Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin
-
摘要: 页岩气的成功勘探开发引发了全球海相页岩研究的热潮, 然而对处于生油窗内的陆相页岩储集性能的研究尚需加强.基于光学薄片、场发射扫描电镜、环境扫描电镜、纳米CT、图像分析、GRI物性、气体吸附等方法对长7段泥页岩储集性能进行系统研究.结果表明: 长7段泥页岩形成于陆相半深湖-深湖环境, 面积为10×104 km2, TOC>2%, Ro=0.8%~1.0%, HI=124~480 mg/g, 生烃潜力高; 脆性矿物含量为45%~59%, 孔隙度为0.6%~3.8%, 渗透率为0.000 72×10-3~0.002 30×10-3 μm2; 主要发育粒内孔、粒间孔和有机质孔, 以伊蒙混层等粘土矿物粒内孔为主, 有机质孔较少; 孔隙直径为30~200 nm, 孔喉系统连通性中等, 具备储集能力; 伊蒙混层等粘土矿物含量与比孔容相关性优于热演化程度与烃指数等, 表明长7页岩微观孔隙主要受控于成岩作用, 有机质生烃作用对储集空间贡献相对较小; 滞留烃主要以吸附态和游离态存在于黄铁矿晶间孔、伊蒙混层粒内孔、伊利石粒内孔与长石粒间孔.Abstract: The successful exploration and development of shale gas have triggered an upsurge of research in global marine shale. However, more reservoir quality research of non-marine shale in oil window is still needed. Reservoir quality potential of Upper Triassic Chang 7 shale in Ordos basin was analyzed based on the data from thin section, FE-SEM, environmental SEM, nano-CT, GRI, and gas adsorption. Chang 7 shale is deposited in semi-deep to deep lake, covering an area of 10×104 km2. Geochemical data suggests that Chang 7 shale has potential of great hydrocarbon (HC) generation, with TOC > 2%, Ro=0.8%-1.0% and HI=124-480 mg/g. The brittle mineral content is 45%-59%. The total porosity and permeability are 0.6%-3.8%, 0.000 72×10-3-0.002 30×10-3 μm2 respectively. Three types of pores including interparticle pores, intra-particle pores and intra-organic matter (OM) pores are discovered, and intra-illite/smectite mix-layers pores dominate in the storage space, with small number of OM pores. The diameter of pores is 30-200 nm and the connectivity of pore system is medium to good, indicating that Chang 7 shale is of the potential to become reservoir for shale oil. The pore volume is more related to illite/smectite mix-layers content than to that of maturity and hydrocarbon index, which may suggest that the porosity in Chang 7 shale is controlled by diagenesis rather than HC generation. The residual HC is absorbed and distributed as free hydrocarbons in intra-pyrite pores, intra-illite/smectite mix-layer pores, intra-illite pores and inter-feldspar pores.
-
Key words:
- unconventional oil and gas /
- lacustrine shale /
- Chang 7 shale /
- shale oil /
- nano-pore system /
- tight oil and gas /
- Ordos basin /
- petroleum geology.
