Geochronology and Geochemistry of Cihua Neoproterozoic High-Mg Andesites in Jiangnan Orogen and Their Tectonic Implications
-
摘要: 江南造山带被普遍认为是扬子与华夏陆块在新元古代的拼合带, 其拼合机制及精细时代却一直备受争议.在江南造山带中段湘赣交界慈化地区识别出新元古代火山岩, 并对其进行了锆石U-Pb年代学及主微量地球化学研究.该火山岩发育于冷家溪群地层中, 其锆石LA-ICP-MS年代学测试得到了832±12 Ma的206Pb/238U加权平均年龄(n=16, MSWD=0.12), 代表其喷发年龄.主量元素结果显示, SiO2和MgO含量分别为57.67%~61.33%和3.51%~4.29%, Mg#为52~57, 高于正常弧火山岩, 属高镁安山岩.微量元素富集轻稀土元素和大离子亲石元素, 亏损高场强元素, 其Nb-Ta、Ti亏损, 具"弧型"地球化学特征, 可能来源于受板片熔体/流体或者俯冲再循环沉积物交代的难熔地幔源区.上述资料表明, 慈化高镁安山岩是江南造山带中段楔形地幔源区受消减组分交代作用的产物, 暗示此时江南造山带中段仍在消减, 扬子和华夏陆块尚未完全拼合.结合前人研究成果, 江南造山带不同区段的闭合时间可能存在差异.Abstract: It is generally accepted that the Jiangnan orogenic belt led to the amalgamation of the Yangtze with Cathaysia blocks during the Neoproterozoic period. However, its tectonic evolution and amalgamation timing are still in debate. This paper presents a set of new geochronological and geochemical data for the newly-identified Neoproterozoic high-Mg volcanics from Cihua (Jiangxi). LA-ICP-MS zircon U-Pb dating of the representative sample yields a weighted mean age of 832±12 Ma (n=16, MSWD=0.12), representing the eruption age of the andesite. Geochemical results indicate that they can be classified as high-Mg andesites with SiO2 ranging from 57.67% to 61.33%, MgO from 3.51% to 4.29% and Mg-number from 52 to 57. Their chondrite-normalized REE patterns exhibit a left-sloping pattern with enriched LREEs relative to HREEs. On the primitive mantle-normalized multi-element patterns, these samples have strong enrichment in LILE and depletion in HFSE with marked negative Nb-Ta, Ti and positive Th anomalies, similar to those of the typical arc volcanics. The generation of the volcanic rocks might have been attributed to an interaction of the subducted melt/fluid or sediment with the overlying refractory mantle, suggesting the central Jiangnan orogen was still on the subduction till ~832 Ma. It is concluded that the Jiangnan orogen consists of several branches with distinct amalgamation evolution.
-
图 1 湘东北-赣西北地区地质概况及采样点位置
图1改编自Zhang et al., 2013
Fig. 1. NE Hunan and NW Jiangxi provinces with the sampling location
图 4 慈化高镁安山岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石和原始地幔标准化数据分别引自文献Taylor and McLennan(1985)和Sun and McDonough(1989)
Fig. 4. The patterns of the chondrite-normalized rare-earth elements (a) and primitive mantle-normalized spidergram (b) for the Cihua high-Mg andesite in NW Jiangxi Province
图 6 慈化高镁安山岩与文家市-芳溪N-MORB岩石球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)
b.数据来自Zhang et al., 2013
Fig. 6. The chondrite-normalized rare-earth elements (a) and primitive mantle-normalized spidergram (b) of the Cihua high-Mg andesite and Wenjiashi-Fangxi N-MORB
表 1 慈化高镁安山岩样品LA- ICP-MS锆石U-Pb分析结果
Table 1. Table 1 LA-ICP-MS zircon U-Pb dating results for the Cihua high-Mg andesite
分析点 Th/U 207Pb/206U 207Pb/235U 206Pb/238U 207Pb/206U 207Pb/235U 206Pb/238U 比值 ±1σ 比值 ±1σ 比值 ±1σ 年龄(Ma) ±1σ 年龄(Ma) ±1σ 年龄(Ma) ±1σ 12WS-79A-01 0.13 0.067 7 0.002 0 1.289 1 0.039 6 0.138 2 0.004 2 859 63 834 24 841 18 12WS-79A-02 0.47 0.112 3 0.003 4 5.156 5 0.156 9 0.332 9 0.010 1 1 839 54 1 852 49 1 845 26 12WS-79A-03 0.59 0.067 9 0.002 0 1.285 7 0.039 7 0.137 2 0.004 2 878 36 829 24 839 18 12WS-79A-04 1.18 0.159 5 0.004 8 9.952 4 0.308 7 0.452 5 0.014 0 2 450 51 2 406 62 2 430 29 12WS-79A-05 0.33 0.067 0 0.002 0 1.273 2 0.042 9 0.137 3 0.004 6 839 63 829 26 834 19 12WS-79A-06 0.98 0.079 3 0.002 4 2.240 3 0.069 4 0.204 9 0.006 3 1 189 60 1 202 34 1 194 22 12WS-79A-07 0.24 0.116 9 0.003 5 5.402 9 0.165 2 0.335 2 0.010 3 1 910 54 1 864 49 1 885 26 12WS-79A-08 0.28 0.067 7 0.002 0 1.278 0 0.039 4 0.136 9 0.004 2 861 63 827 24 836 18 12WS-79A-09 0.33 0.069 2 0.002 1 1.314 7 0.040 5 0.137 8 0.004 2 906 61 832 24 852 18 12WS-79A-10 0.27 0.068 2 0.002 1 1.293 8 0.040 1 0.137 4 0.004 2 876 62 830 24 843 18 12WS-79A-11 0.36 0.068 6 0.002 1 1.303 7 0.040 0 0.137 8 0.004 2 887 56 832 24 847 18 12WS-79A-12 0.57 0.098 0 0.002 9 3.734 6 0.114 5 0.276 2 0.008 5 1 587 56 1 572 43 1 579 25 12WS-79A-13 0.12 0.067 0 0.002 0 1.270 7 0.039 0 0.137 6 0.004 2 839 63 831 24 833 17 12WS-79A-14 0.38 0.067 3 0.002 0 1.282 3 0.039 2 0.138 1 0.004 2 856 63 834 24 838 17 12WS-79A-15 0.44 0.067 4 0.002 0 1.281 4 0.039 4 0.137 8 0.004 2 850 68 832 