• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    2014年云南景谷Ms6.6地震序列重定位与震源机制解特征

    徐甫坤 刘自凤 张竹琪 李静 刘丽芳 苏有锦

    徐甫坤, 刘自凤, 张竹琪, 李静, 刘丽芳, 苏有锦, 2015. 2014年云南景谷Ms6.6地震序列重定位与震源机制解特征. 地球科学, 40(10): 1741-1754. doi: 10.3799/dqkx.2015.156
    引用本文: 徐甫坤, 刘自凤, 张竹琪, 李静, 刘丽芳, 苏有锦, 2015. 2014年云南景谷Ms6.6地震序列重定位与震源机制解特征. 地球科学, 40(10): 1741-1754. doi: 10.3799/dqkx.2015.156
    Xu Fukun, Liu Zifeng, Zhang Zhuqi, Li Jing, Liu Lifang, Su Youjin, 2015. Double Difference Relocation and Focal Mechanisms of the Jinggu Ms6.6 Earthquake Sequences in Yunnan Province in 2014. Earth Science, 40(10): 1741-1754. doi: 10.3799/dqkx.2015.156
    Citation: Xu Fukun, Liu Zifeng, Zhang Zhuqi, Li Jing, Liu Lifang, Su Youjin, 2015. Double Difference Relocation and Focal Mechanisms of the Jinggu Ms6.6 Earthquake Sequences in Yunnan Province in 2014. Earth Science, 40(10): 1741-1754. doi: 10.3799/dqkx.2015.156

    2014年云南景谷Ms6.6地震序列重定位与震源机制解特征

    doi: 10.3799/dqkx.2015.156
    基金项目: 

    云南省地震局10项重点工程"前震及其识别技术研究" 2014020101

    详细信息
      作者简介:

      徐甫坤(1986- ) , 男, 博士, 主要从事数字地震学及地震活动性研究.E-mail:flowwwind@gmail.com

    • 中图分类号: P315.3

    Double Difference Relocation and Focal Mechanisms of the Jinggu Ms6.6 Earthquake Sequences in Yunnan Province in 2014

    • 摘要: 针对云南景谷地震序列的特征研究尚浅.为讨论2014年10月7日云南景谷Ms6.6地震的发震构造及序列分布, 利用云南测震台网提供的波形数据及观测报告, 采用MSDP软件中的Loc3dSB(川滇)模型对主震进行了精确定位, 然后利用双差定位法对2014年10月7日至31日期间的余震序列进行了重新定位; 并使用P波初动与振幅比联合反演方法计算了震源机制解.结果显示: 序列以走滑型地震为主, 主压应力具有北北东及北东两个优势方向, 序列分布呈北西向线性展布, 主体分布在西北端较浅而东南端较深的线性区域内, 说明地震的初始破裂面可能为北西向节面, 为一次右旋走滑地震; 余震分布还具有清晰的端点及转换区域, 存在显著的分段差异.另外, 东南端的余震在晚期逐渐转移到几何形态明显不同的段落上, 近期地震危险性值得关注.

       

    • 图  1  重定位使用的数据

      a.台站及序列分布; b.P、S波震相走时

      Fig.  1.  Data used in relocation

      图  2  采用Loc3dSB(川滇)重定位后的景谷Ms6.6主震位置及使用的台站

      Fig.  2.  The relocated epicenter of Jinggu Ms6.6 earthquake after relocation using Loc3dSB and stations used

      图  3  重定位后地震序列震源深度分布

      Fig.  3.  The focal depth distribution of the earthquake sequences after relocation

      图  4  采用双差定位法得到的序列震中分布

      a.序列在水平面上的分布;b.沿AA′剖面的投影;c.沿BB′剖面的投影;图中的六角形和圆圈分别表示重定位后的主震和余震序列

      Fig.  4.  Distributions of the sequences from double-difference relocation algorithm

      图  5  地震沿剖面的时间演化特征

      a.AA′剖面;b.BB′剖面

      Fig.  5.  The temporal variations of earthquake distribution along profiles

      图  6  序列早期演化特征

      a.震源深度随时间的演化;b.余震震中随时间的演化

      Fig.  6.  The early temporal variations

      图  7  不同机构给出景谷地震位置及震源机制解

      地形数据据ASTER GDEM,参考断层据云南省地震局(2014)

      Fig.  7.  The focal mechanism solutions of mainshock

      图  8  序列的震源机制解及M-t

      Fig.  8.  The focal mechanisms and M-t diagram of sequences

      图  9  序列的震源机制解、P轴玫瑰图及在深度剖面上的投影

      Fig.  9.  The focal mechanisms, rose diagrams of P-axis and the distributions of focal depth profile of the sequences

      图  10  主震破裂滑动量分布及地震在破裂面上的投影

      箭头指向代表滑移方向,箭头长度和背景颜色均代表滑移量;圆圈代表余震,圆圈大小代表震级

      Fig.  10.  The slip distribution of main shock and the earthquakes projected on the fault plane

      图  11  2014年10月7日至2015年4月30日序列分布

      Fig.  11.  Distribution of the sequence from October 1th, 2014 to April 30th, 2015

      表  1  主震的震源机制解结果

      Table  1.   The focal mechanism solutions of mainshoc

      经度(°E) 纬度(°N) 深度(km) 震级 节面Ⅰ 节面Ⅱ 来源/计算方法
      100.49 23.39 19.7 Ms6.6 142° 71° -175° 50° 85° -19° 本文
      100.50 23.40 7.0 Ms6.6 149° 79° 174° 240° 84° 12° 地球所,CAP
      100.47 23.38 15.0 Mw6.2 140° 75° 160° 235° 71° 16° 地质所,CAP
      100.55 23.35 13.7 Mw6.2 329° 81° -177° 239° 87° -9° HRV_CMT
      下载: 导出CSV

      表  2  序列中较大地震的震源机制解

      Table  2.   The focal mechanism solutions of larger events in sequence

      日期 时间 纬度(°N) 经度(°E) 震级 节面Ⅰ(°) 节面Ⅱ(°)
      倾角 走向 滑动角 倾角 走向 滑动角
      20141007 21∶49∶39 23.38 100.47 6.6 84.92 50.13 -19.37 70.71 141.91 -174.62
      20141007 22∶22∶40 23.38 100.48 3.0 24.81 202.19 35.42 75.92 79.35 110.64
      20141007 22∶38∶50 23.35 100.52 4.7 63.94 92.96 -44.31 51.13 206.17 -145.65
      20141008 00∶38∶47 23.47 100.45 3.3 83.59 266.22 39.57 50.73 170.95 171.71
      20141008 03∶01∶13 23.35 100.50 4.7 68.37 53.30 28.21 63.93 312.12 155.77
      20141008 07∶30∶03 23.38 100.48 3.5 50.14 175.22 -56.60 50.15 309.41 -123.40
      20141008 08∶36∶36 23.45 100.58 2.4 56.36 41.13 -71.89 37.69 190.57 -115.04
      20141008 09∶36∶20 23.43 100.40 3.8 48.44 241.16 -30.79 67.48 352.73 -134.10
      20141008 10∶28∶51 23.35 100.45 3.8 72.77 314.85 58.43 35.53 199.11 149.36
      20141008 10∶54∶59 23.37 100.50 3.4 60.50 48.49 -5.73 85.01 141.32 -150.38
      20141009 00∶39∶11 23.40 100.48 3.0 55.61 38.34 -6.93 84.29 132.27 -145.41
      20141008 13∶57∶22 23.44 100.57 3.4 72.61 240.60 -42.19 50.14 345.76 -157.09
      20141009 04∶50∶24 23.38 100.48 3.4 70.71 55.52 5.38 84.92 323.74 160.63
      20141009 05∶03∶25 23.35 100.50 3.4 73.33 56.04 -31.23 60.22 155.91 -160.70
      20141009 05∶50∶55 23.48 100.43 3.0 57.20 277.53 32.73 62.97 168.33 142.54
      20141009 07∶24∶33 23.43 100.45 3.1 83.72 32.59 13.65 76.43 301.07 173.54
      20141009 13∶32∶02 23.37 100.42 3.3 85.47 226.43 -64.92 25.46 326.01 -169.41
      20141009 13∶41∶06 23.43 100.45 2.8 35.31 47.77 -7.10 85.90 143.57 -125.10
      20141009 15∶53∶25 23.47 100.43 2.8 48.36 304.30 18.88 76.01 201.50 136.78
      20141009 18∶02∶42 23.35 100.50 3.0 71.25 227.34 -36.01 56.17 330.49 -157.24
      20141009 21∶59∶24 23.37 100.45 3.8 78.69 73.67 -33.34 57.39 171.02 -166.54
      20141010 00∶17∶52 23.38 100.47 4.0 82.56 283.06 -29.15 61.12 17.19 -171.50
      20141010 07∶27∶11 23.35 100.50 3.3 82.95 45.93 -44.56 45.87 142.82 -170.15
      20141010 11∶27∶05 23.42 100.45 3.1 46.92 178.66 -14.51 79.46 278.68 -135.99
      20141010 11∶45∶44 23.42 100.45 3.2 67.48 230.77 -11.15 79.71 325.09 -157.09
      20141010 11∶59∶53 23.42 100.45 3.0 87.50 54.33 -29.91 60.12 145.77 -177.12
      20141011 11∶24∶24 23.35 100.48 3.3 90.00 272.20 35.00 55.00 182.20 180.00
      20141011 11∶47∶24 23.33 100.52 3.4 64.34 63.69 16.10 75.52 326.57 153.43
      20141011 14∶05∶12 23.45 100.43 5.1 83.72 71.62 -13.65 76.43 163.14 -173.54
      20141011 14∶08∶11 23.48 100.45 3.5 60.22 67.99 -19.30 73.33 167.86 -148.77
      20141011 14∶24∶24 23.50 100.43 3.5 61.98 273.38 -21.88 70.79 14.06 -150.17
      20141012 12∶29∶07 23.32 100.48 2.8 56.36 279.33 10.27 81.46 183.60 145.93
      20141012 17∶00∶40 23.33 100.53 3.5 84.28 255.20 34.59 55.61 161.27 173.06
      20141013 09∶57∶02 23.42 100.47 2.8 63.94 75.04 -24.23 68.37 176.22 -151.80
      20141015 03∶08∶39 23.38 100.47 3.6 81.69 48.34 18.26 71.94 315.61 171.26
      20141015 07∶11∶44 23.43 100.47 3.2 86.47 70.60 -44.89 45.22 164.11 -175.02
      20141015 13∶44∶26 23.35 100.48 3.0 48.36 31.00 -18.88 76.01 133.80 -136.78
      20141016 09∶03∶37 23.37 100.43 2.9 74.24 73.25 -19.66 71.11 168.79 -163.32
      20141016 11∶25∶27 23.37 100.48 3.6 55.61 73.46 -6.93 84.29 167.39 -145.41
      20141016 11∶51∶19 23.33 100.47 4.1 42.06 266.40 31.11 69.75 152.27 127.69
      20141016 11∶51∶41 23.38 100.70 3.1 71.11 258.22 47.21 46.03 148.94 153.26
      20141016 18∶46∶23 23.38 100.45 3.5 65.82 51.04 -18.32 73.34 148.76 -154.69
      20141017 14∶20∶25 23.37 100.43 3.7 68.53 251.19 -57.50 38.29 11.07 -143.80
      20141017 14∶53∶10 23.37 100.43 3.7 54.37 254.37 19.53 74.23 152.70 142.75
      20141017 15∶50∶24 23.37 100.43 3.4 69.30 259.11 22.21 69.29 160.90 157.80
      20141018 23∶05∶55 23.35 100.50 4.7 55.61 47.12 -6.93 84.29 141.05 -145.41
      20141019 02∶12∶24 23.35 100.50 3.7 65.41 234.99 -4.63 85.79 326.92 -155.34
      20141019 10∶16∶56 23.40 100.48 3.1 76.00 215.61 -43.22 48.36 318.42 -161.11
      20141020 22∶51∶13 23.48 100.42 3.4 86.79 74.27 -39.89 50.19 166.95 -175.82
      20141020 23∶21∶32 23.43 100.45 3.4 65.60 228.38 -32.73 60.50 333.25 -151.66
      20141021 01∶18∶05 23.48 100.45 2.8 81.46 268.60 34.07 56.36 172.87 169.72
      20141023 03∶20∶27 23.37 100.50 3.1 75.92 233.80 5.24 84.92 142.52 165.86
      下载: 导出CSV

      表  3  不同段上小震震源位置计算得到的断层面走向和倾角

      Table  3.   The strike and dip angles

      位置 走向 倾角
      1区 349° 85°
      2区 339° 86°
      3区 328° 87°
      4区 55° 87°
      下载: 导出CSV
    • [1] Bai Z.M., Wang C.Y., 2003. Tomographic Investigation of the Upper Crustal Structure and Seismotectonic Environments in Yunnan Province. Acta Seismologica Sinica, 25(2): 117-127 (in Chinese with English abstract). doi: 10.1007/s11589-003-0015-8
      [2] Bai Z.M., Wang C.Y. , 2004. Tomography research of the Zhefang-Binchuan and Menglian-Malong Wide- Angle Seismic Profiles in Yunnan Province. Chinese J. Geophys. , 47(2): 257-267 (in Chinese with English abstract). http://www.oalib.com/paper/1566940
      [3] Balfour N.J., Cassidy J.F., Dosso S.E. , 2012. Identifying Active Structures Using Double-Difference Earthquake Relocations in Southwest British Columbia and the San Juan Islands, Washington. Bull. Seism. Soc. Am. , 102(2): 639-649. doi: 10.1785/0120110056
      [4] Deng Q.D., Zhang P.Z., Ran Y.K., et al. 2002. Basic Characteristics of Active Tectonics of China. Sci. China Ser D. , 32(12): 1020-1030. doi: 10.1360/03yd9032
      [5] Fang L.H., Wu J.P., Zhang T.Z., et al. 2011. Relocation of Mainshock and Aftershocks of the 2011 Yingjiang MS5.8 Earthquake in Yunnan. Acta Seismologica Sinica, 33(2): 262-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201102014.htm
      [6] Fang L.H., Wu J.P., Wang W.L., et al. 2013. Relocation of Mainshock and Aftershock Sequences of Ms7.0 Sichuan Lushan Earthquake. Chin. Sci. Bull. , 58(28): 3451-3459. doi:10.1007/s11434-01
      [7] Gu J.C., Xie X.B., Zhao, Li. , 1982. The Distribution of Larger Aftershocks and Its Theoretical Explanation. Acta Seismologica Sinica, 4(4): 380-388 (in Chinese with English abstract).
      [8] Guan Y., Wang A.J., Li P.W., et al. 2006. Characteristics of the Middle Axial Tectonic Belt in the Lanping-Simao Basin, Western Yunnan, and Its Research Significance. Geology in China, 33(4): 832-841 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200604013.htm
      [9] Hardebeck J.L., Shearer P.M. , 2002. A New Method for Determining First Motion Focal Mechanisms. Bull. Seism. Soc. Am. , 92(6): 2264-2276. doi: 10.1785/0120010200
      [10] Hardebeck J.L., Shearer P.M. , 2003. Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes. Bull. Seism. Soc. Am. , 93(6): 2434-2444. doi: 10.1785/0120020236
      [11] Hu H.X., Gao S.Y. , 1993. The Investigation of Fine Velocity Structure of the Basement Layer of Earth's Crust in Western Yunnan Region. Earthquake Research in China, 9(4): 356-363 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD199304008.htm
      [12] Huang Y. , 2008. Study on the Application and Development of the DD Algorithm with Cross Correlation of Waveform Data in the Earthquake Location. Recent Developments in World Seismology, 4: 29-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJZT200804005.htm
      [13] Li L., Liu J., Fu H. , 2011. Accurate Location of Small- and Medium- Earthquakes in Lancang And Gengma Area. Journal of Seismological Research, 34(4): 482-487 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201104014.htm
      [14] Li Y.H., Wu Q.J., Tian X.B., et al. 2009. Crustal Structure in the Yunnan Region Determined by Modeling Receiver Functions. Chinese J. Geophys. , 52(1): 67-80 (in Chinese with English abstract). http://www.oalib.com/paper/1568012
      [15] Liang S.H., Li Y.M., Shu P.Y., et al. 1984. On the Determining of Source Parameters of Small Earthquakes by Using Amplitude Ratios of P and S from Regional Network Observations. Chinese J. Geophys. , 27(3): 249-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD198504019.htm
      [16] Lin Z.Y., Hu H.X., Gao S.Y., et al. 1993. A Study on Velocity Structure of Crust and Upper Mantle in Western Yunnan. Acta Seismologica Sinica, 15(4): 427-440 (in Chinese with English abstract).
      [17] Liu J., Zheng S.H., Kang Y., et al. 2004. The Focal Mechanism Determinations of Moderate-Small Earthquakes Using the First Motion and Amplitude Ratio of P and S Wave. Earthquake, 24(1): 19-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN200401003.htm
      [18] Lü, P., Ding Z.F., Zhu L.P. , 2011. Application of Double Difference Relocation Technique to Aftershocks of 2008 Wenchuan Earthquake Using Waveform Cross Correlation. Acta Seismologica Sinica, 33(4): 407-419 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXB201104002.htm
      [19] Kisslinger C., Bowman J.R., Koch K. , 1981. Procedures for Computing Focal Mechanisms from Local (SV/ P)Z Data. Bull. Seism. Soc. Am. , 71(6): 1719-1729. doi: 10.1785/BSSA0710061719
      [20] Snoke J.A., Munsey J.W., Teague A.G., et al. 1984. A Program for Focal Mechanism Determination by Combined Use of Polarity and SV-P Amplitude Ratio Data. Earthquake Notes, 55(3): 15. http://ci.nii.ac.jp/naid/10009508266
      [21] Snoke J.A. , 1989. Earthquake Mechanism. In: James D.E., ed., Encyclopedia of Geophysics. Van Nostrand Reinhold Company, New York, 239-245.
      [22] Waldhauser F., Ellsworth W.L. , 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bull. Seism. Soc. Am. , 90(6): 1353-1368. doi: 10.1785/0120000006
      [23] Waldhauser F., Ellsworth W.L. , 2002. Fault Structure and Mechanics of the Hayward Fault, California, from Double-Difference Earthquake Locations. J. Geophys. Res. , 107(B3): ESE 3-1-3-15. doi: 10.7916/d8xd0zr0
      [24] Wan Y.G., Shen Z.K., Diao G.L., et al. 2008. Analgorithm of Fault Parameter Determination Using Distribution of Small Earthquakes and Parameters of Regional Stress Field and Its Application to Tangshan Earthquake Sequence. Chinese J. Geophys. , 51(3): 793-804 (in Chinese with English abstract). http://www.oalib.com/paper/1568990
      [25] Wang C.Y., Mooney W.D., Wang X.L., et al. 2002. A Study on 3-D Velocity Structure of Crust and Upper Mantle in Sichuan-Yunan Region, China. Acta Seismologica Sinica, 15(1): 1-17. doi:10.1007/2Fs11589-002-0042-x
      [26] Wang F.Y., Pan S.Z., Liu L., et al. 2014. Wide Angle Seismic Exploration of Yuxi-Lincang Profile—The Research of Crustal Structure of the Red River Fault Zone and Southern Yunnan. Chinese J. Geophys. , 57(10): 3247-3258 (in Chinese with English abstract).
      [27] Wang W.L., Wu J.P., Fang L.H., et al. 2014. Double Difference Location of the Ludian MS6.5 Earthquake Sequences in Yunnan Province in 2014. Chinese J. Geophys. , 57(9): 3042-3051 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201409030.htm
      [28] Wen X.Z., Du F., Yi G.X., et al. 2013. Earthquake Potential of the Zhaotong and Lianfeng Fault Zones of the Eastern Sichuan-Yunnan Border Region. Chinese J. Geophys. , 56(10): 3361-3372 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201310012.htm
      [29] Xu Y., Yang, X.T., Liu J.H. , 2013. Tomographic Study of Crustal Velocity Structures in the Yunnan Region Southwest China. Chinese J. Geophys. , 56(6): 1904-1914 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013AGUFM.S33A2398Z
      [30] Yang Z.X., Yu X.W., Zheng Y.J., et al. 2004. Earthquake Relocation and 3-Dimensional Crustal Structure of P-wave Velocity in Central-Western China. Acta Seismologica Sinica, 17(1): 20-30. doi: 10.1007/BF03191391
      [31] Yi G.X., Long F., Zhang Z.W. , 2012. Spatial and Temporal Variation of Focal Mechanisms for Aftershocks of the 2008 Ms8.0 Wenchuan Earthquake. Chinese J. Geophys. , 55(4): 1213-1227 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011agufm.s31e2289y
      [32] Zeng X.F., Luo Y., Han L.B., et al. 2013. The Lushan MS7.0 Earthquake on 20 April 2013: A High Angle Thrust Event. Chinese J. Geophys. , 56(4): 1418-1424 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201304039.htm
      [33] Zhang G.W., Lei J.S., Liang S.S., et al. 2014. Relocations and Focal Mechanism Solutions of the 3 August 2014 Ludian, Yunnan MS6.5 Earthquake Sequence. Chinese J. Geophys., 57(9): 3018-3027(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201409027.htm
      [34] Zhang Y., Feng W.P., Chen Y.T., et al. 2012. The 2009 L'Aquila MW6.3 Earthquake: A New Technique to Locate the Hypocentre in the Joint Inversion of Earthquake Rupture Process. Geophys. J. Int. , 191(3): 1417-1426. doi: 10.1111/j.1365-246X.2012.05694.x
      [35] Zhang Z., Zhao B., Zhang X., et al. 2006. Crustal Structure Beneath the Wide2Angle Seismic Profile between Simao and Zhongdian in Yunnan. Chinese J. Geophys. , 49(5): 1377-1384 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=22708329
      [36] Zhang Z.J., Bai Z.M., Wang C.Y., et al. 2005. Crustal Structure of Gondwana- and Yangtze-Typed Blocks: An Example by Wide-Angle Seismic Profile from Menglian to Malong in Western Yunnan. Sci. China: Earth Sci. , 48(11): 1828-1836. doi: 10.1360/03yd0547
      [37] Zhao B., Gao Y., Huang, Z.B., et al. 2013. Double Difference Relocation, Focal Mechanism and Stress Inversion of Lushan MS7.0 Earthquake Sequence. Chinese J. Geophys. , 56(10): 3385-3395 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWX201310014.htm
      [38] Zhao L.S., Helmberger D.V. , 1994. Source Estimation Techniques from Broadband Regional Seismograms. Bull. Seism. Soc. Am. , 84(1): 91-104.
      [39] Zhu L.P., Helmberger D.V. , 1996. Advancement in Source Estimation Techniques Using Broadband Regional Seismograms. Bull. Seism. Soc. Am. , 86(5): 1634-1641. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=86/5/1634
      [40] 白志明, 王椿镛. 2003. 云南地区上部地壳结构和地震构造环境的层析成像研究. 地震学报, 25(2): 117-127. doi: 10.3321/j.issn:0253-3782.2003.02.001
      [41] 白志明, 王椿镛. 2004. 云南遮放-宾川和孟连-马龙宽角地震剖面的层析成像研究. 地球物理学报, 47(2): 257-267. doi: 10.3321/j.issn:0001-5733.2004.02.012
      [42] 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征. 中国科学-地球科学, 32(12): 1020-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905007.htm
      [43] 房立华, 吴建平, 张天中, 等. 2011. 2011年云南盈江Ms5.8地震及其余震序列重定位. 地震学报, 33(2): 262-227. doi: 10.3969/j.issn.0253-3782.2011.02.013
