Focal Mechanism Solutions of Lushan Mw6.6 Earthquake Sequence and Stress Field for Aftershock Zone
-
摘要: 为研究2013年4月20日芦山Mw6.6地震的发震构造及孕震机理, 基于4月20日—6月1日地震序列中114次M≥3.0余震震源机制解, 深入分析了余震震源机制及震源区应力场的时空分布特征, 获得的主要认识如下: (1)芦山M≥3.0余震以逆冲型为主, 走滑型次之, 正断型最少, 震源机制P轴方位一致性较好, 以近NWW-SEE为优势方向, 倾角分布在0~30°, 表明余震活动主要受龙门山断裂所在的区域应力场控制; (2)芦山余震区压应力S1方位存在明显的局部空间分区差异, 以主震震中为界, 余震区南边S1方向总体呈NWW方向, 而余震区北边S1方向表现出由NW经EW向NE的逆时针旋转, 可能反映了余震区北边发震断层错动以逆冲为主兼有一定的走滑分量; (3)压应力S1方位随时间的变化不明显, 呈近NWW方向, 但其倾角逐渐变水平, 应力张量方差逐渐变大, 震源机制错动类型始终以逆冲为主, 随时间变的相对紊乱, 反映了震源区应力场随时间的调整变化特性; (4)深度剖面结果显示压应力方位与发震断层走向的夹角在80°~120°, 即近乎垂直, 震源断层面向NW倾斜, 芦山余震活动受控于近垂直发震断裂的挤压作用, 属于典型的逆冲断层.Abstract: In order to investigate seismogenic structure and seismic mechanism of Lushan Mw6.6 earthquake on 20 April 2013, based on focal mechanism solutions of 114 M≥3.0 aftershocks from 20 April to 1 June 2013, we analyzed spatial and temporal distribution characteristic of focal mechanism and stress field. The results are as follows. (1) The focal mechanism types of Lushan M≥3.0 aftershocks show that thrust type is dominant faulting behavior, strike-slip type takes second place, normal type is least, the orientation of P-axis have a good consistency, the dominant direction is near NWW-SEE, dip angle is from 0° to 30°, it shows that aftershock activities are controlled by regional stress field. (2) The orientations of compressive stress (S1) exists obvious space partition difference in Lushan aftershock zone, the epicenter of main shock as boundary, the S1 orientation presents NWW in the south of aftershock zone, and it is anticlockwise rotation from NW to NE in the north of aftershock zone. The dislocation type of causative fault in the north of aftershock zone is mainly characterized by thrust with the component of strike-slip. (3) The change of S1 orientation with time is not obvious, it presents near NWW direction, but its dip angle gradually becomes level, stress tensor variance gradually becomes big, and the focal mechanism is mainly thrust behavior all the time, but it becomes relatively untidy with time, it reflects that seismic source stress field continually adjusts with time. (4) The depth profiles show that angle between S1 direction and causative fault strike is 80°-120° in most area, it is almost perpendicular to fault strike, the trend of focal fault plane is NW, it shows that Lushan earthquake sequence is controlled by near level compressive stress which is perpendicular to causative fault, it belongs to typical thrust fault.