24 837 18 12WS-79A-16 0.60 0.112 8 0.003 4 5.166 7 0.159 0 0.332 2 0.010 2 1 844 54 1 849 49 1 847 26 12WS-79A-17 0.27 0.066 8 0.002 0 1.276 6 0.039 6 0.138 5 0.004 3 831 63 836 24 835 18 12WS-79A-18 0.18 0.066 6 0.002 0 1.260 5 0.038 5 0.137 2 0.004 2 833 63 829 24 828 17 12WS-79A-19 0.35 0.067 1 0.002 0 1.276 9 0.039 2 0.137 9 0.004 2 843 62 833 24 835 17 12WS-79A-20 0.61 0.067 0 0.002 0 1.276 7 0.039 3 0.138 2 0.004 2 839 63 834 24 835 18 12WS-79A-21 0.23 0.067 8 0.002 0 1.295 2 0.039 8 0.138 6 0.004 2 861 63 837 24 844 18 12WS-79A-22 0.55 0.111 8 0.003 4 5.126 7 0.156 5 0.332 6 0.010 1 1 829 55 1 851 49 1 841 26 12WS-79A-23 0.26 0.067 0 0.002 0 1.272 5 0.039 2 0.137 8 0.004 2 837 63 832 24 833 18 12WS-79A-24 0.51 0.114 0 0.003 4 5.214 4 0.159 4 0.331 5 0.010 1 1 865 54 1 846 49 1 855 26 12WS-79A-25 0.12 0.124 0 0.003 7 6.275 6 0.192 6 0.367 1 0.011 3 2 015 53 2 016 53 2 015 27 12WS-79A-26 0.35 0.067 7 0.002 0 1.285 0 0.039 4 0.137 7 0.004 2 857 63 831 24 839 18 12WS-79A-27 1.05 0.104 8 0.003 2 4.369 4 0.133 9 0.302 2 0.009 2 1 722 56 1 702 46 1 707 25 12WS-79A-28 0.52 0.113 8 0.003 6 5.120 1 0.188 5 0.325 9 0.011 4 1 861 57 1 819 55 1 839 31 12WS-79A-29 0.59 0.154 2 0.004 6 9.340 4 0.286 5 0.439 1 0.013 5 2 394 50 2 347 60 2 372 28 12WS-79A-30 0.48 0.113 3 0.003 4 5.219 6 0.160 4 0.333 9 0.010 2 1 853 54 1 857 50 1 856 26 表 2 慈化高镁安山岩主量(%)和微量元素(10-6)分析结果
Table 2. Major (%) and trace element (10-6) analytical results for the Cihua high-Mg andesite
样品号 12WS-79A 12WS-79B 12WS-79C 12WS-79D 12WS-79E SiO2 57.03 59.67 55.89 56.71 59.78 Al2O3 19.46 16.78 19.96 18.76 18.10 CaO 2.76 3.25 3.02 4.63 3.10 FeOt 6.19 6.59 6.47 6.83 6.93 MgO 4.05 3.61 3.78 3.48 3.35 MnO 3.92 3.72 4.16 3.51 3.43 K2O 0.07 0.10 0.08 0.11 0.09 Na2O 1.76 1.41 1.63 1.72 1.47 P2O5 0.14 0.15 0.12 0.13 0.14 TiO2 0.91 1.02 0.96 1.09 0.86 Loi 2.49 2.24 2.48 2.03 1.86 Total 99.47 99.54 99.40 99.37 99.49 Mg# 57.1 53.3 57.0 53.2 52.2 Sc 22.8 23.0 24.3 14.2 16.1 V 163 176 214 110 140 Cr 109.0 91.6 102 54.9 75.1 Co 18.2 18.2 19.5 17.3 19.8 Ni 39.3 39.8 40.4 34.1 36.3 Rb 189 201 180 182 173 Sr 107.0 149.0 136.0 62.0 73.7 Y 35.7 38.4 39.2 26.7 28.9 Zr 196 262 265 194 212 Nb 15.4 17.7 18.0 13.1 14.4 Ba 1 123 402 371 355 354 La 42.5 59.0 59.7 35.8 36.0 Ce 89.3 118.0 121.0 73.8 71.7 Pr 11.10 14.90 14.80 9.25 8.80 Nd 39.4 53.1 55.2 32.8 33.5 Sm 8.13 10.20 10.00 6.40 6.25 Eu 1.97 2.37 2.28 1.04 0.98 Gd 7.22 8.06 8.34 5.61 5.89 Tb 1.14 1.30 1.30 0.90 0.91 Dy 6.62 7.24 7.48 5.27 5.52 Ho 1.40 1.55 1.56 1.14 1.16 Er 3.79 4.19 4.37 3.03 3.11 Tm 0.58 0.62 0.65 0.46 0.48 Yb 3.92 4.12 4.40 2.99 3.18 Lu 0.59 0.62 0.69 0.44 0.49 Hf 5.97 7.82 6.98 6.07 5.56 Ta 1.33 1.57 1.64 1.15 1.21 Pb 26.1 30.0 29.6 15.9 15.4 Th 19.4 23.7 22.5 14.4 13.8 U 3.85 4.74 4.79 3.04 3.05 -
[1] Bai, D.Y., Jia, B.H., Liu, W., et al., 2010. Zircon SHRIMP U-Pb Dating of the Igneous Rocks from Chengbu, Hunan: Constraint on the Neoproterozoic Tectonic Evolution of the Jiangnan Orogenic Belt. Acta Geologica Sinica, 84(12): 1715-1726 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201012001.htm [2] Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., et al., 1995. Compositions of Nearsolidus Peridotite Melts from Experiments and Thermodynamic Calculations. Nature, 375(129): 308-311. doi: 10.1038/375308a0 [3] Baker, M.B., Stolper, E.M., 1994. Determining the Composition of High-Pressure Mantle Melts Using Diamond Aggregates. Geochim. Cosmochi. Acta, 58(6529): 2811-2827. http://www.sciencedirect.com/science/article/pii/0016703794901163 [4] Bureau of Geology and Mineral Resources of Guangxi, 1985. Regional Geology of Guangxi Autonomous Region. Geological Publishing House, Beijing (in Chinese). [5] Bureau of Geology and Mineral Resources of Hunan Province, 1988. Regional Geology of Hunan Province. Geological Publishing House, Beijing (in Chinese). [6] Bureau of Geology and Mineral Resources of Jiangxi Province, 1984. Regional Geology of Jiangxi Province. Geological Publishing House, Beijing (in Chinese). [7] Campbell, I.H., 2002. Identification of Ancient Mantle Plumes. Mantle Plumes: Their Identification through Time. GSA Special Paper, 352: 5-22. http://www.researchgate.net/publication/282750086_Identification_of_ancient_mantle_plumes [8] Chalot-Prat, F., Boullier, A.M., 