      [44] 房立华, 吴建平, 王未来, 等. 2013. 四川芦山Ms7.0级地震及其余震序列重定位. 科学通报, 58.
      [45] 谷继成, 谢小碧, 赵莉. 1982. 强余震的空间分布特征及其理论解释. 地震学报, 4(4): 380-388. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198204005.htm
      [46] 管烨, 王安建, 李朋武, 等. 2006. 云南兰坪-思茅盆地中轴构造带的特征及其研究意义. 中国地质, 33(4): 832-841. doi: 10.3969/j.issn.1000-3657.2006.04.013
      [47] 胡鸿翔, 高世玉. 1993. 滇西地区地壳浅部基底速度细结构的研究. 中国地震, 9(4): 356-363. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199304008.htm
      [48] 黄媛. 2008. 结合波形互相关技术的双差算法在地震定位中的应用探讨. 国际地震动态, 4: 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200804005.htm
      [49] 李丽, 刘剑, 付虹. 2011. 澜沧-耿马地区中小地震精确定位研究. 地震研究, 34(4): 482-487. doi: 10.3969/j.issn.1000-0666.2011.04.013
      [50] 李永华, 吴庆举, 田小波, 等. 2009. 用接收函数方法研究云南及其邻区地壳上地幔结构. 地球物理学报, 52(1): 67-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200901010.htm
      [51] 梁尚鸿, 李幼铭, 束沛镒, 等. 1984. 利用区域地震台网P、S振幅比资料测定小震震源参数. 地球物理学报, 27(3): 249-256. doi: 10.3321/j.issn:0001-5733.1984.03.005
      [52] 林中洋, 胡鸿翔, 高世玉, 等. 1993. 滇西地区地壳上地幔速度结构特征的研究. 地震学报, 15(4): 427-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199304003.htm
      [53] 刘杰, 郑斯华, 康英, 等. 2004. 利用P波和S波的初动和振幅比计算中小地震的震源机制解. 地震, 24(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200401003.htm
      [54] 吕鹏, 丁志峰, 朱露培. 2011. 结合波形互相关的双差定位方法在2008年汶川地震余震序列中的应用. 地震学报, 33(4): 407-419. doi: 10.3969/j.issn.0253-3782.2011.04.001
      [55] 万永革, 沈正康, 刁桂苓, 等. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用. 地球物理学报, 51(3): 793-804. doi: 10.3321/j.issn:0001-5733.2008.03.020
      [56] 王椿镛, Mooney W.D., 王溪莉, 等. 2002. 川滇地区地壳上地幔三维速度结构研究. 地震学报, 24(1): 1-16. doi: 10.3321/j.issn:0253-3782.2002.01.001
      [57] 王夫运, 潘素珍, 刘兰, 等. 2014. 玉溪-临沧剖面宽角地震探测——红河断裂带及滇南地壳结构研究. 地球物理学报, 57(10): 3247-3258. doi: 10.6038/cjg20141013
      [58] 王未来, 吴建平, 房立华, 等. 2014. 2014年云南鲁甸M_S6.5地震序列的双差定位. 地球物理学报, 57(9): 2042-3051. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201409030.htm
      [59] 闻学泽, 杜方, 易桂喜, 等. 2013. 川滇交界东段昭通、莲峰断裂带的地震危险背景. 地球物理学报, 56(10): 3361-3372. doi: 10.6038/cjg20131012
      [60] 胥颐, 杨晓涛, 刘建华. 2013. 云南地区地壳速度结构的层析成像研究. 地球物理学报, 56(6): 1904-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306014.htm
      [61] 杨智娴, 于湘伟, 郑月娟, 等. 2004. 中国中西部地区地震的重新定位和三维地壳速度结构. 地震学报, 26(1): 19-29. doi: 10.3321/j.issn:0253-3782.2004.01.003
      [62] 易桂喜, 龙锋, 张致伟. 2012. 汶川Ms8.0地震余震震源机制时空分布特征. 地球物理学报, 55(4): 1213-1227. doi: 10.6038/j.issn.0001-5733.2012.04.017
      [63] 曾祥方, 罗艳, 韩立波, 等. 2013. 2013年4月20日四川芦山MS7.0地震: 一个高角度逆冲地震. 地球物理学报, 56(4): 1418-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304039.htm
      [64] 张广伟, 雷建设, 梁姗姗, 等. 2014. 2014年8月3日云南鲁甸MS6.5级地震序列重定位与震源机制研究. 地球物理学报, 57(9): 3018-3027. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201409027.htm
      [65] 张智, 赵兵, 张晰, 等. 2006. 云南思茅-中甸地震剖面的地壳结构. 地球物理学报, 49(5): 1377-1384. doi: 10.3321/j.issn:0001-5733.2006.05.017
      [66] 张中杰, 白志明, 王椿镛, 等. 2005. 冈瓦纳型和扬子型地块地壳结构: 以滇西孟连-马龙宽角反射剖面为例. 中国科学: D辑, 35(5): 387-392. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200505000.htm
      [67] 赵博, 高原, 黄志斌, 等. 2013. 四川芦山Ms7.0地震余震序列双差定位、震源机制及应力场反演. 地球物理学报, 56(10): 3385-3395. doi: 10.6038/cjg20131014
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  3322
    • HTML全文浏览量:  267
    • PDF下载量:  569
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-02-13
    • 刊出日期:  2015-10-15

    目录

      /

      返回文章
      返回