Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales
-
摘要: 有机储集空间是页岩的重要储集类型, 但对处于生油窗内的湖相页岩是否发育有机储集空间却缺少研究.系统采集处于生油窗范围内不同演化程度的湖相页岩样品, 利用氩离子抛光样品制备技术, 分别使用Quanta200扫描电镜及EDAX能谱仪联机和JSM-6700f冷场发射扫描电子显微镜对湖相页岩进行微观特征观察和岩石组分分析, 背散射图像和二次电子图像均显示, 页岩内大量发育呈暗色条带状的有机质-粘土-碳酸盐和有机质-粘土-硫酸盐混合体.该混合体内极易发育孔隙, 从2 500~4 000 m, 该类孔隙连续分布, 当埋深小于3 600 m时, 这类孔隙的尺度一般为微米级, 但随着演化程度增高纳米孔隙增加, 并且呈密集分布.混合体内孔隙的发育分别与页岩含油饱和度迅速增高及游离有机酸含量的增加同步, 该类孔隙的发育不仅仅取决于生烃作用, 它的形成是生烃转化和有机酸溶蚀共同作用的结果.上述结果表明, 在生油窗范围内湖相页岩中, 有机质与无机矿物作为整体共同演化且相互作用, 在生烃与溶蚀叠合作用下形成了丰富的有机质-矿物混合体内储集空间, 该储集类型对陆相页岩油气赋存具有重要意义.Abstract: Organic reservoir is one of the important reservoir types in shale. The development of organic reservoir space in lacustrine shales within oil window is lack of research work. In view of this, lacustrine shale samples with different maturities in oil window were selected and prepared by argon ion-milling techniques. Joint Quanta200 scanning electron microscope and EDAX energy spectrometer, and JSM-6700f field emission scanning electron microscope were employed to observe the microstructure and analyze the composition of lacustrine shales. Both back scattered images and secondary electronic images show that abundant mixtures of dark banded organic matter (OM)-clay-carbonate and OM-clay-sulfate were developed in shales. Pores were easily developed in the mixtures. From 2 500 m to 4 000 m, the pores continuously exist. At the depths less than 3 600 m, the pore size generally occurs on micron scale. With the continued evolution, nano pores increase and are densely distributed. The intra-pores in the mixtures are synchronous with the rapid increasing of oil saturation and the rising of free organic acids in shales, respectively. The development of the pores not only depends on the hydrocarbon generation, but also on the interaction of hydrocarbon conversion and the organic acid dissolution. The results indicate that in lacustrine shales within oil window, organic matter and inorganic minerals undergo evolution as a whole and interact with each other. The combination of hydrocarbon generation and dissolution form abundant reservoir space in the hybrid of organic matter and minerals, which has important significance to the occurrence of oil and gas in continental shales.
-
Key words:
- lacustrine shale /
- oil window /
- organic reservoir space /
- organic acid /
- formation mechanism /
- petroleum geology.
-
图 2 东营凹陷有机质-粘土-碳酸盐混合体电子图像和能谱图
a.2号样品富含有机质泥质纹层和富含碳酸盐纹层间充填有机质(LFD)及其能谱图,wang129,Es4s,TOC=3.97%,Ro=0.32%;b.5号有机质(C)、粘土(I/S)、碳酸盐(Cc)混合体中发育的孔隙(BSED)及其能谱图,yong89,Es4s,TOC=2.85%,Ro=0.53%;c.7号黄铁矿、石英、方解石颗粒间孔内充填含有机质粘土碳酸盐混合体(BSED)及其能谱图,fan291,Es3x,TOC=9.20%,Ro=0.62%;d.11号有机质、粘土、碳酸盐混合体中发育的孔隙(LFD)及其能谱图,li673,Es3x,TOC=1.74%,Ro=0.82%.上图为电子图像;下图为能谱图
Fig. 2. OM-clay-carbonate complexes in the Dongying sag
图 3 东营凹陷有机质-粘土-硫酸盐混合体电子图像和能谱图
a.9号白云石D晶间孔中充填含有机质、粘土Clay的硫酸盐Su矿物及其能谱图,fengshen1,Es4s,TOC=2.30%,Ro=0.70%;b.1号页岩低成熟阶段有机质与矿物的接触关系,wang33,Es4s,TOC=4.48%,Ro=0.39%;c.2号页岩低成熟阶段有机质与矿物的接触关系,wang129,Es4s,TOC=3.97%,Ro=0.32%;d.3号页岩低成熟阶段有机质与矿物的接触关系,liang206,Es4s,TOC=3.43%,Ro=0.49%;e.6号页岩片状伊蒙混层间充填了有机质,feng112,Es3x,TOC=6.85%,Ro=0.53%
Fig. 3. OM-clay-sulfate complexes in the Dongying sag
图 4 东营凹陷沙四上亚段页岩富含有机质矿物混合体孔隙电子图像和能谱图