-
图 2 鄂尔多斯盆地长7泥页岩岩心、薄片、SEM与纳米CT典型图像
a.黑色泥岩,里50井,长73,2 071.40 m;b.黑色泥岩,庄176井,长72,1 555.70 m;c.灰黑色粉砂质泥岩,黄铁矿发育(图中红框),白272井,长71,2 028.80 m;d.黑色有机质围绕黄铁矿团块呈条带状展布,单偏光,镇37井,长73,2 236.30 m;e.黑色油页岩,荧光薄片,镇37井,长73,2 237.30 m;f.黑色有机质围绕黄铁矿团块呈条带状展布,庄75井,长73,1 949.63 m;g.长石粒间孔,孔隙发育在有机质与基质接触边,呈长条状产出,并见伊蒙混层粒内孔,白478井,长7;h.绿泥石粒内孔与粒间孔,见溶蚀特征发育,张2井,960.00 m;i.长石粒内孔,具有定向排列特征,元423,2 404.90 m;j, k.伊蒙混层粒内孔,形态为长条状,以集合体形式出现,发育范围较大,白406井,1 975.30 m;l.伊利石粒内孔,较分散,白406井,1 975.30 m;m~o.有机质孔,孔隙或沿有机质边缘发育,呈长条状产出,或切穿有机质内部,白406井,1 975.30 m;p~r.微裂缝,具有定向排列特征,或切穿基质颗粒,或切穿黄铁矿晶体,图p为整体电镜照片,图q为图p中框架内放大,图r为能谱成分像,里147井,长7,2 423.00 m
Fig. 2. Typical core, thin section, SEM and nano-CT photos of Chang 7 shale, Ordos basin
图 4 全球典型页岩储层物性散点图
除华庆长6致密砂岩采用气测渗透率外,其余样品均选用GRI方法,国外数据源自Loucks et al., 2009; Joel and Steven, 2011; Passey et al., 2012
Fig. 4. Petrophysical property of Chang 7 shale and its comparison with other shales in the world
图 5 鄂尔多斯盆地长7页岩L147-3三维孔喉系统模型
图5特征参数见表 1.a, b.纳米CT分析结果;a.孔喉系统全貌,蓝色为黄铁矿,红色为孔喉;b.孔喉系统骨架模型,展示了较好的空间连通性;c, d.聚焦离子束扫描电镜实验结果;c.原始灰度图像,分辨率达1 nm,孔隙主体以伊蒙混层粒内孔、绿泥石粒内孔和长石粒间孔为主;d.三维孔喉系统重构结果,黄色即为孔喉系统
Fig. 5. 3D porosity model of L147-3 in Chang 7 shale, Ordos basin
表 1 鄂尔多斯盆地长7泥页岩有机地化参数
Table 1. Geochemical parameters of Chang 7 shale, Ordos basin
样品编号 B406-2 B478 L147-3 LI50-1 W58 G50-2 L147-6 Y423-1 Y423-2 Z2-1 样品深度(m) 1 976.00 2 088.40 2 447.80 2 071.00 1 445.85 2 006.52 2 444.00 2 404.90 2 141.30 960.00 有机地化参数 TOC(%) 4.04 2.06 15.60 6.23 8.65 3.60 14.40 13.40 0.87 2.91 Tmax(℃) 449 449 452 456 448 452 457 466 452 451 S1(mg/g) 1.21 0.58 5.81 1.86 5.44 3.76 4.30 6.45 1.01 2.05 S2(mg/g) 12.65 5.99 40.60 18.42 33.65 8.39 35.62 19.81 5.40 7.25 IH(mg/g) 313 291 260 296 389 250 247 148 621 249 S1/TOC(mg/g) 29.95 28.16 37.24 29.86 62.89 111.90 29.86 48.13 116.09 70.45 Ro(%) 0.67 0.71 0.92 0.74 0.74 0.90 0.92 0.83 0.95 0.76 岩石物理参数 氮气吸附数据 BET比表面积(m2/g) 1.322 0 0.652 9 0.698 2 0.582 0 2.737 3 2.357 0 1.811 0 5.627 8 6.411 0 5.343 8 BJH比孔容(cm3/g) 0.006 600 0.003 359 0.003 800 0.002 200 0.009 775 0.011 337 0.007 000 0.017 206 0.019 34 0.021 989 BJH孔隙直径(10-10 m) 154.180 177.094 237.760 153.640 92.721 159.224 184.800 107.406 90.112 134.600 物性 孔隙度(%) 2.5* 1.9* 2.3 2.8* 3.1* 2.1 3.8 2.6 0.8 - 渗透率(10-3 μm2) 0.004 60* 0.009 60* 0.002 30 0.010 60 0.008 70* 0.000 92 0.021 60 0.009 87 0.000 72 - 矿物成分参数 脆性矿物 石英(%) 17.2 18.5 18.2 23.5 20.1 12.7 14.8 13.9 17.1 12.6 长石(%) 15.1 15.4 12.8 14.4 14.1 6.4 8.1 4.5 7.7 13.0 白云石(%) 6.1 7.7 4.4 0 8.7 0 0 0 0 0 黄铁矿(%) 0 0 0 9.5 0 1.5 10.5 9 1 0 赤铁矿(%) 3.4 14.8 22.8 0 0 0 0 0 0 0 非晶态(%) 0 0 0 0 0 36.4 30.4 35.2 25.9 27.5 总含量(%) 41.8 56.4 58.2 47.4 42.9 57.0 63.8 62.6 51.7 53.1 粘土矿物 总含量(%) 58.2 43.6 41.8 52.6 57.1 43.0 36.2 37.4 48.3 46.9 I/S相对/绝对含量(%) 38/22.1 53/23.1 72/30.0 54/28.4 40/22.8 65/28.0 51/18.5 65/24.3 76/36.7 75/35.2 I相对/绝对含量(%) 43/25 34/14.8 19/7.9 35/18.4 43/24.6 10/4.3 31/11.2 16/6.0 9/4.3 10/4.7 K相对/绝对含量(%) 6/3.5 0/0 5/2.1 5/2.6 4/2.3 8/3.4 9/3.3 8/3.0 5/2.4 3/1.4 C相对/绝对含量(%) 13/7.6 13/5.7 4/1.8 6/3.2 13/7.4 17/7.3 9/3.2 11/4.1 10/4.9 12/5.6 混层比(%) 15 20 20 15 30 30 20 20 20 25 注:物性标*为CT图像计算结果. -