1997. Metasomatism in the Subcontinental Mantle beneath the Eastern Carpathians (Romania): New Evidence from Trace Element Geochemistry. Contrib. Mineral. Petrol., 129(4): 284-307. doi: 10.1007/s004100050338 [9] Charvet, J., Shu, L.S., Shi, Y.S., et al., 1996. The Building of South China, Collision of Yangzi and Cathaysia Blocks, Problems and Tentative Answers. J. Southeast Asian Earth Sci., 13(3-5): 223-235. doi: 10.1016/0743-9547(96)00029-3 [10] Chauvel, C., McDonough, W., Guille, G., et al., 1997. Contrasting Old and Young Volcanism in Rurutu Island, Austral Chain. Chem. Geol., 139(1-4): 125-143. doi: 1016/S0009-2541(97)00029-6 [11] Chen, Z.H., Guo, K.Y., Dong, Y.G., et al., 2009a. Possible Early Neoproterozoic Magmatism Associated with Slab Window in the Pingshui Segment of the Jiangshan-Shaoxing Suture Zone: Evidence from Zircon LA-ICP-MS U-Pb Geochronology and Geochemistry. Science in China (Series D), 39(7): 994-1008 (in Chinese). [12] Chen, Z.H., Xing, G.F., Guo, K.Y., et al., 2009b. Petrogenesis of Keratophyes in the Pingshui Group, Zhejiang: Constraints from Zircon U-Pb Ages and Hf Isotopes. Chinese Science Bulletin, 54(5): 610-617 (in Chinese). doi: 10.1360/csb2009-54-5-610 [13] Ding, B.H., Shi, R.D., Zhi, X.C., et al., 2008. Neoproterozoic (~850 Ma) Subduction in the Jiangnan Orogen: Evidence from the SHRIMP U-Pb Dating of the SSZ-Type Ophiolite in Southern Anhui Province. Acta Petrologica et Mineralogica, 27(5): 375-388 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200805001.htm [14] Evans, O.C., Hanson, G.N., 1997. Late- to Post-Kinematic Archean Boninitoids of the S.W. Superior Province: Derivation through Direct Mantle Melting, Greenstone Belts. Oxford University Press, Oxford, 280-295. [15] Falloon, T.J., Green, D.H., Hatton, C.J., et al., 1988. Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kbar and Applications to Basalt Petrogenesis. J. Petrol., 29: 1257-1282. doi: 10.1093/petrology/29.6.1257 [16] Gallagher, K., Hawkesworth, C.J., 1992. Dehydration Melting and the Generation of Continental Flood Basalts. Nature, 358: 57- 59. doi: 10.1038/358057a0 [17] Gao, J., Klemd, R., Long, L.L., et al., 2009. Adakitic Signature Formed by Fractional Ophiolitic Mélange Belt, South China. Lithos, 110(1-4): 277-293. doi: 10.1016/j.lithos.2009.01.009 [18] Gao, S., Luo, T.C., Zhang, B.R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochi. Cosmochimi. Acta, 62(11): 1959-1975. doi: 10.1016/j.lithos.2009.01.009 [19] Gasparik, T., Litvin, Y.A., 2002. Experimental Investigation of the Effect of Metasomatism by Carbonatic Melt on the Composition and Structure of the Deep Mantle. Lithos, 60(3-4): 129-143. doi: 10.1016/S0024-4937(01)00078-0 [20] Ge, W.C., Li, X.H., Li, Z.X., et al., 2001. Geochemical Studies on Two Types of Neoproterozoic Peraluminous Granitoids in Northern Guangxi. Geochimica, 30(1): 24-34 (in Chinese with English abstract). http://www.researchgate.net/publication/284324481_Geochemical_studies_on_two_types_of_Neoproterozoic_peraluminous_granitoids_in_northern_Guangxi [21] Greentree, M.R., Li, Z.X., Li, X.H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Res., 151(1-2): 79-100. doi: 10.1016/j.precamres.2006.08.02 [22] Gu, X.X., Liu, J.M., Schulz, O., et al., 2003. Geochemical Constraints on the Tectonic Setting of the Proterozoic Turbidites in the Xuefeng Uplift Region of the Jiangnan Orogenic Belt. Geochimica, 32(5): 406-426 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200305001.htm [23] Guo, L.Z., Shi, Y.S., Ma, R.S., 1980. The Geotectonic Framework and Crustal Evolution of South China. In: Scientific Paper on Geology for International Exchange. Geological Publishing House, Beijing, 109-116 (in Chinese). [24] Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth Planet. Sci. Lett., 214(1-2): 357-368. doi: 10.1016/S0012-821X(03)00361-3 [25] Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Mg Andesitic Melts. Geology, 25(1): 42-44. doi: 10.1130/0091-7613(1997)0252.3.CO;2 [26] Hoang, N., Yamamoto, T., Itoh, J., et al., 2009. Anomalous Intra-Plate High-Mg Andesites in the Choshi Area (Chiba, Central Japan) Produced during Early Stages of Japan Sea Opening?Lithos, 112(3-4): 545-555. doi: 10.1016/j.lithos.2008.11.012 [27] Kamei, A., 2004. An Adakitic Pluton on Kyushu Island, Southwest Japan Arc. J. Asian Earth Sci., 24(1): 43-58. doi: 10.1016/j.jseaes.2003.07.001 [28] Kawabata, H., Shuto, K., 2005. Magma Mixing Recorded in Intermediate Rocks Associated with High-Mg Andesites from the Setouchi Volcanic Belt, Japan: Implications for Archean TTG Formation. J. Volcanol. Geotherm. Res., 140(4): 241-271. doi: 10.1016/j.jvolgeores.2004.08.013 [29] Kelemen, P.B., 1995. Genesis of High-Mg Andesites and the Continental Crust. Contrib. Mineral. Petrol., 120(1): 1-19. doi: 10.1007/BF00311004 [30] Kelemen, P.B., Hart, S.R., Bernstein, S., 1998. Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction. Earth Planet. Sci. Lett., 164(1-2): 387-406. doi: 10.1016/S0012-821X(98)00233-7 [31] Kogarko, L.N., Kurat, G., Ntaflos, T., 2001. Carbonatite Metasomatism of the Oceanic Mantle beneath Fermando de Noronha Island, Brazil. Contrib. Mineral. Petrol., 140(5): 577-587. doi: 10.1007/s004100000201 [32] Kushiro, I., 1990. Partial Melting of Mantle Wedge and Evolution of Island Arc Crust. J. Geophys. Res., 95(B10): 15929-15939. doi: 10.1029/JB095iB10p15929 [33] LaFlèche, M.R., Camire, G., Jenner, G.A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Quebec. Canada Chemi. Geol., 148(3-4): 115-136. doi: 10.1016/S0009-2541(98)00002-3 [34] Le Bas, M.J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. J. Petrol., 41(10): 1467-1470. doi: 10.1093/petrology/41.10.1467 [35] Li, W.X., Li, X.H., 2003. Adakitic Granites within the NE Jiangxi Ophiolite, South China: Geochemical and Nd Isotopic Evidence. Precambrian Res., 122(1-4): 29-44. doi: 10.1016/S0301-9268(02)00206-1 [36] Li, W.X., Li, X.H., Li, Z.X., 2008a. Middle Neoproterozoic Syn-Rifting Volcanic Rocks in Guangfeng, South China: Petrogenesis and Tectonic Significance. Geol. Mag., 145(4): 475-489. doi: 10.1017/S0016756808004561 [37] Li, W.X., Li, X.H., Li, Z.X., et al., 2008b. Obduction-Type Granites within the NE Jiangxi Ophiolite, Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Res., 13(3): 288-301. doi: 10.1016/j.gr.2007.12.010 [38] Li, W.X., Li, X.H., Li, Z.X., 2010a. ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi, South China: Initial Extension during the Breakup of Rodinia. American J. Sci., 310: 951-980. doi: 10.2475/09.2010.08 [39] Li, X.H., 1997. Geochemistry of the Longsheng Ophiolite from the Southern Margin of Yangtze Craton, SE China. Geochem. J., 31: 323-337. doi: 10.2343/geochemj.31.323 [40] Li, X.H., Li, W.X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201206001.htm [41] Li, X.H., Li, W.X., Li, Q.L., et al., 2010b. Petrogenesis and Tectonic Significance of the ~850 Ma Gangbian Alkaline Complex in South China, Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Precambrian Res., 114: 1-15. doi: 10.1016/j.lithos.2009.07.011 [42] Li, X.H., Li, W.X., Li, Z.X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China, Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Res., 174(1-2): 117-128. doi: 10.1016/j.precamres.2009.07.004 [43] Li, X.H., Li, Z.X., Ge, W.C., et al., 2003a. Neoproterozoic Granitoids in South China, Crustal Melting above a Mantle Plume at ca. 825 Ma?Precambrian Res., 122(1-4): 45-83. doi: 10.1016/S0301-9268(02)00207-3 [44] Li, X.H., Li, Z.X., Ge, W.C., et al., 2004. Reply to the Comment, Mantle Plume, but not Arcrelated Neoproterozoic Magmatism in South China. Precambrian Res., 132(4): 405-407. doi: 10.1016/j.precamres.2004.03.008 [45] Li, X.H., Su, L., Chung, S.L., et al., 2005. Formation of the Jinchuan Ultramafic Intrusion and the World's Third Largest Ni-Cu Sulfide Deposit, Associated with the ~825 Ma South China Mantle Plume?Geochem., Geophys., Geosyst., 6: Q11004. doi:10.1029/2005GC 001006 [46] Li, X.H., Zhou, G.Q., Zhao, J.X., et al., 1994. SHRIMP Ion Microprobe Zircon U-Pb Age of the NE Jiangxi Ophiolite and Its Tectonic Implications. Geochimica, 23(2): 125-131 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHB199404002.htm [47] Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999. The Breakup of Rodinia, Did It Start with a Mantle Plume beneath South China?Earth Planet. Sci. Lett., 173(3): 171-181. doi: 10.1016/S0012-821X(99)00240-X [48] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003b. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents, Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Res., 122(1-4): 85-109. doi: 10.1016/S0301-9268(02)00208-5 [49] Li, Z.X., Li, X.H., Zhou, H., et al., 2002. Grenvillian Continental Collision in South China, New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163-166. doi:10.1130/0091-7613(2002)030<0163:gccisc>2.0.CO [50] Li, Z.X., Zhang, L.H., Powell, C.M.A., 1995. South China in Rodinia, Part of the Missing Link between Australia-East Antarctica and Laurentia?Geology, 23(5): 407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2 [51] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In-Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol., 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [52] Ludwig, K.R., 2001. Users Manual for Isoplot/Ex Rev. 2.49, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 53-55. [53] Ma, T.Q., Chen, L.X., Bai, D.Y., et al., 2009. Zircon SHRIMP Dating and Geochemical Characteristics of Neoproterozoic Granites in Southeast Hunan. Geology in China, 36(1): 65-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200901007.htm [54] Moyen, J.F., Martin, H., Jayananda, M., et al., 2003. Late Archaean Granites: A Typology Based on the Dharwar Craton (India). Precambrian Res., 127(1-3): 103-123. doi: 10.1016/S0301-9268(03)00183-9 [55] Oliveira, M.A., Agnol, R.D., Althoff, F.J., et al., 2009. Mesoarchean Sanukitoid Rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian Craton, Brazil. J. South America Earth Sci., 27(2-3): 146-160. doi: 10.1016/j.jsames.2008.07.003 [56] Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410: 197-200. doi: 10.1038/35065583 [57] Qin, Y.J., Du, Y.S., Mou, J., et al., 2015. Geochronology of Neoproterozoic Xiajiang Group in Southeast Guizhou, South China, and Its geological Implications. Earth Science—Journal of China University of Geosciences, 40(7): 1107-1120 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.093 [58] Rapp, R.P., Shimizu, N., Norman, M.D., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chem. Geol., 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0 [59] Rudnick, R.L., Fountain, D.M., 1995. Nature and Composition of the Continental Crust, a Lower Crustal Perspective. Rev. Geophys., 33(3): 267-309. doi: 10.1029/95RG01302 [60] Sajona, F.G., Maury, R.C., Pubellier, M., et al., 2000. Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines). Lithos, 54(3-4): 173-206. doi: 10.1016/S0024-4937(00)00019-0 [61] Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998. Setouchi High-Mg Andesite Revisited; Geochemical Evidence for Melting of Subducting Sediments. Earth Planet. Sci. Lett., 160(3-4): 479-492. doi: 10.1016/S0012-821X(98)00105-8 [62] Shu, L.S., Zhou, G.Q., Shi, Y.S., et al., 1993. Study on the High Pressure Blueschist of Eastern Segment of Jiangnan Erogenic Belt and Its Geological Age. Chinese Science Bulletin, 38(20): 1879-1882 (in Chinese). doi: 10.1360/csb1993-38-20-1879 [63] Smithies, R.H., Champion, D.C., 2000. The Archean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archean Crustal Growth. J. Petrol., 41: 1653-1671. doi: 10.1093/petrology/41.12.1653 [64] Stern, R.A., Hanson, G.N., 1991. Archean High-Mg Granodiorite: A Derivative of Light Rare Earth Element-Enriched Monzodiorite of Mantle Origin. J. Petrol., 32(1): 201-238. doi: 10.1093/petrology/32.1.201 [65] Su, J.B., Zhang, Y.Q., Dong, S.W., et al., 2014. Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China: Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen. J. Earth Sci., 25(4): 619-629. doi: 10.1007/s12583-014-0469-8 [66] Sun, H.Q., Chen, J., Meng, D.B., et al., 2009. The Dayaogu Formation of Northeast Hunan Province. Geology and Mineral Resources of South China, (4): 54-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200904008.htm [67] Sun, S.S., McDonough, W.F., 1989. Geochemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins, 42. Geol. Soc. London Spec. Pub., 42(1): 313-345. [68] Tang, X.S., Huang, J.Z., Guo, L.Q., 1997. Hunan Banxi Group and Its Tectonic Environment. Hunan Geology, 16(4): 219-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNDZ704.002.htm [69] Tatsumi, Y., 1981. Melting Experiments on a High Magnesian Andesite. Earth Planet. Sci. Lett., 