N1O2、N1O3、N2、O1、O2、O3和O4类, 其中N1、O1和O2类在所有样品中普遍存在且相对丰度较高.经研究发现成熟度对原油中N1、O1类化合物碳数分布、缩合度有明显的控制作用.实验观察到N1类DBE(等效双键数)=12, 15的高低分子量同系物相对丰度参数C16-20/C21-50-DBE12-N1和C20-24/C25-50-DBE15-N1、N1类缩合度参数DBE12/DBE9-N1及O1类缩合度参数DBE8-9/DBE4-O1与成熟度指标Ts/Tm、TMNr具有良好的相关性, 认为它们可作为该区原油成熟度评价指标, 反映烃类演化的热动力学原理.南堡凹陷不同层系原油高分辨质谱特征有明显差异, 指示其可应用于母源岩性质识别.综合研究认为, FT-ICR MS在成熟度评价、油气成因与油源识别等方面地球化学意义显著, 其在油气地球化学理论研究和油气勘探中具有潜在的应用价值.Abstract: Nanpu depression is abundant in deep oil and gas resources, but the origin of the hydrocarbon is still unclear. High resolution mass spectrometry (negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)) is utilized to carry out the composition and distribution of heteroatom compounds of crude oils from the Nanpu depression and its geochemical significance for the first time. The heteroatoms, N1, N1O1, N1O2, N1O3, N2, O1, O2, O3 and O4 class species, were identified by negative-ion ESI FT-ICR MS. And N1, O1, O2 class species are universal in all samples with higher relative abundance. It is found that thermal maturity obviously controls the distribution of carbon numbers and the degree of condensation of N1 and O1 class species. It is observed that parameters like C16—20/C21—50-DBE12-N1, C20—24/C25—50-DBE15-N1, DBE12/DBE9-N1 and DBE8—9/DBE4-O1 have a good correlation with Ts/Tm and TMNr. They could be used as indicators of thermal maturity of crude oils in the depression, reflecting the kinetics of thermal evolution of hydrocarbons. Significant difference was found among different layers of oils detected by negative-ion ESI FT-ICR MS, indicating that it can be applied to characterize source rocks. After a comprehensive investigation, we believe that FT-ICR MS technique is applicable in multiple geochemical aspects, such as maturity level estimation and source rock and relevant hydrocarbons determination. FT-ICR MS is significant in both the compositional characterization of the NSO compounds and the application in petroleum exploration.
-
Key words:
- Nanpu depression /
- crude oil /
- high resolution mass spectrometry /
- maturity /
- geochemisitry.
-
表 1 南堡凹陷原油色谱、色谱-质谱参数
Table 1. GC and GC-MS parameters of the selected oils from the Nanpu depression
编号 井号 井段(m) 层位 CPI OEP Pr/Ph 20S αββ Ts/Tm Tri-/Pent G/C30H 4-m/C29St C21—22/C27—29St Dia/Reg TMNr 1 G89-4 3385.9~3700.2 Es3 1.09 1.07 1.48 0.57 0.38 0.72 0.119 0.046 0.699 0.046 0.171 0.390 2 GC30-28 3203.0~3666.8 Es3 1.09 1.08 1.36 0.54 0.44 1.33 0.074 0.046 1.117 0.037 0.185 0.419 3 G19 3608.2~4040.8 Es3 1.08 1.05 1.38 0.52 0.47 1.52 0.079 0.048 1.081 0.036 0.206 0.431 4 NP23-P2201 2824.4~3020.0 Ng 1.17 1.03 1.46 0.41 0.36 0.93 0.055 0.145 0.357 0.032 0.186 0.605 5 NP203X1 2595.0~3148.6 Ng 1.14 1.09 1.37 0.46 0.39 0.92 0.088 0.098 0.382 0.033 0.189 0.666 6 NP32-X3212 2700.8~2703.0 Ng 1.14 1.15 1.42 0.54 0.45 1.73 0.052 0.060 0.088 0.032 0.319 0.579 7 NP4-19 1877.0~1879.0 Ng 1.13 1.09 1.48 0.54 0.42 1.38 0.077 0.093 0.335 0.037 0.315 0.667 8 G66-28 2625.0~2634.0 Ed1 1.14 1.05 1.65 0.47 0.39 1.02 0.060 0.066 0.314 0.029 0.285 0.392 9 NP32-X3015 3734.2~3789.8 Ed1 1.17 1.05 1.61 0.57 0.46 1.81 0.057 0.059 0.105 0.036 0.329 0.493 10 B26-2 2294.0~2298.0 Ed1 1.13 1.07 1.61 0.53 0.44 1.75 0.064 0.078 0.307 0.036 0.307 0.533 11 B26-6 2734.0~2909.0 Ed1 1.14 1.08 1.56 0.51 0.44 1.92 0.066 0.081 0.353 0.036 0.345 0.559 12 NP1 2379.8~2410.0 Ed1 1.10 1.01 1.39 0.55 0.42 1.09 0.169 0.275 0.326 0.055 0.237 0.680 13 NP4-31 3932.2~3960.6 Ed2 1.13 1.03 1.48 0.48 0.41 1.08 0.076 0.108 0.356 0.032 0.285 0.567 14 NP280 4575.0~4600.0 O 1.08 1.03 1.34 0.62 0.55 4.94 0.447 0.136 0.460 0.077 0.381 0.766 15 NP23-P2009 5182.7~5452.0 O 1.08 1.08 1.25 0.60 0.53 6.20 0.409 0.158 0.426 0.087 0.388 0.920 16 NP23-P2002 4875.0~5150.0 O 1.07 1.06 1.19 0.60 0.53 7.48 0.40 0.149 0.436 0.085 0.403 0.925 17 PG2 5165.2~5192.0 1.12 1.04 1.69 0.62 0.53 6.31 0.698 0.182 0.094 0.189 0.601 0.953 注:CPI.碳优势指数;OEP.奇偶优势比;Pr/Ph.姥鲛烷/植烷;20S.C29甾烷ααα20S/(S+R);αββ.C29甾烷αββ/(ααα+αββ);Ts/Tm.18α(H)-/17α(H)-三降藿烷;Tri-/Pent.三环萜烷/五环萜烷;G/C30H.伽马蜡烷/C30藿烷;4-m/C29St.4-甲基甾烷/C29规则甾烷;C21—22/C27—29St.C21—22/C27—29甾烷;Dia/Reg.重排甾烷/规则甾烷;TMNr.三甲基萘指数=1, 3, 7-/(1, 3, 7-+1, 2, 5-)三甲基萘. 表 2 南堡凹陷原油负离子ESI FT-ICR MS参数
Table 2. Basic parameters of the oils analyzed by negative-ion ESI FT-ICR MS from the Nanpu depression
编号 井号 层位 含量(%) A B C D N1 N1O1 N1O2 N1O3 N2 O1 O2 O3 O4 1 G89-4 Es3 56.17 4.35 0.0 0.0 0.0 19.26 20.22 0.0 0.0 0.046 0.113 0.720 0.669 2 GC30-28 Es3 63.96 4.81 0.0 0.55 0.0 19.81 10.86 0.0 0.0 0.061 0.142 0.738 0.545 3 G19 Es3 63.59 3.35 0.0 0.0 0.0 17.32 13.38 0.0 2.36 0.085 0.187 0.774 0.651 4 NP23-P2201 Ng 49.60 3.77 2.76 0.0 0.0 28.06 15.81 0.0 0.0 0.054 0.076 0.603 0.422 5 NP203X1 Ng 49.47 2.65 0.0 0.0 0.0 29.32 18.55 0.0 0.0 0.049 0.080 0.784 0.525 6 NP32-X3212 Ng 60.63 3.24 0.50 0.0 0.0 21.42 14.21 0.0 0.0 0.040 0.090 1.021 0.922 7 NP4-19 Ng 56.0 4.21 1.64 0.0 0.0 29.23 8.92 0.0 0.0 0.050 0.098 0.793 0.528 8 G66-28 Ed1 35.52 3.66 2.05 0.33 0.0 35.62 20.38 2.43 0.0 0.020 0.041 0.677 0.284 9 NP32-X3015 Ed1 67.80 4.89 1.84 0.0 0.0 20.14 5.33 0.0 0.0 0.102 0.185 0.927 0.397 10 B26-2 Ed1 49.40 3.51 0.0 0.0 0.0 34.26 12.82 0.0 0.0 0.040 0.059 0.688 0.394 11 B26-6 Ed1 48.66 4.34 0.0 0.0 0.0 36.89 10.11 0.0 0.0 0.054 0.082 0.631 0.413 12 NP1 Ed1 30.95 6.43 4.69 0.0 0.0 12.41 45.52 0.0 0.0 0.064 0.124 0.898 1.084 13 NP4-31 Ed2 44.69 3.26 0.71 0.0 0.0 43.49 7.86 0.0 0.0 0.061 0.079 0.734 0.347 14 NP280 O 77.20 4.92 0.0 0.0 0.55 12.13 5.20 0.0 0.0 0.263 0.469 1.280 1.613 15 NP23-P2009 O 75.14 1.77 0.0 0.0 0.0 18.28 3.89 0.68 0.25 0.129 0.293 1.297 1.649 16 NP23-P2002 O 73.59 3.63 0.0 0.0 0.0 17.82 4.97 0.0 0.0 0.131 0.302 1.265 1.597 17 PG2 31.24 1.31 0.0 0.36 0.0 16.43 39.91 4.99 5.75 0.281 0.462 1.989 2.403 注:A.C16—20/C21—50-DBE12-N1,N1类DBE=12的高低分子量同系物相对丰度参数;B.C20—24/C25—50-DBE15-N1,N1类DBE=15的高低分子量同系物相对丰度参数;C.DBE12/DBE9-N1,N1类缩合度参数;D.DBE8—9/DBE4-O1,O1类缩合度参数. -
[1] Altgelt, K.H., Boduszynski, M.M., 1994. Composition and Analysis of Heavy Petroleum Fractions. Marcel Dekker, New York, 408-443. [2] Barrow, M.P., McDonnell, L.A., Feng, X.D., et al., 2003. Determination of the Nature of Naphthenic Acids Present in Crude Oils Using Nanospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: The Continued Battle Against Corrosion. Analytical Chemistry, 75(4): 860-866. doi: 10.1021/ac020388b [3] Chakhmakhchev, A., Suzuki, N., 1995. Saturate Biomarkers and Aromatic Sulfur Compounds in Oils and Condensates from Different Source Rock Lithologies of Kazakhstan, Japan and Russia. Organic Geochemistry, 23(4): 289-299. doi:0146-6380/95 [4] Cheng, D.S., Dou, L.R., Wan, L.K., et al., 2010. Formation Mechanism Analysis of Sudan High Acidity Oils by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Acta Petrologica Sinica, 26(4): 1303-1312 (in Chinese with English abstract). http://www.researchgate.net/publication/287640366_Formation_mechanism_analysis_of_Sudan_high_acidity_oils_by_electrospray_ionization_fourier_transform_ion_cyclotron_resonance_mass_spectrometry [5] Duan, Y., Zhou, S.X., Meng, Z.F., 2001. Study on the Oil Source of Crude Oils from Well Qun-5 and Well Qu-1 in the Tarim Basin—New Evidences from Fatty Acids and Alkyl Cyclohexanes Series Compounds. Petroleum Geology & Experiment, 23(4): 433-437, 456 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200104015.htm [6] Geng, C.C., Li, S.Y., He, J.L., 2012. Determination and Identification of Oxygen-Containing Compounds in Longkou Shale Oil. Journal of Fuel Chemistry and Technology, 40(5): 538-544 (in Chinese with English abstract). http://rlhxxb.sxicc.ac.cn/EN/article/showSupportInfo.do?id=17940 [7] Geng, C.C., Li, S.Y., Yue, C.T., et al., 2013. Analysis and Identification of Oxygen Containing Compounds in Shenmu Low Temperature Coal Tar. Acta Petrolei Sinica (Petroleum Processing Section), 29(1): 130-136 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SXJG201301022.htm [8] He, W.X., Wang, P.R., Pan, X.Z., et al., 2004. The Discussion of the Crude Oil Type and Its Origin in Yingqiong Basin. Natural Gas Geoscience, 15(2): 133-136 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=9435471 [9] Hughey, C.A., Rodgers, R.P., Marshall, A.G., et al., 2002. Identification of Acidic NSO Compounds in Crude Oils of Different Geochemical Origins by Negative Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Organic