[1] Ambrose, R.J., Hartman, R.C., Diaz-Campos, M., et al., 2010. New Pore-Scale Considerations for Shale Gas in Place Calculations. SPE Unconventional Gas Conference, Pittsburgh. [2] Chen, M., Jin, Y., Zhang, G.Q., 2008. Rock Mechanics in Petroleum Engineering. Science Press, Beijing (in Chinese). [3] Curtis, M.E., Ambrose, R.J., Sondergeld, C.H., et al., 2010. Structural Characterization of Gas Shales on the Micro- and Nano-Scales. Canadian Unconventional Resources & International Petroleum Conference, Calgary, 15. doi: 10.218/137693-MS [4] Curtis, M.E., Ambrose, R.J., Sondergeld, C.H., et al., 2012. Investigating the Microstructure of Gas Shales by FIB/SEM Tomography & STEM Imaging. AAPG 2012 Annual Conference and Exhibition, Long Beach. [5] Deng, X.Q., Li, W.H., Liu, X.S., et al., 2009. Discussion on the Stratigraphic Boundary between Middle Triassic and Upper Triassic. Acta Geologica Sinica, 83(8): 1089-1096 (in Chinese with English abstract). http://www.researchgate.net/publication/287869770_Discussion_on_the_stratigraphic_boundary_between_middle_triassic_and_upper_triassic [6] Desbois, G., Urai, J.L., Kukla, P.A., 2009. Morphology of the Pore Space in Claystones—Evidence from BIB/FIB Ion Beam Sectioning and Cryo-SEM Observations. eEarth Discuss, (4): 15-22. http://www.oalib.com/paper/1376104 [7] Dewhurst, D.N., Jones, R.M., Raven, M.D., 2002. Microstructural and Petrophysical Characterization of Muderong Shale: Application to Top Seal Risking. Petroleum Geoscience, (8): 371-383. http://www.ingentaconnect.com/content/geol/pg/2002/00000008/00000004/art00008 [8] Duan, Y., Cao, X.X., Zhao, Y., et al., 2014. Characteristics and Formation Mechanism of Mesozoic Underpressured Reservoirs in Ordos Basin. Earth Science—Journal of China University of Geosciences, 39(3): 341-349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201403010.htm [9] Fu, Q., Li, Y., 2010. Characteristics of Slope Breaks and Its Implication on Petroleum Geology in Yanchang Formation Chang 6 (Late-Triassic) of Ordos Basin. Acta Sedimentologica Sinica, 28(2): 294-298 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201002011.htm [10] Gareth, R.C., Bustin, R.M., Power, I.M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. doi: 10.1306/10171111052 [11] Hanson, A.D., Ritts, B.D., Moldwan, J.M., 2007. Organic Geochemistry of Oil and Source Rock Strata of the Ordos Basin, North-Central China. AAPG Bulletin, 91(9): 1273-1293. doi: 10.1306/05040704131 [12] Huang, J.L., Zou, C.N., Li, J.Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1): 69-75 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201201/40612853.html [13] Huang, Z.K., Chen, J.P., Wang, Y.J., et al., 2013. Characteristics of Micropores in Mudstones of the Cretaceous Qingshankou Formation, Songliao Basin. Acta Petrolei Sinica, 34(1): 30-36 (in Chinese with English abstract). http://www.researchgate.net/publication/287947715_Characteristics_of_micropores_in_mudstones_of_the_Cretaceous_Qingshankou_Formation_Songliao_Basin [14] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068 [15] Jia, C.Z., Zheng, M., Zhang, Y.F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600263 [16] Jia, J.L., Liu, Z.J., Achim, B., et al., 2014. Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin. Earth Science—Journal of China University of Geosciences, 39(2): 174-186 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.017 [17] Joel, D.W., Steven, W.S., 2011. Eagle Ford Shale Reservoir Properties from Digital Rock Physics. First Break, 29: 97-100. [18] Kang, Y.Z., 2012. Characteristics and Exploration Prospect of Unconventional Shale Gas Reservoirs in China. Natural Gas Industry, 32(4): 1-5 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600263 [19] Li, X.J., Lü, Z.G., Dong, D.Z., et al., 2009. Geologic Controls on Acunmulation of Shale Gas in North America. Natural Gas Industry, 29(5): 27-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200905006.htm [20] Li, Y.X., Zhang, J.C., 2011. Types of Unconventional Oil and Gas Resources in China and Their Development Potential. International Petroleum Economics, (3): 61-67 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GJJJ201103012.htm [21] Loucks, R.G., Reed R.M., Ruppel S.C., 2010. Preliminary Classification of Matrix Pores in Mudstones. Coast Association of Geological Societies (GCAGS), April. [22] Loucks, R.G., Reed R.M., Ruppel S.C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississipian Barnett Shale. Journal of Sedimentary Research, (79): 848-861. doi: 10.2110/jsr.2009.092 [23] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. doi: 10.1306/08171111061 [24] Loucks. R.G., Stephen, C.R., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. doi: 10.1306/11020606059 [25] Ma, Y.S., Feng, J.H., Mu, Z.H., et al., 2012. The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC. Engineering Sciences, 14(6): 22-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKX201206003.htm [26] McCreesh, C.A., Erlich, R., Crabtree, S.J., 1991. Petrography and Reservoir Physics 2: Relating Thin Section Porosity to Capillary Pressure, the Association between Pore Types and Throat Size. AAPG Bulletin, 75: 1563-1578. [27] Milner, M., McLin, R., Petriello, J., 2010. Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion Milled Backscatter SEM Methods. Canadian Unconventional Resources & International Petroleum Conference, Calgary. [28] Passey, Q.R., Bohacs, K.M., Esch, W.L., et al., 2010. From Oil-Prone Source Rocks to Gas-Producing Shale Reservoir—Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs. CPS/SPE International Oil & Gas Conference and Exhibition, Beijing. [29] Passey, Q.R., Bohacs, K.M., Esch, W.L. et al., 2012. My Source Rock is Now My Reservoir—Geologic and Petrophysical Characterization of Shale-Gas Reservoirs. 2011-2012 AAPG Distinguished Lecture, Bakersfield. [30] Pepper, A.S., 1991. Estimating the Petroleum Expulsion Behaviour of Source Rocks: A Novel Quantitative Approach. In: England, W.A., Fleet, A.J., eds., Petroleum Migration. Geological Society of London, 59: 9-31. [31] Pepper, A.S., Corvi, P.J., 1995. Simple Kinetic Models of Petroleum Formation: Part 1: Oil and Gas Generation from Kerogen. Marine Petroleum Geology, 12(3): 291-319. doi: 10.1016/0264-8172(95)98381-E [32] Ritter, U., 2003. Solubility of Petroleum Compounds in Kerogen: Implications for Petroleum Expulsion. Organic Geochemistry, 34: 319-326. doi: 10.1016/S0146-6380(02)00245-0 [33] Schieber, J., 2010. Common Themes in the Formation and Preservation of Porosity in Shales and Mudstones—Illustrated with Examples Across the Phanerozoic. SPE-132370. [34] Slatt, E.M., O'Neal, N.R., 2011. Pore Types in the Barnett and Woodford Gas Shale: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bulletin, 95(12): 2017-2030. doi: 10.1306/03301110145 [35] Stainforth, J.G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine Petroleum Geology, 26(4): 552-572. doi: 10.1016/j.marpetgeo.2009.01.006 [36] Tian, H., Zhang, S.C., Liu, S.B., et al., 2012. Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods. Acta Petrolei Sinica, 33(3): 419-427 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB201203011.htm [37] Yang, H., Fu, Q., Fu, J.H., 2009. Sedimentary Sequence and Petroleum Accumulation in Upper Triassic, Ordos Basin. Geological Publishing House, Beijing, 1-50 (in Chinese). [38] Yang, H., Li, S.X., Liu, X.Y., 2013. Characteristics and Resource Prospects of Tight Oil and Shale Oil in Ordos Basin. Acta Petrolei Sinica, 34(1): 1-11 (in Chinese with English abstract). doi: 10.1038/aps.2012.174 [39] Yang, H., Zhang, W.Z., 2005. Leading Effect of High-Class Source Rock of Chang 7 in Ordos Basin on Enrichment of Low Permeability Oil-Gas Accumulation: Geology and Geochemistry. Geochimica, 34(2): 147-154 (in Chinese with English abstract). [40] Yang, J.J., 2002. Tectonic Evolution and Oil-Gas Reservoir Distribution in Ordos Basin. Petroleum Industry Press, Beijing, 50-150 (in Chinese). [41] Yu, J., Yang, Y.J., Du, J.L., 2010. Sedimentation during the Transgression Period in Late Triassic Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 37(2): 181-187 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60025-0 [42] Zhang, W.Z., Yang, H., Li, J.F., et al., 2006. Leading Effect of High-Class Source Rock of Chang 7 in Ordos Basin on Enrichment of Low Permeability Oil-Gas Accumulation. Petroleum Exploration and Development, 33(3): 289-293 (in Chinese with English abstract). [43] Zhang, W.Z., Yang, H., Yang, Y.H., et al., 2008. Petrology and Element Geochemistry and Development Environment of Yanchang Formation Chang-7 High Quality Source Rocks in Ordos Basin. Geochimica, 37(1): 59-64 (in Chinese with English abstract). http://www.researchgate.net/publication/285087763_Petrology_and_element_geochemistry_and_development_environment_of_Yanchang_Formation_Chang-7_high_quality_source_rocks_in_Ordos_Basin [44] Zhao, M.W., Behr, H.J., Ahrendt, H., 1996. Thermal and Tectonic History of the Ordos Basin, China: Evidence from Apatite Fission Track Analysis, Vitrinite Reflectance, and K-Ar Dating. AAPG Bulletin, 80(6): 1110-1134. http://aapgbull.geoscienceworld.org/content/80/7/1110 [45] Zhao, X.Y., Zhang, Y.Y., 1990. Clay Mineral and Clay Mineral Analysis. Ocean Press, Beijing (in Chinese). [46] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3 [47] Zou, C.N., Tao, S.Z., Hou, L.H., et al., 2011. Unconventional Petroleum Geology. Geological Publishing House, Beijing (in Chinese). [48] Zou, C.N., Yang, Z., Cui, J.W., et al., 2013. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1): 14-26 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201301/44578517.html [49] Zou, C.N., Yang, Z., Tao, S.Z., et al., 2012a. Nano-Hydrocatbon and the Accumulation in Coexisting Source and Reservoir. Petroleum Exploration and Development, 39(1): 13-26 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600111 [50] Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012b. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations. Acta Petrolei Sinica, 33(2): 173-187 (in Chinese with English abstract). doi: 10.1038/aps.2011.203 [51] 陈勉, 金衍, 张广清, 2008. 石油工程岩石力学. 北京: 科学出版社. [52] 邓秀芹, 李文厚, 刘新社, 等, 2009. 鄂尔多斯盆地中三叠统与上三叠统地层界线讨论. 地质学报. 83(8): 1089-1096. doi: 10.3321/j.issn:0001-5717.2009.08.005 [53] 段毅, 曹喜喜, 赵阳, 等, 2014. 鄂尔多斯盆地中生界低压油藏特征与形成机制. 地球科学——中国地质大学学报, 39(3): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201403010.htm [54] 傅强, 李益, 2010. 鄂尔多斯盆地晚三叠世延长组长6期湖盆坡折带特征及其地质意义. 沉积学报, 28(2): 294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002011.htm [55] 黄金亮, 邹才能, 李建忠, 等, 2012. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm [56] 黄振凯, 陈建平, 王义军, 等, 2013. 松辽盆地白垩系青山口组泥岩微观孔隙特征. 石油学报, 34(1): 30-36. doi: 10.3969/j.issn.1671-4067.2013.01.009 [57] 贾承造, 郑民, 张永锋, 2012. 中国非常规油气资源与勘探开发前景. 石油石油勘探与开发, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm [58] 贾建亮, 刘招君, Achim Bechtel, 等, 2014. 松辽盆地嫩江组油页岩发育控制因素. 地球科学——中国地质大学学报, 39(2): 174-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201402006.htm [59] 康玉柱, 2012. 中国非常规泥页岩油气藏特征及勘探前景展望. 天然气工业, 32(4): 1-5. doi: 10.3787/j.issn.1000-0976.2012.04.001 [60] 李新景, 吕宗刚, 董大忠, 等, 2009. 北美页岩气资源形成的地质条件. 天然气工业, 5: 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905006.htm [61] 李玉喜, 张金川, 2011. 我国非常规油气资源类型和潜力. 国际石油经济, (3): 61-67. doi: 10.3969/j.issn.1004-7298.2011.03.011 [62] 马永生, 冯建辉, 牟泽辉, 等, 2012. 中国石化非常规油气资源潜力及勘探进展. 中国工程科学, 14(6): 22-30. doi: 10.3969/j.issn.1009-1742.2012.06.004 [63] 田华, 张水昌, 柳少波, 等, 2012. 压汞法和气体吸附法研究富有机质页岩孔隙特征. 石油学报, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm [64] 杨华, 傅强, 付金华, 2009. 鄂尔多斯盆地晚三叠世盆地沉积层序与油气成藏. 北京: 地质出版社, 1-50. [65] 杨华, 李士祥, 刘显阳, 2013. 鄂尔多斯盆地致密油、页岩油特征及资源潜力. 石油学报, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm [66] 杨华, 张文正, 2005. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征. 地球化学, 34(2): 147-154. doi: 10.3321/j.issn:0379-1726.2005.02.007 [67] 杨俊杰, 2002. 鄂尔多斯盆地构造演化与油气分布规律. 北京: 石油工业出版社, 50-150. [68] 喻建, 杨亚娟, 杜金良, 2010. 鄂尔多斯盆地晚三叠世延长组湖侵期沉积特征. 石油勘探与开发, 37(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002009.htm [69] 张文正, 杨华, 李剑锋, 等, 2006. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析. 石油勘探与开发, 33(3): 289-293. doi: 10.3321/j.issn:1000-0747.2006.03.006 [70] 张文正, 杨华, 杨奕华, 等, 2008. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境. 地球化学, 37(1): 59-64. doi: 10.3321/j.issn:0379-1726.2008.01.008 [71] 赵杏媛, 张有瑜, 1990. 粘土矿物与粘土矿物分析. 北京: 海洋出版社. [72] 邹才能, 董大忠, 王社教, 等, 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm [73] 邹才能, 陶士振, 侯连华, 等, 2011. 非常规油气地质. 北京: 地质出版社. [74] 邹才能, 杨智, 崔景伟, 等, 2013. 页岩形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm [75] 邹才能, 杨智, 陶士振, 等, 2012a. 纳米油气与源储共生型油气聚集. 石油勘探与开发, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm [76] 邹才能, 朱如凯, 吴松涛, 等, 2012b. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm