Double Difference Relocation and Focal Mechanisms of the Jinggu Ms6.6 Earthquake Sequences in Yunnan Province in 2014
-
摘要: 针对云南景谷地震序列的特征研究尚浅.为讨论2014年10月7日云南景谷Ms6.6地震的发震构造及序列分布, 利用云南测震台网提供的波形数据及观测报告, 采用MSDP软件中的Loc3dSB(川滇)模型对主震进行了精确定位, 然后利用双差定位法对2014年10月7日至31日期间的余震序列进行了重新定位; 并使用P波初动与振幅比联合反演方法计算了震源机制解.结果显示: 序列以走滑型地震为主, 主压应力具有北北东及北东两个优势方向, 序列分布呈北西向线性展布, 主体分布在西北端较浅而东南端较深的线性区域内, 说明地震的初始破裂面可能为北西向节面, 为一次右旋走滑地震; 余震分布还具有清晰的端点及转换区域, 存在显著的分段差异.另外, 东南端的余震在晚期逐渐转移到几何形态明显不同的段落上, 近期地震危险性值得关注.
-
关键词:
- 景谷Ms6.6地震序列 /
- 双差重定位 /
- 震源机制 /
- 天然地震
Abstract: The research of Yunnan Jinggu earthquake is not so intensive. To discuss the seismogenic structure and distribution of sequences of Jinggu Ms6.6 earthquake, 7 October 2014, we relocated the mainshock by using the 3D velocity model of Yunnan and Sichuan province (Loc3dSB), and then relocated the sequences during 7th to 31th October 2014 using the double-difference relocation algorithm, by using and phase data from seismic network of Yunnan province. Furthermore the focal mechanism solutions are derived by using P-wave polarity first-motion and amplitude ratio method. The sequences appear to be strike-slip type mostly, with the principal compressive stress axis trends both NNE and NE directions. And the sequences are distributed dominantly linearly shaped in the NW direction with its southeast endpoint appears deeper than northwest. Both of which indicate that the early major rupture plane is the NW nodal plan, appears to be a right-lateral strike-slip faulting with a small normal component. Meanwhile the linearly shaped distribution and focal mechanisms varies with locations on different segments, with clear end-points and transform segment. Furthermore, aftershocks at SE end-point expand gradually to new geometrically unclear segment, which may indicate another rupture. -
表 1 主震的震源机制解结果
Table 1. The focal mechanism solutions of mainshoc
经度(°E) 纬度(°N) 深度(km) 震级 节面Ⅰ 节面Ⅱ 来源/计算方法 100.49 23.39 19.7 Ms6.6 142° 71° -175° 50° 85° -19° 本文 100.50 23.40 7.0 Ms6.6 149° 79° 174° 240° 84° 12° 地球所,CAP 100.47 23.38 15.0 Mw6.2 140° 75° 160° 235° 71° 16° 地质所,CAP 100.55 23.35 13.7 Mw6.2 329° 81° -177° 239° 87° -9° HRV_CMT 表 2 序列中较大地震的震源机制解
Table 2. The focal mechanism solutions of larger events in sequence
日期 时间 纬度(°N) 经度(°E) 震级 节面Ⅰ(°) 节面Ⅱ(°) 倾角 走向 滑动角 倾角 走向 滑动角 20141007 21∶49∶39 23.38 100.47 6.6 84.92 50.13 -19.37 70.71 141.91 -174.62 20141007 22∶22∶40 23.38 100.48 3.0 24.81 202.19 35.42 75.92 79.35 110.64 20141007 22∶38∶50 23.35 100.52 4.7 63.94 92.96 -44.31 51.13 206.17 -145.65 20141008 00∶38∶47 23.47 100.45 3.3 83.59 266.22 39.57 50.73 170.95 171.71 20141008 03∶01∶13 23.35 100.50 4.7 68.37 53.30 28.21 63.93 312.12 155.77 20141008 07∶30∶03 23.38 100.48 3.5 50.14 175.22 -56.60 50.15 309.41 -123.40 20141008 08∶36∶36 23.45 100.58 2.4 56.36 41.13 -71.89 37.69 190.57 -115.04 20141008 09∶36∶20 23.43 100.40 3.8 48.44 241.16 -30.79 67.48 352.73 -134.10 20141008 10∶28∶51 23.35 100.45 3.8 72.77 314.85 58.43 35.53 199.11 149.36 20141008 10∶54∶59 23.37 100.50 3.4 60.50 48.49 -5.73 85.01 141.32 -150.38 20141009 00∶39∶11 23.40 100.48 3.0 55.61 38.34 -6.93 84.29 132.27 -145.41 