Geochemistry, 33(7): 743-759. doi: 10.1016/S0146-6380(02)00038-4 [10] Hughey, C.A., Rodgers, R.P., Marshall, A.G., et al., 2004. Acidic and Neutral Polar NSO Compounds in Smackover Oils of Different Thermal Maturity Revealed by Electrospray High Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Organic Geochemistry, 35(7): 863-880. doi: 10.1016/j.orggeochem.2004.02.008 [11] Jia, Q.S., Li, S.L., Ma, Q., et al., 2006. Geochemical Characteristics of Hydrocarbon Source Rocks in the No. 2 Structural Belt of the Nanpu Subbasin, Eastern Hebei Oilfield, and Source Rock Correlation. Journal of Geomechanics, 12(4): 469-475 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200604009.htm [12] Kim, S., Stanford, L.A., Rodgers, R.P., et al., 2005. Microbial Alteration of the Acidic and Neutral Polar NSO Compounds Revealed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Organic Geochemistry, 36(8): 1117-1134. doi: 10.1016/j.orggeochem.2005.03.010 [13] Klein, G.C., Rodgers, R.P., Marshall, A.G., 2006. Identification of Hydrotreatment-Resistant Heteroatomic Species in a Crude Oil Distillation Cut by Electrospray Ionization FT-ICR Mass Spectrometry. Fuel, 85(14-15): 2071-2080. doi: 10.1016/j.fuel.2006.04.004 [14] Li, M.W., Cheng, D.S., Pan, X.H., et al., 2010a. Characterization of Petroleum Acids Using Combined FT-IR, FT-ICR-MS and GC-MS: Implications for the Origin of High Acidity Oils in the Muglad Basin, Sudan. Organic Geochemistry, 41(9): 959-965. doi: 10.1016/j.orggeochem.2010.03.006 [15] Li, S.M., Dong, Y.X., Wang, Z.J., et al., 2014. Characteristics and Formation Mechanism of Deep Oils from Nanpu Depression, Bohai Bay Basin. Acta Sedimentologica Sinica, 32(2): 376-384 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201402022.htm [16] Li, S.M., Jiang, Z.X., Dong, Y.X., et al., 2008. Genetic Type and Distribution of the Oils in the Nanpu Depression, Bohai Bay Basin. Geoscience, 22(5): 817-823 (in Chinese with English abstract). [17] Li, S.M., Meng, X.B., Zhang, B.S., et al., 2013a. Geochemical Significance of FT-ICR MS and Its Application in Petroleum Exploration. Geoscience, 27(1): 124-132 (in Chinese with English abstract). [18] Li, S.M., Shi, Q., Zhang, B.S., et al., 2013b. Formation Mechanism of the Oils in Tazhong-4 Oilfield Analyzed by High Resolution Mass Spectrum. Earth Science—Journal of China University of Geosciences, 38(1): 94-104 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.009 [19] Li, S.M., Pang, X.Q., Jin, Z.J., et al., 2010b. Petroleum Source in the Tazhong Uplift, Tarim Basin: New Insights from Geochemical and Fluid Inclusion Data. Organic Geochemistry, 41(6): 531-553. doi: 10.1016/j.orggeochem.2010.02.018 [20] Li, S.M., Pang, X.Q., Shi, Q., et al., 