-
Key words:
- Lushan earthquake /
- focal mechanism solution /
- compressive stress /
- stress tensor variance /
- earthquakes
-
图 1 四川主要构造及芦山余震序列分布
a.芦山余震及周边台站空间分布; b.芦山余震序列M-t图; c.求得震源机制的余震随深度分布; F31.龙门山后山断裂的耿达- 陇东断裂; F32. 汶川- 茂汶断裂; F33.青川- 平武断裂; F21.龙门山中央断裂的盐井- 五龙断裂; F22.北川- 映秀断裂; F23. 茶坝- 林庵寺断裂; F11. 龙门山前山断裂的大川- 双石断裂; F12.灌县- 江油断裂; F13.江油- 广元断裂; F4.新开店断裂; F5.大邑断裂
Fig. 1. Geological structure sketchin Sichuan Province and distribution of Lushan aftershock sequence
图 3 芦山余震震源机制空间分布(断层同图 1)
Fig. 3. The focal mechanism spatial distribution of Lushan aftershocks
图 10 震源机制沿剖面A-A′、B-B′的深度分布
S1轴方位相对于剖面的夹角;剖面A-A′采用固定8个地震数计算应力张量,以0.5km×0.5km分别沿水平面和深度上滑动计算;断层同图 1
Fig. 10. The focal mechanism projection along profile A-A′ and B-B′
表 1 震源机制解分类标准
Table 1. The classification criterion of the focal mechanism solution
机制类型 倾角范围 P轴 B轴 T轴 NF Pl ≥ 40° - Pl ≤ 35° SS Pl<40° Pl ≥ 45° Pl ≤ 20° Pl ≤ 20° Pl ≥ 45° Pl<40° TF Pl ≤ 35° - Pl ≥ 40° 注: 修改自Zoback(1992). 表 2 震源机制解类型统计
Table 2. Type statistics of focal mechanism solutions
震级 地震 逆断层 走滑断层 正断层 M 次数 比例(%) 比例(%) 比例(%) 3.0~7.0 114 72 (63%) 33 (29%) 9 (8%) 4.0~7.0 25 21 (84%) 4 (16%) 0(0) 3.0~3.9 89 51 (57%) 29 (33%) 9 (10%) -
[1] Chen C., Xu Y. , 2013. Relocation of the Lushan MS7.0 Earthquake Sequence and Its Tectonic Implication. Chinese J. Geophys. , 56(12): 4028-4036 (in Chinese with English abstract). http://www.researchgate.net/publication/313617207_Relocation_of_mainshock_and_aftershock_sequences_of_Ms_70_Sichuan_Lushan_earthquake [2] Chen Y.T., Yang Z.X., Zhang Y., et al. 2013. From 2008 Wenchuan Earthquake to 2013 Lushan Earthquake. Scientia Sinica Terrae, 43(6): 1064-1072 (in Chinese). doi: 10.1360/zd-2013-43-6-1064 [3] Cheng E.L. , 1981. Recent Tectonic Stress Field and Tectonic Movement of the Sichuan Province and its Vicinity. Acta Seismologica Sinica, 3(3): 231-241 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198103001.htm [4] Cheng W.Z., Diao G.L., Lü, Y.P., et al. 2003. Focal Mechanisms, Displacement Rate and Mode of Motion of the Sichuan-Yunnan Block. Seismology and Geology, 25(1): 71-87 (in Chinese with English abstract). http://www.researchgate.net/publication/297936454_Focal_mechanisms_displacement_rate_and_mode_of_motion_of_the_Sichuan-Yunnan_block [5] Diao G.L., Xu X.W., Chen Y.G., et al. 2011. The Precursory Significance of Tectonic Stress Field Transformation before the Wenchuan MW7.9 Earthquake and the Chi-Chi MW7.6 Earthquake. Chinese J. Geophys. , 54(1): 128-136 (in Chinese with English abstract). [6] Du F., Long F., Ruan X., et al. 2013. The M7.0 Lushan Earthquake and the Relationship with the M8.0 Wenchuan Earthquake in Sichuan, China. Chinese J. Geophys. , 56(5): 1772-1783 (in Chinese with English abstract). [7] Fang L.H., Wu J.P., Wang W.L., et al. 2013. Relocation of Mainshock and Aftershock Sequences of MS7.0 Sichuan Lushan Earthquake. Chin. Sci. Bull. , (28): 1-9. doi:10.1007/s11434-01 [8] Gao Y., Wang Q., Zhao B., et al. 2013. A Rupture Blank Zone in Middle South Part of Longmenshan Fault: Effect after Lushan Ms7.0 Earthquake of 20 April 2013 in Sichuan, China. Science China: Earth Sciences, 43(6): 1038-1046 (in Chinese). [9] Gephart J.W., Forsyth D.W. , 1984. An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. J. Geophys. Res. , 89(B11): 9305-9320. doi: 10.1029/JB089iB11p09305 [10] Hardebeck J.L., Hauksson E. , 2001. Stress Orientations Obtained from Earthquake Focal Mechanisms: What are Appropriate Uncertainty Estimates?Bull. Seism. Soc. Am. , 91(2): 250-262. doi: 10.1785/0120000032 [11] Hardebeck J.L., Michael A.J. , 2006. Damped Regional-Scale Stress Inversion: Methodology and Examples for Southern California and the Coalinga Aftershock Sequence. J. Geophys. Res. , 111(B11310). doi: 10.1029/2005JB004144 [12] Hu X.L., Diao G.L., Ma J., et al. 2004. Reliability Analysis of Focal Mechanism Solutions of Micro-Earthquakes Determined from Amplitude Ration of P and S Recorded by Digital Seismograph. Seismology and Geology, 26(2): 347-354 (in Chinese with English abstract). http://www.researchgate.net/publication/290199635_Reliability_analysis_of_focal_mechanism_solutions_of_micro-earthquakes_determined_from_amplitude_ratio_of_P_and_S_recorded_by_digital_seismograph [13] Kan R.J., Zhang S.C., Yan F.T., et al. 1977. Present Tectonic Stress Field and its Relation to the Characteristics of Recent Tectonic Activity in Southwestern China. Acta Geophysica Sinica, 20(2): 96-109 (in Chinese with English abstract). http://www.researchgate.net/publication/284062543_Present_tectonic_stress_field_and_its_relation_to_the_characteristics_of_recent_tectonic_activty_in_southwestern_China [14] Liang S.H., Li Y.M., Shu P.Y., et al. 1984. On the Determining of Source Parameters of Small Earthquakes by Using Amplitude Ratios of and from Regional Network Observations. Acta Geophysica Sinica, 27(3): 249-257 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX198403004.htm [15] Lin X.D., Ge H.K., Xu P., et al. 2013. Near Field Full Waveform Inversion: Lushan Magnitude 7.0 Earthquake and its Aftershock Moment Tensor. Chinese J. Geophys. , 56(12): 4037-4047 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201312009.htm [16] Liu C.L., Zheng Y., Ge C., et al. 2013. Rupture Process of the M7.0 Lushan Earthquake. Science China: Earth Sciences, 43(6): 1020-1026 (in Chenese). doi: 10.1007/s11430-013-4639-9 [17] Liu J., Yi G.X., Zhang Z.W., et al. 2013. Introduction to the Lushan, Sichuan M7.0 Earthquake on 20 April 2013. Chinese J. Geophys. , 56(4): 1404-1407 (in Chinese with English abstract). [18] Long F., Zhang Y.J., Wen X.Z., et al. 2010. Focal Mechanism Solutions of ML≥4.0 Events in the MS6.1 Panzhihua-Huili Earthquake Sequence of Aug 30. 2008. Chinese J. Geophys. , 53(12): 2852-2860 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201012010.htm [19] Lu Z., Wyss M., Pulpan H. , 1997. Detail of Stress Directions in the Alaska Subduction Zone from Fault Plane Solutions. J. Geophys. Res. , 102(B3): 5383-5402. doi: 10.1029/96JB03666 [20] Luo Y., Ni S.D., Zheng X.F., et al. 2010. A Shallow Aftershock Sequence in the North-Eastern End of the Wenchuan Earthquake Aftershock zone. Sci. China Earth Sci. , 40(6): 677-687 (in Chinese). doi: 10.1007/s11430-010-4026-8 [21] Lü, J., Wang X.S., Su J.R., et al. 2013. Hypocentral Location and Source Mechanism of the MS7.0 Lushan Earthquake Sequence. Chinese J. Geophys. , 56(5): 1753-1763 (in Chinese with English abstract). http://www.researchgate.net/publication/281806868_Hypocentral_location_and_source_mechanism_of_the_MS70_Lushan_earthquake_sequence [22] Lü, J., Zheng Y., Ni S.D., et al. 2008. Focal Mechanisms and Seismogenic Structures of the MS5.7 and MS4.8 Jiujiang-Ruichang Earthquakes of Nov. 26. 2005. Chinese J. Geophys. , 51(1): 158-164 (in Chinese with English abstract). [23] Michael A.J. , 1984. Determination of Stress from Slip Data: Faults and Folds. J. Geophys. Res. , 89(B13): 11517-11526. doi: 10.1029/JB089iB13p11517 [24] Michael A.J. , 1987. Use of Focal Mechanisms to Determine Stress: A Control Study. J. Geophys. Res. , 92(B1): 357-368. doi: 10.1029/JB092iB01p00357 [25] Michael A.J. , 1991. Spatial Variations of Stress within the 1987 Whittier Narrows, California, Aftershock Sequence: New Techniques and Results. J. Geophys. Res. , 96(B4): 6303-6319. doi: 10.1029/91JB00195 [26] Teng J.W., Bai D.H., Yang H., et al. 2008. Deep Processes and Dynamic Responses Associate with the Wenchuan Ms8.0 Earthquake of 2008. Chinese J. Geophys. , 51(5): 1385-1402 (in Chinese with English abstract). [27] Teng J.W., Zhang Y.Q., Yan Y.F. , 2009. Deep Process of the Rupture of Strong Earthquakes and Exploration for the Impending Earthquake Prediction. Chinese J. Geophys. , 52(2): 428-443 (in Chinese with English abstract). http://www.oalib.com/paper/1568827 [28] Wiemer S., Gerstenberger M., Hauksson E. , 2002. Properties of the Aftershock Sequence of the 1999 Mw7.1 Hector Mine Earthquake: Implications for Aftershock Hazard. Bulletin of the Seismological Society of America, 92(4): 1227-1240. doi: 10.1785/0120000914 [29] Xie F.R., Cui X.F., Zhao J.T., et al. 2004. Regional Division of the Recent Tectonic Stress Field in China and Adjacent Areas. Chinese J. Geophys. , 47(4): 654-662 (in Chinese with English abstract). http://www.researchgate.net/publication/313436577_Regional_division_of_the_recent_tectonic_stress_field_in_China_and_adjacent_areas [30] Xie Z.J., Jin B.K., Zheng Y., et al. 2013. Source Parameters Inversion of the 2013 Lushan Earthquake by Combining Teleseismic Waveforms and Local Seismograms. Science China: Earth Sciences, 43(6): 1010-1019 (in Chinese). doi: 10.1007/s11430-013-4640-3 [31] Xu X.W., Zhang P.Z., Wen X.Z., et al. 2005. Features of Active Tectonics and Recurrence Behaviors of Strong Earthquake in the Western Sichuan Province and Its Adjacent Regions. Seismology and Geology, 27(3): 446-461 (in Chinese with English abstract). http://www.en.cnki.com.cn/article_en/cjfdtotal-dzdz200503009.htm [32] Xu X.W., Chen G.H., Yu G.H., et al. 2013. Seismogenic Structure of Lushan Earthquake and its Relationship with Wenchuan Earthquake. Earth Science Frontiers, 20(3): 11-20 (in Chinese with English abstract). http://www.researchgate.net/publication/286380586_Seismogenic_structure_of_Lushan_earthquake_and_its_relationship_with_Wenchuan_earthquake [33] Xu X.W., Wen X.Z., Han Z.J., et al. 2013. Lushan MS7.0 Earthquake: A Blind Reserve-Fault Earthquake. Chin. Sci. Bull. , 58(28-29): 3437-3443. doi: 10.1007/s11434-013-5999-4 [34] Xu Y., Huang R.Q., Li Z.W., et al. 2009. S-Wave Velocity Structure of the Longmen Shan and Wenchuan Earthquake area. Chinese J. Geophys. , 52(2): 329-338 (in Chinese with English abstract). http://www.oalib.com/paper/1569151 [35] Xu Z.H., Ge S.M. , 1984. Stress Field in the Fuyun, Xinjiang Earthquake Fracture Zone Determined by Fitting Fault Slip Vector Data. Acta Seismologica Sinica, 6(4): 395-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198404001.htm [36] Yi G.X., Long F., Zhang Z.W. , 2012. Spatial and Temporal Variation of Focal Mechanisms for Aftershocks of the 2008 MS8.0 Wenchuan Earthquake. Chinese J. Geophys. , 55(4): 1213-1227 (in Chinese with English abstract). [37] Wang Y.G. , 2011. Contemporary Tectonic Stress Field in China. Translated World Seismology, (3): 18-29 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DZXY201004009.htm [38] Zeng X.F., Luo Y., Han L.B., et al. 2013. The Lushan MS7.0 Earthquake on 20 April 2013: A High-Angle Thrust Event. Chinese J. Geophys. , 56(4): 1418-1424 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JXTW2013Z2001.htm [39] Zhang G.W., Lei J.S. , 2013. Relocations of Lushan, Sichuan Strong Earthquake (MS7.0) and its Aftershocks. Chinese J. Geophys. , 56(5): 1764-1771 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWX201305035.htm [40] Zhang Y., Xu L.S., Chen Y.T. , 2013. Rupture Process of the Lushan 4.20 Earthquake and Preliminary Analysis on the Disaster-Causing Mechanism. Chinese J. Geophys. , 56(4): 1408-1411 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqwlxb201304036 [41] Zhang Z.W., Cheng W.Z., Liang M.J., et al. 2012. Study on Earthquakes Induced by Water Injection in Zigong-Longchang Area, Sichuan. Chinese J Geophys. , 55(5): 1635-1645 (in Chinese with English abstract). http://www.researchgate.net/publication/313138894_Study_on_earthquakes_induced_by_water_injection_in_Zigong-Longchang_area_Sichuan [42] Zhao B., Gao, Y., Huang Z.B., et al. 2013. Double Difference Relocation, Focal Mechanism and Stress Inversion of Lushan MS7.0 Earthquake Sequence. Chinese J. Geophys. , 56(10): 3385-3395 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWX201310014.htm [43] Zhao C.P., Zhou L.Q., Chen Z.L. , 2013. Tectonic Significance and Rupture Process of the Lushan MS7.0 Earthquake of Sichuan. 2013. Chinese Science Bulletin, 58(20): 1894-1900 (in Chinese). doi: 10.1007/s11430-013-4639-9 [44] Zhao L.S., Helmberger D.V. , 1994. Source Estimation from Broadband Regional Seismograms. Bull. Seismol. Soc. Amer. , 84(1): 91-104. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/1/91 [45] Zheng J.C., Wang P., Li D.M., et al. 2013. Tectonic Stress Field in Shandong Region Inferred from Small Earthquake Focal Mechanism Solutions. Acta Seismologica Sinica, 35(6): 773-783 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201306001.htm [46] Zheng Y., Ma H.S., Lü J., et al. 2009. Source Mechanism of Strong Aftershocks (MS≥5.6) of the 2008/05/12 Wenchuan Earthquake and the Implication for Seismotectonics. Science in China (Series D), 39(4): 413-426 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200906001.htm [47] Zhong J.M., Cheng W.Z. , 2006. Determination of Directions of the Mean Stress Field in Sichuan-Yunnan Region from a Number of Focal Mechanism Solutions. Acta Seismologica Sinica, 28(4): 337-346 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/22709215.html [48] Zhu L.P., Helmberger D.V. , 1996. Advancement in Source Estimation Techniques Using Broadband Regional Seismograms. Bull. Seismol. Soc. Amer. , 86(5): 1634-1641. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=86/5/1634 [49] Zhu J.S. , 2008. The Wenchuan Earthquake Occurrence Background in Deep Structure and Dynamics of Lithosphere. Journal of Chengdu University of Technology (Science & Technology Edition), 35(4): 348-356 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/cdlgxyxb200804002 [50] Zoback M.L. , 1992. First and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. J. Geophys. Res. , 97(B8): 11703-11728. doi: 10.1029/92JB00132 [51] 陈晨, 胥颐. 2013. 芦山MS7.0级地震余震序列重新定位及构造意义. 地球物理学报, 56(12): 4028-4036. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306012.htm [52] 陈运泰, 杨智娴, 张勇, 等. 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306015.htm [53] 成尔林. 1981. 四川及其邻区现代构造应力场和现代构造运动特征. 地震学报, 3(3): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198103001.htm [54] 程万正, 刁桂苓, 吕弋培, 等. 2003. 川滇地块的震源力学机制、运动速率和活动方式. 地震地质, 25(1): 71-87. doi: 10.3969/j.issn.0253-4967.2003.01.008 [55] 刁桂苓, 徐锡伟, 陈于高, 等. 2011. 汶川MW7.9和集集MW7.6地震前应力场转换现象及其可能的前兆意义. 地球物理学报, 54(1): 128-136. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200903002.htm [56] 杜方, 龙锋, 阮祥, 等. 2013. 四川芦山7.0级地震及其与汶川8.0级地震的关系. 地球物理学报, 56(5): 1772-1783. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201501014.htm [57] 高原, 王琼, 赵博, 等. 2013. 龙门山断裂带中南段的一个破裂空段-芦山地震的震后效应. 中国科学: 地球科学, 43(6): 1038-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306012.htm [58] 胡新亮, 刁桂苓, 马瑾, 等. 2004. 利用数字地震记录的P, S振幅比资料测定小震震源机制解的可靠性分析. 地震地质, 26(2): 347-354. doi: 10.3969/j.issn.0253-4967.2004.02.017 [59] 阚荣举, 张四昌, 晏凤桐, 等. 1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨. 地球物理学报, 20(2): 96-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197702001.htm [60] 梁尚鸿, 李幼铭, 束沛镒, 等. 1984. 利用区域地震台网, 振幅比资料测定小震震源参数. 地球物理学报, 27(3): 249-257. doi: 10.3321/j.issn:0001-5733.1984.03.005 [61] 林向东, 葛洪魁, 徐平, 等. 2013. 近场全波形反演: 芦山7.0级地震及余震矩张量解. 地球物理学报, 56(12): 4037-4047. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201312009.htm [62] 刘成利, 郑勇, 葛粲, 等. 2013.2013年芦山7.0级地震的动态破裂过程. 中国科学: 地球科学, 43(6): 1020-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306010.htm [63] 刘杰, 易桂喜, 张致伟, 等. 2013.2013年4月20日四川芦山M7.0级地震介绍. 地球物理学报, 56(4): 1404-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304036.htm [64] 龙锋, 张永久, 闻学泽, 等. 2010.2008年8月30日攀枝花-会理6.1级地震序列ML≥4.0事件的震源机制解. 