54: 357-365. doi: 10.1016/0012-821X(81)90017-0 [70] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Oxford Press Blackwell, Oxford, 1-312. http://ci.nii.ac.jp/ncid/BA00414266 [71] van der Laan, S.R., Flower, M.F.J., van Groos, A.F.K., 1989. Experimental Evidence for the Origin of Boninites: Near-Liquidus Phase Relations to 7.5 kbar. In: Crawford, A.J., ed., Boninite and Relate Rocks. Unwin Hyman, London, 112-147. [72] Wang, X.C., Li, X.H., Li, W.X., et al., 2007a. ca. 825 Ma Komatiitic Basalts in South China, First Evidence for > 1 500 ℃ Mantle Melts by a Rodinia Mantle Plume. Geology, 35(12): 1103-1106. doi: 10.1130/G23878a.1 [73] Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China, Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen. Gondwana Res., 14(3): 355-367. doi: 10.1016/j.gr.2008.03.001 [74] Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2007b. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen, Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Res., 159(1-2): 117-131. doi: 10.1016/j.precamres.2007.06.005 [75] Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2014a. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Res., 242: 154-171. doi: 10.1016/j.precamres.2013.12.023 [76] Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2003. Geochemistry of the Meso-Neoproterozoic Volcanic-Intrusive Rocks from Hunan Province and Its Petrogenic Significances. Acta Petrologica Sinica, 19(1): 49-60 (in Chinese with English abstract). [77] Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2004. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China, Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Res., 135(1-2): 79-103. doi: 10.1016/j.precamres.2004.07.006 [78] Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2004. Petrogenesis of Neoproterozoic Peraluminous Granites from Northeastern Hunan Province: Chronological and Geochemical Constraints. Geological Review, 50(1): 65-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200401010.htm [79] Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China, Implications for Petrogenesis and Tectonic Evolution. Precambrian Res., 145(1-2): 111-130. doi: 10.1016/j.precamres.2005.11.014 [80] Wang, Y.J., Zhang, A.M., Cawood, P.A., et al., 2013. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly Accretionary Assembly along the Margin of Rodinia. Precambrian Res., 231: 343-371. doi: 10.1016/j.precamres.2013.03.020 [81] Wang, Y.J., Zhang, F.F., Fan, W.M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic, Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. doi: 10.1029/2010TC002750 [82] Wang, Y.J., Zhang, Y.Z., Fan, W.M., et al., 2014b. Early Neoproterozoic Accretionary Assemblage in the Cathaysia Block: Geochronological, Lu-Hf Isotopic and Geochemical Evidence from Granitoid Gneisses. Precambrian Res., 249: 144-161. doi: 10.1016/j.precamres.2014.05.003 [83] Wang, Y.J., Zhang, Y.Z., Zhao, G.C., et al., 2009. Zircon U-Pb Geochronological and Geochemical Constraints on the Petrogenesis of the Taishan Sanukitoids (Shandong): Implications for Neoarchean Subduction in the Eastern Block, North China Craton. Precambrian Res., 174(3-4): 273-286. doi: 10.1016/j.precamres.2009.08.005 [84] Wang, Y.J., Zhao, G.C., Fan, W.M., et al., 2007c. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Res., 154(1-2): 107-124. doi: 10.1016/j.precamres.2006.12.010 [85] Woodhead, J.D., 1996. Extreme HIMU in an Oceanic Setting: the Geochemistry of Mangaia Island (Polynesia), and Temporal Evolution of the Cook-Austral Hotspot. J. Volcanol. Geotherm. Res., 72(1-2): 1-19. doi: 10.1016/0377-0273(96)00002-9 [86] Wu, R.X., Zheng, Y.F., Wu, Y.B., et al., 2006. Reworking of Juvenile Crust, Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Res., 146(3-4): 179-212. doi: 10.1016/j.precamres.2006.01.012 [87] Xia, X.P., Sun, M., Geng, H.Y., et al., 2011. Quasi-Simultaneous Determination of U-Pb and Hf Isotope Compositions of Zircon by Excimer Laser-Ablation Multiple-Collector ICP-MS. J. Anal. At. Spectrom., 26: 1868-1871. doi: 10.1039/CIJA10116A [88] Yaxley, G.M., Green, D.H., Kamenetsky, V., 1998. Carbonatite Metasomatism in the Southeastern Australian Lithosphere. J. Petrol., 39(11-12): 1917-1930. doi: 10.1093/petroj/39.11-12.1917 [89] Ye, M.F., Li, X.H., Li. W.X., et al., 2007. SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block. Gondwana Res., 12(1-2): 144-156. doi: 10.1016/j.gr.2006.09.001 [90] Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013. Tectonic Evolution of the Southeastern Margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf Isotopic Studies of Zircon from the Eastern Jiangnan Orogenic Belt and Implications for the Tectonic Interpretation of South China. Precambrian Res., 236: 145-156. doi: 10.1016/j.precamres.2013.07.022 [91] Yogodzinski, G.M., Kay, R.W., Volynets, O.N., et al., 1995. Magnesian Andesite in the Western Aleutian Komandorsky Region, Implications for Slab Melting and Processes in the Mantle Wedge. Geol. Soc. Am. Bull., 107(5): 505-519. doi: 10.1130/0016-7606(1995)1072.3.CO;2 [92] Zhang, B.R., Luo, T.C., Gao, S., et al., 1994. Geochemical Study of the Lithosphere, Tectonism and Metallogenesis in the Qinling-Dabashan Region. China University of Geosciences Press, Wuhan, 1-446. [93] Zhang, F.F., Wang, Y.J., Fan, W.M., et al., 2011. Zircon U-Pb Geochronology and Hf Isotopes of the Neoproterozoic Granites in the Central of Jiangnan Uplift. Geotectonica et Metallogenia, 35(1): 73-84 (in Chinese with English abstract). http://www.researchgate.net/publication/285473083_Zircon_U-Pb_geochronology_and_Hf_isotopes_of_the_Neoproterozoic_granites_in_the_central_of_Jiangnan_Uplift [94] Zhang, S.B., Wu, R.X., Zheng, Y.F., 2012a. Neoproterozoic Continental Accretion in South China, Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Res., 220-221: 45-64. doi: 10.1016/j.precamres.2012.07.010 [95] Zhang, Y.J., Zhou, X.H., Liao, S.B., et al., 2011. Geological and Geochemical Characteristics and Petrogenesis of the Mafic Rocks from Zhangyuan, Northern Jiangnan Orogen. Geological Journal of China Universities, 17(3): 393-405 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253565629.html [96] Zhang, Y.Z., Wang, Y.J., Fan, W.M., et al., 2012b. Geochronological and Geochemical Constraints on the Metasomatised Source for the Neoproterozoic (~825 Ma) High-Mg Volcanic Rocks from the Cangshuipu Area (Hunan Province) along the Jiangnan Domain and Their Tectonic Implications. Precambrian Res., 220-221: 139-157. doi: 10.1016/j.precamres.2012.07.003 [97] Zhang, Y.Z., Wang, Y.J., Geng, H.Y., et al., 2013. Early Neoproterozoic (~850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and Petrogenetic Constraints from Meta-Basalts. Precambrian Res., 231: 325-342. doi: 10.1016/j.precamres.2013.03.016 [98] Zhang, Y.Z., Wang, Y.J., Zhang, Y.H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Res., 269: 18-30. doi: 10.1016/j.precamres.2015.08.003 [99] Zhao, G.C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Res., 27: 1173-1180. doi: 10.1016/j.gr.2014.09.004 [100] Zhao, G.C., Cawood, P.A., 1999. Tectonothermal Evolution of the Mayuan Assemblage in the Cathaysia Block, New Evidence for Neoproterozoic Collision-Related Assembly of the South China Craton. Am. J. Sci., 299: 309-339. doi: 10.2475/ajs.299.4.309 [101] Zhao, G.C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Res., 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017 [102] Zhao, J.H., Asimow, P.D., 2014. Neoproterozoic Boninite-Series Rocks in South China: A Depleted Mantle Source Modified by Sediment-Derived Melt. Chem. Geol., 388: 98-111. doi: 10.1016/j.chemgeo.2014.09.004 [103] Zhao, J.H., Zhou, M.F., 2008. Neoproterozoic Adakitic Suite at the Northwestern Margin of the Yangtze Block, China, Evidence for Partial Melting of Thickened Lower Crust and Secular Crustal Evolution. Lithos, 104(1-4): 231-248. doi: 10.1016/j.lithos.2007.12.009 [104] Zhao, J.H., Zhou, M.F., 2013. Neoproterozoic High-Mg Basalts Formed by Melting of Ambient Mantle in South China. Precambrian Res., 233: 193-205. doi: 10.1016/j.precamres.2013.04.017 [105] Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China, no Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302. doi: 10.1130/G31701.1 [106] Zhao, J.H., Zhou, M.F., Zheng, J.P., 2013. Constraints from Zircon U-Pb Ages, O and Hf Isotopic Compositions on the Origin of Neoproterozoic Peraluminous Granitoids from the Jiangnan Fold Belt, South China. Contrib. Mineral. Petrol., 166: 1505-1519. doi: 