a.2号有机质、粘土、碳酸盐混合体中发育的孔隙,wang129,Es4s,TOC=3.97%,Ro=0.32%;b.4号方解石、有机质和粘土混合体中发育孔隙,lai109,Es4s,TOC=5.31%,Ro=0.43%;c.8号有机质、粘土、碳酸盐混合体中发育的孔隙,niu872,Es3x,TOC=7.03%,Ro=0.55%;d.9号有机质、粘土、碳酸盐混合体中发育的孔隙,fengshen1,Es4s,TOC=2.30%,Ro=0.70%;e.10号有机质、粘土、碳酸盐混合体中发育的孔隙,wang78,Es3x,TOC=3.41%,Ro=0.66%;f.11号有机质、粘土、碳酸盐混合体中发育的孔隙,li673,Es3x,TOC=1.74%,Ro=0.82%;g.12号有机质、粘土、碳酸盐混合体中发育的孔隙,wang78,Es4s,TOC=3.63%,Ro=0.70%;h.13号硫酸盐有机质和粘土的混合体中发育的孔隙,li673,Es4s,TOC=3.49%,Ro=1.09%.C.有机质;I/S.伊蒙混层;Clay.粘土;Cc.方解石;Su.硫酸盐;Pr.黄铁矿;D.白云石;Q.石英
Fig. 4. Pores in the Upper Es4 shales rich in OM-mineral complexes in the Dongying sag
表 1 实验样品地球化学参数数据
Table 1. Geochemical parameters of experimental samples
表 2 东营凹陷沙四上亚段不同埋深页岩有机酸含量统计
Table 2. Statistics of organic acid contents in the Upper Es4 shales at different depths in the Dongying sag
编号 层位 埋深(m) 沥青“A”(μg/g) 族组成(%) 沥青酸(%) 干酪根酸(%) 烷烃 芳烃 非烃 沥青 SL952 Es4 1 138 2 476 9 5 80 6 0.036 5 0.016 3 SL953 Es4 1 341 11 253 10 8 70 12 0.102 6 0.032 2 SL954 Es4 2 021 1 454 16 7 70 7 0.016 6 0.014 9 SL955 Es4 2 605 8 294 50 15 29 6 0.029 5 0.020 3 SL957 Es4 3 608 5 049 35 15 41 9 0.002 0 0.008 5 表 3 LH973页岩样品有机酸热模拟结果
Table 3. Thermal simulation results on organic acid in LH973 shale
样品 沥青/岩 沥青酸/岩 干酪根酸/岩 原样 2.470 0.400 0.102 175 ℃样 0.178 0.038 0.075 250 ℃样 0.169 0.024 0.011 300 ℃样 0.736 0.064 0.050 表 4 东营凹陷古近系泥页岩中游离态有机酸含量统计
Table 4. Statistical contents of free state organic acid in the Paleogene shales in the Dongying sag
层段 含量(μg/g) 乙酸根 甲酸根 草酸根 最小 最大 平均 最小 最大 平均 最小 最大 平均 Es3x 2.55 51.40 16.98 0.62 56.55 10.36 1.96 9.16 4.27 Es4s 0.00 69.06 19.49 3.38 45.42 14.64 0.00 6.56 4.14 Es4x 0.00 46.08 22.09 2.31 27.48 12.42 2.41 7.16 4.34 -
[1] Bao, Y.S., Zhang, L.Y., Li, J.Y., et al., 2012. Approach to Paleogene Overpressure Origin in Jiyang Depression. Xinjiang Petroleum Geology, 33(1): 17-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201201004.htm [2] Christopher, J.M., Scott, G.L., 2012. Estimation of Kerogen Porosity in Source Rocks as a Function of Thermal Transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bulletin, 96(1): 87-108. doi: 10.1306/04111110001 [3] Curtis, M.E., Ambrose, R.J., Sondergeld, C.H., et al., 2010. Structural Characterization of Gas Shales on the Micro- and Nano-Scales. Canadian Unconventional Resources and International Petroleum Conference, Calgary. [4] Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., et al., 2012. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96(4): 665-677. doi: 10.1306/08151110188 [5] Gareth, R.C., Bustin, R.M., Ian, M.P., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. doi:10.1306/ 10171111052 [6] Guo, J., Zeng, J.H., Song, G.Q., et al., 2014. Characteristics and Origin of Carbonate Cements of Shahejie Formation of Central Uplift Belt in Dongying Depression. Earth Science—Journal of China University of Geosciences, 39(5): 565-576 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201405007.htm [7] Guo, X.W., He, S., Liu, K.Y., et al., 2013. A Quantitative Estimation Model for the Overpressure Caused by Natural Gas Generation and Its Influential Factors. Earth Science—Journal of China University of Geosciences, 38(6): 1263-1270 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.123 [8] Huang, D.F., Zhang, D.J., Wang, P.R., et al., 2003. Genetic