2011a. Geochemical Characteristics of Crude Oils from the Tarim Basin by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Exploration & Exploitation, 29(6): 711-742. doi: 10.1260/0144-5987.29.6.711 [21] Li, S.M., Pang, X.Q., Shi, Q., et al., 2011b. Origin of the Unusually High Dibenzothiophene Concentrations in Lower Ordovician Oils from the Tazhong Uplift, Tarim Basin, China. Petroleum Science, 8(4): 382-391. doi: 10.1007/s12182-011-0170-9 [22] Li, S.M., Pang, X.Q., Wan, Z.H., 2011. Mixed Oil Distribution and Source Rock Discrimination of the Nanpu Depression, Bohai Bay Basin. Earth Science—Journal of China University of Geosciences, 36(6): 1064-1072 (in Chinese with English abstract). http://www.researchgate.net/publication/289390884_Mixed_oil_distribution_and_source_rock_discrimination_of_the_Napu_depression_Bohaibay_Basin [23] Li, S.M., Shi, Q., Pang, X.Q., et al., 2012. Origin of the Unusually High Dibenzothiophene Oils in Tazhong-4 Oilfield of Tarim Basin and Its Implication in Deep Petroleum Exploration. Organic Geochemistry, 48(1): 56-80. doi: 10.1016/j.orggeochem.2012.04.008 [24] Liu, Y.R., Liu, Z.L., Hu, Q.L., et al., 2010. Characterization of Sulfur Aromatic Species in Vacuum Gas Oil by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Acta Petrolei Sinica (Petroleum Processing Section), 26(1): 52-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SXJG201001012.htm [25] Mei, L., Zhang, Z.H., 2009. Aromatic Geochemical Characteristics of Crude Oil of Beach Area in Nanpu Sag. Journal of Oil and Gas Technology (J. JPI), 31(2): 11-15, 44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JHSX200902003.htm [26] Mei, L., Zhang, Z.H., Wang, X.D., et al., 2008. Geochemical Characteristics of Crude Oil and Oil-Source Correlation in Nanpu Sag, Bohai Bay Basin. Journal of China University of Petroleum, 32(6): 40-46 (in Chinese with English abstract). http://www.researchgate.net/publication/285696311_Geochemical_characteristics_of_crude_oil_and_oil-source_correlation_in_Nanpu_sag_Bohai_Bay_Basin [27] Pakarinen, J.M.H., Teravainen, M.J., Pirskanen, A., et al., 2007. A Positive-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Study of Russian and North Sea Crude Oils and Their Six Distillation Fractions. Energy & Fuels, 21(6): 3369-3374. doi: 10.1021/ef700347d [28] Qian, K.N., Robbins, W.K., Hughey, C.A., et al., 2001. Resolution and Identification of Elemental Compositions for More than 3 000 Crude Acids in Heavy Petroleum by Negative-Ion Microelectrospray High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 15(6): 1505-1511. doi: 10.1021/ef010111z [29] Shi, Q., Dong, Z.Y., Zhang, Y.H., et al., 2008. Data Processing of High-Resolution Mass Spectra for Crude Oil and Its Distillations. Journal of Instrumental Analysis, 27(Suppl. ): 246-248 (in Chinese with English abstract). [30] Shi, Q., Hou, D.J., Lu, X.Q., et al., 2007. Detailed Molecular Characterization of Naphthenic Acids in Liaohe Crude Oils by Negative Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of Instrumental Analysis, 26(Suppl. ): 317-320 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TEST2007S1118.htm [31] Shi, Q., Hou, D.J., Chung, K.H., et al., 2010a. Characterization of Heteroatom Compounds in a Crude Oil and Its Saturates, Aromatics, Resins, and Asphaltenes (SARA) and Non-basic Nitrogen Fractions Analyzed by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 24(4): 2545-2553. doi: 10.1021/ef901564e [32] Shi, Q., Zhao, S.Q., Xu, Z.M., et al., 2010b. Distribution of Acids and Neutral Nitrogen Compounds in a Chinese Crude Oil and Its Fractions: Characterized by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 24(7): 4005-4011. doi: 10.1021/ef1004557 [33] Stanford, L.A., Rodgers, R.P., Marshall, A.G., et al., 2007. Detailed Elemental Compositions of Emulsion Interfacial Material versus Parent Oil for Nine Geographically Distinct Light, Medium, and Heavy Crude Oils, Detected by Negative- and Positive-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 21(2): 973-981. doi: 10.1021/ef060292a [34] Tong, J.H., Liu, J.G., Han, X.X., et al., 2013. Characterization of Nitrogen-Containing Species in Huadian Shale Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Fuel, 104(2): 365-371. doi: 10.1016/j.fuel.2012.09.042 [35] Wan, Z.H., Li, S.M., 2011. Characteristics and Oil-Source Investigation of the Oils in the Nanpu Oilfield, Bohai Bay Basin. Geoscience, 25(3): 599-607 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201103024.htm [36] Wang, P.R., Yao, H.X., Chen, Q., et al., 1995. Compositional Characteristics of Organic Oxygen Compounds in Extract from Yimin Brown Coal. Journal of Jianghan Petroleum Institute, 17(2): 33-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX502.005.htm [37] Wang, P.R., Zhao, H., Zhu, C.S., et al., 2004. General Review of Non-Hydrocarbon Geochemistry and Its Application. Acta Sedimentologica Sinica, 22(Suppl. ): 98-105 (in Chinese with English abstract). http://www.researchgate.net/publication/309201603_General_Review_of_Non-Hydrocarbon_Geochemistry_and_Its_Application [38] Xu, C.M., Liu, Y., Zhao, S.Q., et al., 2013. Compositional Analysis of Petroleum Asphaltenes by Negative Ion Electrospray High Resolution FT-ICR Mass Spectrometry. Journal of China University of Petroleum, 37(5): 190-195 (in Chinese with English abstract). http://d.wanfangdata.com.cn/thesis/Y2168107 [39] Zhao, Y.D., Liu, L.F., Zhang, Z.H., et al., 2008. Source Analysis of Oils from the Ordovician in the Shoal Zone, Nanpu Sag, Bohai Bay Basin. Geoscience, 22(2): 264-272 (in Chinese with English abstract). [40] 程顶胜, 窦立荣, 万仑坤, 等, 2010. 应用高分辨率质谱分析苏丹高酸值原油成因. 岩石学报, 26(4): 1303-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004025.htm [41] 段毅, 周世新, 孟自芳, 2001. 塔里木盆地群5井和曲1井原油的油源研究——脂肪酸及烷基环己烷系列化合物提供的新证据. 石油实验地质, 23(4): 433-437, 456. doi: 10.3969/j.issn.1001-6112.2001.04.015 [42] 耿层层, 李术元, 何继来, 2012. 龙口页岩油中含氧化合物的分析与鉴定. 燃料化学学报, 40(5): 538-544. doi: 10.3969/j.issn.0253-2409.2012.05.005 [43] 耿层层, 李术元, 岳长涛, 等, 2013. 神木低温煤焦油中含氧化合物的分析与鉴定. 石油学报(石油加工), 29(1): 130-136. doi: 10.3969/j.issn.1001-8719.2013.01.021 [44] 何文祥, 王培荣, 潘贤庄, 等, 2004. 莺—琼盆地原油类型划分及成因探讨. 天然气地球科学, 15(2): 133-136. doi: 10.3969/j.issn.1672-1926.2004.02.007 [45] 贾齐山, 李胜利, 马乾, 等, 2006. 冀东油田南堡凹陷南堡2号构造带烃源岩地球化学特征与油源对比. 地质力学学报, 12(4): 469-475. doi: 10.3969/j.issn.1006-6616.2006.04.010 [46] 李素梅, 董月霞, 王政军, 等, 2014. 南堡凹陷潜山原油特征与成因探讨. 沉积学报, 32(2): 376-384. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201402022.htm [47] 李素梅, 姜振学, 董月霞, 等, 2008. 渤海湾盆地南堡凹陷原油成因类型及其分布规律. 现代地质, 22(5): 817-823. doi: 10.3969/j.issn.1000-8527.2008.05.017 [48] 李素梅, 孟祥兵, 张宝收, 等, 2013a. 傅里叶变换离子回旋共振质谱的地球化学意义及其在油气勘探中的应用前景. 现代地质, 27(1): 124-132. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201301014.htm [49] 李素梅, 史权, 张宝收, 等, 2013b. 用高分辨率质谱揭示塔中4油田原油成因机制. 地球科学——中国地质大学学报, 38(1): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301013.htm [50] 李素梅, 庞雄奇, 万中华, 2011. 南堡凹陷混源油分布与主力烃源岩识别. 地球科学——中国地质大学学报, 36(6): 1064-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106012.htm [51] 刘颖荣, 刘泽龙, 胡秋玲, 等, 2010. 傅里叶变换离子回旋共振质谱仪表征VGO馏分油中噻吩类含硫化合物. 石油学报(石油加工), 26(1): 52-59. doi: 10.3969/j.issn.1001-8719.2010.01.010 [52] 梅玲, 张枝焕, 2009. 南堡凹陷原油芳烃地球化学特征. 石油天然气学报, 31(2): 11-15, 44. doi: 10.3969/j.issn.1000-9752.2009.02.003 [53] 梅玲, 张枝焕, 王旭东, 等, 2008. 渤海湾盆地南堡凹陷原油地球化学特征及油源对比. 中国石油大学学报(自然科学版), 32(6): 40-46. doi: 10.3321/j.issn:1673-5005.2008.06.008 [54] 史权, 董智勇, 张亚和, 等, 2008. 石油组分高分辨质谱的数据处理. 分析测试学报, 27(增刊): 246-248. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST2008S1091.htm [55] 史权, 侯读杰, 陆小泉, 等, 2007. 负离子电喷雾-傅里叶变换离子回旋共振质谱分析辽河原油中的环烷酸. 分析测试学报, 26(增刊): 317-320. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST2007S1118.htm [56] 万中华, 李素梅, 2011. 渤海湾盆地南堡油田原油特征与油源分析. 现代地质, 25(3): 599-607. doi: 10.3969/j.issn.1000-8527.2011.03.024 [57] 王培荣, 姚焕新, 陈奇, 等, 1995. 伊敏湖底褐煤抽提物中有机氧化合物的组成特征. 江汉石油学院学报, 17(2): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX502.005.htm [58] 王培荣, 赵红, 朱翠山, 等, 2004. 非烃地球化学及其应用概述. 沉积学报, 22(增刊): 98-105. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB2004S1016.htm [59] 徐春明, 刘洋, 赵锁奇, 等, 2013. 石油沥青质中杂原子化合物的高分辨质谱分析. 中国石油大学学报(自然科学版), 37(5): 190-195. doi: 10.3969/j.issn.1673-5005.2013.05.028 [60] 赵彦德, 刘洛夫, 张枝焕, 等, 2008. 渤海湾盆地南堡凹陷滩海地区奥陶系原油油源分析. 现代地质, 22(2): 264-272. doi: 10.3969/j.issn.1000-8527.2008.02.013