10.1007/S00410-013-0940-z [107] Zheng, Y.F., Wu, R.X., Wu, Y.B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust, Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Res., 163(3-4): 351-383. doi: 10.1016/j.chemgeo.2008.01.004 [108] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China, Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. doi: 10.1016/j.lithos.2006.01.003 [109] Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chem. Geol., 231(1-2): 135-138. doi: 10.1016/j.chemgeo.2006.01.005 [110] Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2005. SHRIMP U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province. Earth Science—Journal of China University of Geosciences, 30(6): 685-691 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200506005 [111] Zhou, J.C., Wang, X.L., Qiu, J.S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China, Coeval Arc Magmatism and Sedimentation. Precambrian Res., 170(1-2): 27-42. doi: 10.1016/j.chemgeo.2008.11.002 [112] Zhou, J.C., Wang, X.L., Qiu, J.S., et al., 2003. Lithogeochemistry of Meso- and Neoproteozoic Mafic-Ultramafic Rocks from Northern Guangxi. Acta Petrologica Sinica, 19(1): 9-18 (in Chinese with English abstract). http://www.researchgate.net/publication/258419192_Lithogeochemistry_of_Meso-_and_Neoproterozoic_mafic-ultramafic_rocks_from_northern_Guangxi [113] Zhou, J.C., Wang, X.L., Qiu, J.S., et al., 2004. Geochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China, Arc or Plume Magmatism?Geochem. J., 38: 139-152. doi: 10.2343/geochemj.38.139 [114] 柏道远, 贾宝华, 刘伟, 等, 2010. 湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束. 地质学报, 84(12): 1715-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201012001.htm [115] 广西壮族自治区地质矿产局, 1985. 广西壮族自治区区域地质志. 北京: 地质出版社. [116] 湖南地质矿产局, 1988. 湖南省区域地质志. 北京: 地质出版社. [117] 江西地质矿产局, 1984. 江西省区域地质志. 北京: 地质出版社. [118] 陈志洪, 郭坤一, 董永观, 等, 2009a. 江山-绍兴拼合带平水段可能存在新元古代早期板片窗岩浆活动, 来自锆石LA-ICP-MS年代学和地球化学的证据. 中国科学(D辑), 39(7): 994-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907011.htm [119] 陈志洪, 邢光福, 郭坤一, 等, 2009b. 浙江平水群角斑岩的成因-锆石U-Pb年龄和Hf同位素制约. 科学通报, 54(5): 610-617. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200905012.htm [120] 丁炳华, 史仁灯, 支霞臣, 等, 2008. 江南造山带存在新元古代~850 Ma俯冲作用, 来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据. 岩石矿物学杂志, 27(5): 375-388. doi: 10.3969/j.issn.1000-6524.2008.05.001 [121] 顾雪祥, 刘建明, Schulz, O., 等, 2003. 江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约. 地球化学, 32(5): 406-426. doi: 10.3321/j.issn:0379-1726.2003.05.002 [122] 郭令智, 施央申, 马瑞士, 1980. 华南大地构造格架和地壳演化. 见: 第26届国际地质大会国际交流学术论文集. 北京: 地质出版社, 109-116. [123] 李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002 [124] 李献华, 周国庆, 赵建新, 等, 1994. 赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义. 地球化学, 23(2): 125-131. doi: 10.3321/j.issn:0379-1726.1994.02.007 [125] 马铁球, 陈立新, 柏道远, 等, 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901007.htm [126] 舒良树, 周国庆, 施央申, 等, 1993. 江南造山带东段高压变质蓝片岩及其地质时代研究. 科学通报, 38(20): 1879-1882. doi: 10.3321/j.issn:0023-074X.1993.20.024 [127] 覃永军, 杜远生, 牟军, 等, 2015. 黔东南地区新元古代下江群的地层年代及其地质意义. 地球科学——中国地质大学学报, 40(7): 1107-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507001.htm [128] 孙海清, 陈俊, 孟德饱, 等, 2009. 湘东北地区冷家溪群大药菇组. 华南地质与矿产, (4): 54-58. doi: 10.3969/j.issn.1007-3701.2009.04.009 [129] 唐晓珊, 黄健中, 郭乐群, 1997. 再论湖南板溪群及其大地构造环境. 湖南地质, 16(4): 219-226. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ704.002.htm [130] 王孝磊, 周金城, 邱检生, 等, 2003. 湖南中-新元古代火山-侵入岩地球化学及成因意义. 岩石学报, 19(1): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301005.htm [131] 王孝磊, 周金城, 邱检生, 等, 2004. 湘东北新元古代强过铝花岗岩的成因: 年代学和地球化学证据. 地质论评, 50(1): 65-76. doi: 10.3321/j.issn:0371-5736.2004.01.009 [132] 张菲菲, 王岳军, 范蔚茗, 等, 2011. 江南隆起带中段新元古代花岗岩锆石U-Pb年代学和Hf同位素组成研究. 大地构造与成矿学, 35(1): 73-84. doi: 10.3969/j.issn.1001-1552.2011.01.008 [133] 张彦杰, 周效华, 廖圣兵, 等, 2011. 江南造山带北缘鄣源基性岩地质-地球化学特征及成因机制. 高校地质学报, 17(3): 393-405. doi: 10.3969/j.issn.1006-7493.2011.03.004 [134] 钟玉芳, 马昌前, 佘振兵, 等, 2005. 江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学. 地球科学——中国地质大学学报, 30(6): 685-691. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506004.htm [135] 周金城, 王孝磊, 邱检生, 等, 2003. 桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学. 岩石学报, 19(1): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301001.htm