Mechanism and Accumulation Condition of Immature Oil in China. Petroleum Industry Press, Beijing, 3-203 (in Chinese). [9] Huang, Z.L., Guo, X.B., Liu, B., et al., 2012. The Reservoir Space Characteristics and Origins of Lucaogou Formation Source Rock Oil in the Malang Sag. Acta Sedimentologica Sinica, 30(6): 1115-1122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201206013.htm [10] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. doi:10.1306/ 12190606068 [11] Kitty, L.M., Mark, R., David, N. A, . et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177-200. doi:10.1306/ 07231312048 [12] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mud Rock Pores. AAPG Bulletin, 96(6): 1071-1098. doi:10.1306/ 08171111061 [13] Milner, M., McLin, R., Petriello, J.M., 2010. Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion Milled Backscatter SEM Methods. Canadian Unconventional Resources and International Petroleum Conference, Calgary. [14] Ross, D.J.K., Bustin, R.M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. doi:10.1016/ j.marpetgeo.2008.06.004 [15] Schieber, J., 2010. Common Themes in the Formation and Preservation of Porosity in Shales and Mudstones: Illustrated with Examples across the Phanerozoic. Society of Petroleum Engineers Unconventional Gas Conference, Pittsburgh. [16] Sondergeld, C.H., Ambrose, R.J., Rai, C.S., et al., 2010. Microstructural Studies of Gas Shales. Society of Petroleum Engineers Unconventional Gas Conference, Pittsburgh. [17] Wu, L.G., Li, X.S., Guo, X.B., et al., 2012. Diagenetic Evolution and Formation Mechanism of Dissolved Pore of Shale Oil Reservoirs of Lucaogou Formation in Malang Sag. Journal of China University of Petroleum, 36(3): 38-43 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=42285691 [18] Zhang, L.Y., Jiang, Y, L., Liu, H., et al., 2003a. Relationship between Source Rock and Oil Accumulation in Dongying Sag. Petroleum Exploration and Development, 30(3): 61-64 (in Chinese with English abstract). [19] Zhang, L.Y., Kong, X.X., Zhang, C.R., et al., 2003b. High-Quality Oil-Prone Source Rocks in Jiyang Depression. Geochimica, 32(1): 35-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200301004.htm [20] Zhang, L.Y., Li, Z., Li, J.Y., et al., 2012. Feasibility Analysis of Existing Recoverable Oil and Gas Resource in the Palaeogene Shale of Dongying Depression. Natural Gas Geoscience, 23(1): 1-13 (in Chinese with English abstract). http://www.researchgate.net/publication/254464838_Efficient_synthesis_of_feature_models?ev=auth_pub [21] Zhang, L, Y., Liu, Q., Zhang, C.R., 2005. Study on the Genetic Relationships between Hydrocarbon Occurrence and Pools Formation in Dongying Depression. Geological Publishing House, Beijing, 3-202 (in Chinese). [22] Zhang, L.Y., Liu, Q., Zhu, R.F., et al., 2009. Source Rocks in Mesozoic-Cenozoic Continental Rift Basins, East China: A Case from Dongying Depression, Bohai Bay Basin. Organic Geochemistry, 40(2): 243-257. doi: 10.1016/j.orggeochem.2008.10.013 [23] Zhang, L.Y., Song, Y.T., Wang, G.L., et al., 2006. Organic Composition of Lacustrine Source Rocks in Jiyang Super-Depression and Its Implication to Petroleum Geology. Chinese Science Bulletin, 51(5): 573-584. doi: 10.1007/s11434-006-0573-y [24] Zhang, L.Y., Xu, X.Y., Liu, Q., et al., 2011. Hydrocarbon Formation and Accumulation of the Deep Palaeogene of the Jiyang Depression. Petroleum Exploration and Development, 38(5): 530-537 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60053-0 [25] Zhang, L.Y., Zhang, S.C., Chen, Z.L., et al., 2004. The Generation of Immature Oils in the Lacustrine Jiyang Mega-Depression, Bohai Bay Basin, China. Journal of Petroleum Geology, 27(4): 389-402. doi: 10.1111/j.1747-5457.2004.tb00065.x [26] Zhang, L.Y., Zhang, S.C., Huang, K.Q., et al., 1999. Simulation Experiment of Immature Oil Genetic Mechanism in Lake Facies of Semi-Salt Water. Chinese Science Bulletin, 44(11): 980-988. doi: 10.1007/BF02886013 [27] Zhang, S.W., Zhang, L.Y., Zhang, S.C., et al., 2009. Formation of Abnormal High Pressure and Its Application in the Study of Oil-Bearing Property of Lithologic Hydrocarbon Reservoirs in the Dongying Sag. Chinese Science Bulletin, 50(11): 1570-1578 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW200923030.htm [28] Zhu, R.F., Zhang, L.Y., Li, J.Y., et al., 2012. Organic Matter Reservoir Space of Shale in Dongying Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 34(4): 352-356 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201204004.htm [29] Zou, C.N., Li, J.Z., Dong, D.Z., et al., 2010. Abundant Nano-Sized Pores are First Found in the Shale Gas Reservoirs of China. Petroleum Exploration and Development, 37(5): 513 (in Chinese). doi: 10.1016/S1876-3804(10)60051-1 [30] 包友书, 张林晔, 李钜源, 等, 2012. 济阳坳陷古近系超高压成因探讨. 新疆石油地质, 33(1): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201201004.htm [31] 郭佳, 曾溅辉, 宋国奇, 等, 2014. 东营凹陷中央隆起带沙河街组碳酸盐胶结物发育特征及其形成机制. 地球科学——中国地质大学学报, 39(5): 565-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405007.htm [32] 郭小文, 何生, 刘可禹, 等, 2013. 烃源岩生气增压定量评价模型及影响因素. 地球科学——中国地质大学学报, 38(6): 1263-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201306010.htm [33] 黄第藩, 张大江, 王培荣, 等, 2003. 中国未成熟石油成因机制和成藏条件. 北京: 石油工业出版社, 3-203. [34] 黄志龙, 郭小波, 柳波, 等, 2012. 马朗凹陷芦草沟组源岩油储集空间特征及其成因. 沉积学报, 30(6): 1115-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206013.htm [35] 吴林钢, 李秀生, 郭小波, 等, 2012. 马朗凹陷芦草沟组页岩油储层成岩演化与溶蚀孔隙形成机制. 中国石油大学学报(自然科学版), 36(3): 38-43. doi: 10.3969/j.issn.1673-5005.2012.03.007 [36] 张林晔, 蒋有录, 刘华, 等, 2003a. 东营凹陷油源特征分析. 石油勘探与开发, 30(3): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303018.htm [37] 张林晔, 孔祥星, 张春荣, 等, 2003b. 济阳坳陷下第三系优质烃源岩的发育及其意义. 地球化学, 32(1): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200301004.htm [38] 张林晔, 李政, 李钜源, 等, 2012. 东营凹陷古近系泥页岩中存在可供开采的油气资源. 天然气地球科学, 23(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201201002.htm [39] 张林晔, 刘庆, 张春荣, 2005. 东营凹陷成烃与成藏关系研究. 北京: 地质出版社, 3-202. [40] 张林晔, 徐兴友, 刘庆, 等, 2011. 济阳坳陷古近系深层成烃与成藏. 石油勘探与开发, 38(5): 530-537. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105005.htm [41] 张善文, 张林晔, 张守春, 等, 2009. 东营凹陷古近系异常高压的形成与岩性油藏的含油性研究. 科学通报, 50(11): 1570-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200911016.htm [42] 朱日房, 张林晔, 李钜源, 等, 2012. 渤海湾盆地东营凹陷泥页岩有机储集空间研究. 石油实验地质, 34(4): 352-356. doi: 10.3969/j.issn.1001-6112.2012.04.002 [43] 邹才能, 李建忠, 董大忠, 等, 2010. 中国首次在页岩气储集层中发现丰富的纳米级孔隙. 石油勘探与开发, 37(5): 513. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201005000.htm