地球物理学报, 53(12): 2852-2860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201012010.htm [65] 罗艳, 倪四道, 曾祥方, 等. 2010. 汶川地震余震区东北端一个余震序列的地震学研究. 中国科学: 地球科学, 40(6): 677-687. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201006001.htm [66] 吕坚, 王晓山, 苏金蓉, 等. 2013. 芦山7.0级地震序列的震源位置与震源机制解特征. 地球物理学报, 56(5): 1753-1763. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDC201308001003.htm [67] 吕坚, 郑勇, 倪四道, 等. 2008.2005年11月26日九江-瑞昌MS5.7、MS4.8地震的震源机制解与发震构造研究. 地球物理学报, 51(1): 158-164. [68] 滕吉文, 白登海, 杨辉, 等. 2008.2008汶川Ms8.0地震发生的深层过程和动力学响应. 地球物理学报, 51(5): 1385-1402. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810004.htm [69] 滕吉文, 张永谦, 闫雅芬. 2009. 强烈地震震源破裂和深层过程与地震短临预测探索. 地球物理学报, 52(2): 428-443. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902016.htm [70] 谢富仁, 崔效锋, 赵建涛, 等. 2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 47(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016 [71] 谢祖军, 金笔凯, 郑勇, 等. 2013. 近远震波形反演2013年芦山地震震源参数. 中国科学: 地球科学, 43(6): 1010-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306009.htm [72] 徐锡伟, 张培震, 闻学泽, 等. 2005. 川西及其邻近地区活动构造基本特征与强震复发模型. 地震地质, 27(3): 446-461. doi: 10.3969/j.issn.0253-4967.2005.03.010 [73] 徐锡伟, 陈桂华, 于贵华, 等. 2013. 芦山地震发震构造及其与汶川地震关系讨论. 地学前缘, 20(3): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303002.htm [74] 胥颐, 黄润秋, 李志伟, 等. 2009. 龙门山构造带及汶川震源区的S波速度结构. 地球物理学报, 52(2): 329-338. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902005.htm [75] 许忠淮, 戈澍谟. 1984. 用滑动方向拟合法反演富蕴地震断裂带应力场. 地震学报, 6(4): 395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198404001.htm [76] 易桂喜, 龙锋, 张致伟. 2012. 汶川MS8.0地震余震震源机制时空分布特征. 地球物理学报, 55(4): 1213-1227. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201910010.htm [77] 万永革. 2011. 中国现代构造应力场. 世界地震译丛, (3): 18-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYC201103004.htm [78] 曾祥方, 罗艳, 韩立波, 等. 2013.2013年4月20日四川芦山MS7.0地震: 一个高角度逆冲地震. 地球物理学报, 56(4): 1418-1424. [79] 张广伟, 雷建设. 2013. 四川芦山7.0级强震及其余震序列重定位. 地球物理学报, 56(5): 1764-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201501014.htm [80] 张勇, 许力生, 陈运泰. 2013. 芦山4.20地震破裂过程及其致灾特征初步分析. 地球物理学报, 56(4): 1408-1411. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304037.htm [81] 张致伟, 程万正, 梁明剑, 等. 2012. 四川自贡-隆昌地区注水诱发地震研究. 地球物理学报, 55(5): 1635-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201205022.htm [82] 赵博, 高原, 黄志斌, 等. 2013. 四川芦山MS7.0地震余震序列双差定位、震源机制及应力场反演. 地球物理学报, 56(10): 3385-3395. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306012.htm [83] 赵翠萍, 周连庆, 陈章立. 2013.2013年四川芦山Ms7.0级地震震源破裂过程及其构造意义. 科学通报, 58(20): 1894-1900. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306012.htm [84] 郑建常, 王鹏, 李冬梅, 等. 2013. 使用小震震源机制解研究山东地区背景应力场. 地震学报, 35(6): 773-784. doi: 10.3969/j.issn.0253-3782.2013.06.001 [85] 郑勇, 马宏生, 吕坚, 等. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系. 中国科学D辑: 地球科学, 39(4): 413-426. [86] 钟继茂, 程万正. 2006. 由多个地震震源机制解求川滇地区平均应力场方向. 地震学报, 28(4): 337-346. doi: 10.3321/j.issn:0253-3782.2006.04.001 [87] 朱介寿. 2008. 汶川地震的岩石圈深部结构与动力学背景. 成都理工大学学报(自然科学版), 35(4): 348-356. doi: 10.3969/j.issn.1671-9727.2008.04.002