20141008 13∶57∶22 23.44 100.57 3.4 72.61 240.60 -42.19 50.14 345.76 -157.09 20141009 04∶50∶24 23.38 100.48 3.4 70.71 55.52 5.38 84.92 323.74 160.63 20141009 05∶03∶25 23.35 100.50 3.4 73.33 56.04 -31.23 60.22 155.91 -160.70 20141009 05∶50∶55 23.48 100.43 3.0 57.20 277.53 32.73 62.97 168.33 142.54 20141009 07∶24∶33 23.43 100.45 3.1 83.72 32.59 13.65 76.43 301.07 173.54 20141009 13∶32∶02 23.37 100.42 3.3 85.47 226.43 -64.92 25.46 326.01 -169.41 20141009 13∶41∶06 23.43 100.45 2.8 35.31 47.77 -7.10 85.90 143.57 -125.10 20141009 15∶53∶25 23.47 100.43 2.8 48.36 304.30 18.88 76.01 201.50 136.78 20141009 18∶02∶42 23.35 100.50 3.0 71.25 227.34 -36.01 56.17 330.49 -157.24 20141009 21∶59∶24 23.37 100.45 3.8 78.69 73.67 -33.34 57.39 171.02 -166.54 20141010 00∶17∶52 23.38 100.47 4.0 82.56 283.06 -29.15 61.12 17.19 -171.50 20141010 07∶27∶11 23.35 100.50 3.3 82.95 45.93 -44.56 45.87 142.82 -170.15 20141010 11∶27∶05 23.42 100.45 3.1 46.92 178.66 -14.51 79.46 278.68 -135.99 20141010 11∶45∶44 23.42 100.45 3.2 67.48 230.77 -11.15 79.71 325.09 -157.09 20141010 11∶59∶53 23.42 100.45 3.0 87.50 54.33 -29.91 60.12 145.77 -177.12 20141011 11∶24∶24 23.35 100.48 3.3 90.00 272.20 35.00 55.00 182.20 180.00 20141011 11∶47∶24 23.33 100.52 3.4 64.34 63.69 16.10 75.52 326.57 153.43 20141011 14∶05∶12 23.45 100.43 5.1 83.72 71.62 -13.65 76.43 163.14 -173.54 20141011 14∶08∶11 23.48 100.45 3.5 60.22 67.99 -19.30 73.33 167.86 -148.77 20141011 14∶24∶24 23.50 100.43 3.5 61.98 273.38 -21.88 70.79 14.06 -150.17 20141012 12∶29∶07 23.32 100.48 2.8 56.36 279.33 10.27 81.46 183.60 145.93 20141012 17∶00∶40 23.33 100.53 3.5 84.28 255.20 34.59 55.61 161.27 173.06 20141013 09∶57∶02 23.42 100.47 2.8 63.94 75.04 -24.23 68.37 176.22 -151.80 20141015 03∶08∶39 23.38 100.47 3.6 81.69 48.34 18.26 71.94 315.61 171.26 20141015 07∶11∶44 23.43 100.47 3.2 86.47 70.60 -44.89 45.22 164.11 -175.02 20141015 13∶44∶26 23.35 100.48 3.0 48.36 31.00 -18.88 76.01 133.80 -136.78 20141016 09∶03∶37 23.37 100.43 2.9 74.24 73.25 -19.66 71.11 168.79 -163.32 20141016 11∶25∶27 23.37 100.48 3.6 55.61 73.46 -6.93 84.29 167.39 -145.41 20141016 11∶51∶19 23.33 100.47 4.1 42.06 266.40 31.11 69.75 152.27 127.69 20141016 11∶51∶41 23.38 100.70 3.1 71.11 258.22 47.21 46.03 148.94 153.26 20141016 18∶46∶23 23.38 100.45 3.5 65.82 51.04 -18.32 73.34 148.76 -154.69 20141017 14∶20∶25 23.37 100.43 3.7 68.53 251.19 -57.50 38.29 11.07 -143.80 20141017 14∶53∶10 23.37 100.43 3.7 54.37 254.37 19.53 74.23 152.70 142.75 20141017 15∶50∶24 23.37 100.43 3.4 69.30 259.11 22.21 69.29 160.90 157.80 20141018 23∶05∶55 23.35 100.50 4.7 55.61 47.12 -6.93 84.29 141.05 -145.41 20141019 02∶12∶24 23.35 100.50 3.7 65.41 234.99 -4.63 85.79 326.92 -155.34 20141019 10∶16∶56 23.40 100.48 3.1 76.00 215.61 -43.22 48.36 318.42 -161.11 20141020 22∶51∶13 23.48 100.42 3.4 86.79 74.27 -39.89 50.19 166.95 -175.82 20141020 23∶21∶32 23.43 100.45 3.4 65.60 228.38 -32.73 60.50 333.25 -151.66 20141021 01∶18∶05 23.48 100.45 2.8 81.46 268.60 34.07 56.36 172.87 169.72 20141023 03∶20∶27 23.37 100.50 3.1 75.92 233.80 5.24 84.92 142.52 165.86 表 3 不同段上小震震源位置计算得到的断层面走向和倾角
Table 3. The strike and dip angles
位置 走向 倾角 1区 349° 85° 2区 339° 86° 3区 328° 87° 4区 55° 87° -
[1] Bai Z.M., Wang C.Y., 2003. Tomographic Investigation of the Upper Crustal Structure and Seismotectonic Environments in Yunnan Province. Acta Seismologica Sinica, 25(2): 117-127 (in Chinese with English abstract). doi: 10.1007/s11589-003-0015-8 [2] Bai Z.M., Wang C.Y. , 2004. Tomography research of the Zhefang-Binchuan and Menglian-Malong Wide- Angle Seismic Profiles in Yunnan Province. Chinese J. Geophys. , 47(2): 257-267 (in Chinese with English abstract). http://www.oalib.com/paper/1566940 [3] Balfour N.J., Cassidy J.F., Dosso S.E. , 2012. Identifying Active Structures Using Double-Difference Earthquake Relocations in Southwest British Columbia and the San Juan Islands, Washington. Bull. Seism. Soc. Am. , 102(2): 639-649. doi: 10.1785/0120110056 [4] Deng Q.D., Zhang P.Z., Ran Y.K., et al. 2002. Basic Characteristics of Active Tectonics of China. Sci. China Ser D. , 32(12): 1020-1030. doi: 10.1360/03yd9032 [5] Fang L.H., Wu J.P., Zhang T.Z., et al. 2011. Relocation of Mainshock and Aftershocks of the 2011 Yingjiang MS5.8 Earthquake in Yunnan. Acta Seismologica Sinica, 33(2): 262-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201102014.htm [6] Fang L.H., Wu J.P., Wang W.L., et al. 2013. Relocation of Mainshock and Aftershock Sequences of Ms7.0 Sichuan Lushan Earthquake. Chin. Sci. Bull. , 58(28): 3451-3459. doi:10.1007/s11434-01 [7] Gu J.C., Xie X.B., Zhao, Li. , 1982. The Distribution of Larger Aftershocks and Its Theoretical Explanation. Acta Seismologica Sinica, 4(4): 380-388 (in Chinese with English abstract). [8] Guan Y., Wang A.J., Li P.W., et al. 2006. Characteristics of the Middle Axial Tectonic Belt in the Lanping-Simao Basin, Western Yunnan, and Its Research Significance. Geology in China, 33(4): 832-841 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200604013.htm [9] Hardebeck J.L., Shearer P.M. , 2002. A New Method for Determining First Motion Focal Mechanisms. Bull. Seism. Soc. Am. , 92(6): 2264-2276. doi: 10.1785/0120010200 [10] Hardebeck J.L., Shearer P.M. , 2003. Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes. Bull. Seism. Soc. Am. , 93(6): 2434-2444. doi: 10.1785/0120020236 [11] Hu H.X., Gao S.Y. , 1993. The Investigation of Fine Velocity Structure of the Basement Layer of Earth's Crust in Western Yunnan Region. Earthquake Research in China, 9(4): 356-363 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD199304008.htm [12] Huang Y. , 2008. Study on the Application and Development of the DD Algorithm with Cross Correlation of Waveform Data in the Earthquake Location. Recent Developments in World Seismology, 4: 29-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJZT200804005.htm [13] Li L., Liu J., Fu H. , 2011. Accurate Location of Small- and Medium- Earthquakes in Lancang And Gengma Area. Journal of Seismological Research, 34(4): 482-487 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201104014.htm [14] Li Y.H., Wu Q.J., Tian X.B., et al. 2009. Crustal Structure in the Yunnan Region Determined by Modeling Receiver Functions. Chinese J. Geophys. , 52(1): 67-80 (in Chinese with English abstract). http://www.oalib.com/paper/1568012 [15] Liang S.H., Li Y.M., Shu P.Y., et al. 1984. On the Determining of Source Parameters of Small Earthquakes by Using Amplitude Ratios of P and S from Regional Network Observations. Chinese J. Geophys. , 27(3): 249-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD198504019.htm [16] Lin Z.Y., Hu H.X., Gao S.Y., et al. 1993. A Study on Velocity Structure of Crust and Upper Mantle in Western Yunnan. Acta Seismologica Sinica, 15(4): 427-440 (in Chinese with English abstract). [17] Liu J., Zheng S.H., Kang Y., et al. 2004. The Focal Mechanism Determinations of Moderate-Small Earthquakes Using the First Motion and Amplitude Ratio of P and S Wave. Earthquake, 24(1): 19-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN200401003.htm [18] Lü, P., Ding Z.F., Zhu L.P. , 2011. Application of Double Difference Relocation Technique to Aftershocks of 2008 Wenchuan Earthquake Using Waveform Cross Correlation. Acta Seismologica Sinica, 33(4): 407-419 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXB201104002.htm [19] Kisslinger C., Bowman J.R., Koch K. , 1981. Procedures for Computing Focal Mechanisms from Local (SV/ P)Z Data. Bull. Seism. Soc. Am. , 71(6): 1719-1729. doi: 10.1785/BSSA0710061719 [20] Snoke J.A., Munsey J.W., Teague A.G., et al. 1984. A Program for Focal Mechanism Determination by Combined Use of Polarity and SV-P Amplitude Ratio Data. Earthquake Notes, 55(3): 15. http://ci.nii.ac.jp/naid/10009508266 [21] Snoke J.A. , 1989. Earthquake Mechanism. In: James D.E., ed., Encyclopedia of Geophysics. Van Nostrand Reinhold Company, New York, 239-245. [22] Waldhauser F., Ellsworth W.L. , 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bull. Seism. Soc. Am. , 90(6): 1353-1368. doi: 10.1785/0120000006 [23] Waldhauser F., Ellsworth W.L. , 2002. Fault Structure and Mechanics of the Hayward Fault, California, from Double-Difference Earthquake Locations. J. Geophys. Res. , 107(B3): ESE 3-1-3-15. doi: 10.7916/d8xd0zr0 [24] Wan Y.G., Shen Z.K., Diao G.L., et al. 2008. Analgorithm of Fault Parameter Determination Using Distribution of Small Earthquakes and Parameters of Regional Stress Field and Its Application to Tangshan Earthquake Sequence. Chinese J. Geophys. , 51(3): 793-804 (in Chinese with English abstract). http://www.oalib.com/paper/1568990 [25] Wang C.Y., Mooney W.D., Wang X.L., et al. 2002. A Study on 3-D Velocity Structure of Crust and Upper Mantle in Sichuan-Yunan Region, China. Acta Seismologica Sinica, 15(1): 1-17. doi:10.1007/2Fs11589-002-0042-x [26] Wang F.Y., Pan S.Z., Liu L., et al. 2014. Wide Angle Seismic Exploration of Yuxi-Lincang Profile—The Research of Crustal Structure of the Red River Fault Zone and Southern Yunnan. Chinese J. Geophys. , 57(10): 3247-3258 (in Chinese with English abstract). [27] Wang W.L., Wu J.P., Fang L.H., et al. 2014. Double Difference Location of the Ludian MS6.5 Earthquake Sequences in Yunnan Province in 2014. Chinese J. Geophys. , 57(9): 3042-3051 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201409030.htm [28] Wen X.Z., Du F., Yi G.X., et al. 2013. Earthquake Potential of the Zhaotong and Lianfeng Fault Zones of the Eastern Sichuan-Yunnan Border Region. Chinese J. Geophys. , 56(10): 3361-3372 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201310012.htm [29] Xu Y., Yang, X.T., Liu J.H. , 2013. Tomographic Study of Crustal Velocity Structures in the Yunnan Region Southwest China. Chinese J. Geophys. , 56(6): 1904-1914 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013AGUFM.S33A2398Z [30] Yang Z.X., Yu X.W., Zheng Y.J., et al. 2004. Earthquake Relocation and 3-Dimensional Crustal Structure of P-wave Velocity in Central-Western China. Acta Seismologica Sinica, 17(1): 20-30. doi: 10.1007/BF03191391 [31] Yi G.X., Long F., Zhang Z.W. , 2012. Spatial and Temporal Variation of Focal Mechanisms for Aftershocks of the 2008 Ms8.0 Wenchuan Earthquake. Chinese J. Geophys. , 55(4): 1213-1227 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011agufm.s31e2289y [32] Zeng X.F., Luo Y., Han L.B., et al. 2013. The Lushan MS7.0 Earthquake on 20 April 2013: A High Angle Thrust Event. Chinese J. Geophys. , 56(4): 1418-1424 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201304039.htm [33] Zhang G.W., Lei J.S., Liang S.S., et al. 2014. Relocations and Focal Mechanism Solutions of the 3 August 2014 Ludian, Yunnan MS6.5 Earthquake Sequence. Chinese J. Geophys., 57(9): 3018-3027(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201409027.htm [34] Zhang Y., Feng W.P., Chen Y.T., et al. 2012. The 2009 L'Aquila MW6.3 Earthquake: A New Technique to Locate the Hypocentre in the Joint Inversion of Earthquake Rupture Process. Geophys. J. Int. , 191(3): 1417-1426. doi: 10.1111/j.1365-246X.2012.05694.x [35] Zhang Z., Zhao B., Zhang X., et al. 2006. Crustal Structure Beneath the Wide2Angle Seismic Profile between Simao and Zhongdian in Yunnan. Chinese J. Geophys. , 49(5): 1377-1384 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=22708329 [36] Zhang Z.J., Bai Z.M., Wang C.Y., et al. 2005. Crustal Structure of Gondwana- and Yangtze-Typed Blocks: An Example by Wide-Angle Seismic Profile from Menglian to Malong in Western Yunnan. Sci. China: Earth Sci. , 48(11): 1828-1836. doi: 10.1360/03yd0547 [37] Zhao B., Gao Y., Huang, Z.B., et al. 2013. Double Difference Relocation, Focal Mechanism and Stress Inversion of Lushan MS7.0 Earthquake Sequence. Chinese J. Geophys. , 56(10): 3385-3395 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWX201310014.htm [38] Zhao L.S., Helmberger D.V. , 1994. Source Estimation Techniques from Broadband Regional Seismograms. Bull. Seism. Soc. Am. , 84(1): 91-104. [39] Zhu L.P., Helmberger D.V. , 1996. Advancement in Source Estimation Techniques Using Broadband Regional Seismograms. Bull. Seism. Soc. Am. , 86(5): 1634-1641. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=86/5/1634 [40] 白志明, 王椿镛. 2003. 云南地区上部地壳结构和地震构造环境的层析成像研究. 地震学报, 25(2): 117-127. doi: 10.3321/j.issn:0253-3782.2003.02.001 [41] 白志明, 王椿镛. 2004. 云南遮放-宾川和孟连-马龙宽角地震剖面的层析成像研究. 地球物理学报, 47(2): 257-267. doi: 10.3321/j.issn:0001-5733.2004.02.012 [42] 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征. 中国科学-地球科学, 32(12): 1020-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905007.htm [43] 房立华, 吴建平, 张天中, 等. 2011. 2011年云南盈江Ms5.8地震及其余震序列重定位. 地震学报, 33(2): 262-227. doi: 10.3969/j.issn.0253-3782.2011.02.013 [44] 房立华, 吴建平, 王未来, 等. 2013. 四川芦山Ms7.0级地震及其余震序列重定位. 科学通报, 58. [45] 谷继成, 谢小碧, 赵莉. 1982. 强余震的空间分布特征及其理论解释. 地震学报, 4(4): 380-388. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198204005.htm [46] 管烨, 王安建, 李朋武, 等. 2006. 云南兰坪-思茅盆地中轴构造带的特征及其研究意义. 中国地质, 33(4): 832-841. doi: 10.3969/j.issn.1000-3657.2006.04.013 [47] 胡鸿翔, 高世玉. 1993. 滇西地区地壳浅部基底速度细结构的研究. 中国地震, 9(4): 356-363. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199304008.htm [48] 黄媛. 2008. 结合波形互相关技术的双差算法在地震定位中的应用探讨. 国际地震动态, 4: 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200804005.htm [49] 李丽, 刘剑, 付虹. 2011. 澜沧-耿马地区中小地震精确定位研究. 地震研究, 34(4): 482-487. doi: 10.3969/j.issn.1000-0666.2011.04.013 [50] 李永华, 吴庆举, 田小波, 等. 2009. 用接收函数方法研究云南及其邻区地壳上地幔结构. 地球物理学报, 52(1): 67-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200901010.htm [51] 梁尚鸿, 李幼铭, 束沛镒, 等. 1984. 利用区域地震台网P、S振幅比资料测定小震震源参数. 地球物理学报, 27(3): 249-256. doi: 10.3321/j.issn:0001-5733.1984.03.005 [52] 林中洋, 胡鸿翔, 高世玉, 等. 1993. 滇西地区地壳上地幔速度结构特征的研究. 地震学报, 15(4): 427-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199304003.htm [53] 刘杰, 郑斯华, 康英, 等. 2004. 利用P波和S波的初动和振幅比计算中小地震的震源机制解. 地震, 24(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200401003.htm [54] 吕鹏, 丁志峰, 朱露培. 2011. 结合波形互相关的双差定位方法在2008年汶川地震余震序列中的应用. 地震学报, 33(4): 407-419. doi: 10.3969/j.issn.0253-3782.2011.04.001 [55] 万永革, 沈正康, 刁桂苓, 等. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用. 地球物理学报, 51(3): 793-804. doi: 10.3321/j.issn:0001-5733.2008.03.020 [56] 王椿镛, Mooney W.D., 王溪莉, 等. 2002. 川滇地区地壳上地幔三维速度结构研究. 地震学报, 24(1): 1-16. doi: 10.3321/j.issn:0253-3782.2002.01.001 [57] 王夫运, 潘素珍, 刘兰, 等. 2014. 玉溪-临沧剖面宽角地震探测——红河断裂带及滇南地壳结构研究. 地球物理学报, 57(10): 3247-3258. doi: 10.6038/cjg20141013 [58] 王未来, 吴建平, 房立华, 等. 2014. 2014年云南鲁甸M_S6.5地震序列的双差定位. 地球物理学报, 57(9): 2042-3051. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201409030.htm [59] 闻学泽, 杜方, 易桂喜, 等. 2013. 川滇交界东段昭通、莲峰断裂带的地震危险背景. 地球物理学报, 56(10): 3361-3372. doi: 10.6038/cjg20131012 [60] 胥颐, 杨晓涛, 刘建华. 2013. 云南地区地壳速度结构的层析成像研究. 地球物理学报, 56(6): 1904-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306014.htm [61] 杨智娴, 于湘伟, 郑月娟, 等. 2004. 中国中西部地区地震的重新定位和三维地壳速度结构. 地震学报, 26(1): 19-29. doi: 10.3321/j.issn:0253-3782.2004.01.003 [62] 易桂喜, 龙锋, 张致伟. 2012. 汶川Ms8.0地震余震震源机制时空分布特征. 地球物理学报, 55(4): 1213-1227. doi: 10.6038/j.issn.0001-5733.2012.04.017 [63] 曾祥方, 罗艳, 韩立波, 等. 2013. 2013年4月20日四川芦山MS7.0地震: 一个高角度逆冲地震. 地球物理学报, 56(4): 1418-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304039.htm [64] 张广伟, 雷建设, 梁姗姗, 等. 2014. 2014年8月3日云南鲁甸MS6.5级地震序列重定位与震源机制研究. 地球物理学报, 57(9): 3018-3027. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201409027.htm [65] 张智, 赵兵, 张晰, 等. 2006. 云南思茅-中甸地震剖面的地壳结构. 地球物理学报, 49(5): 1377-1384. doi: 10.3321/j.issn:0001-5733.2006.05.017 [66] 张中杰, 白志明, 王椿镛, 等. 2005. 冈瓦纳型和扬子型地块地壳结构: 以滇西孟连-马龙宽角反射剖面为例. 中国科学: D辑, 35(5): 387-392. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200505000.htm [67] 赵博, 高原, 黄志斌, 等. 2013. 四川芦山Ms7.0地震余震序列双差定位、震源机制及应力场反演. 地球物理学报, 56(10): 3385-3395. doi: 10.6038/cjg20131014