• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广西凌云-凤山"6·28"震群: 岩溶发育区流体触发断层浅层活动机理

    李志勇 李细光 严小敏 姚宏 曾佐勋 王鹏来

    李志勇, 李细光, 严小敏, 姚宏, 曾佐勋, 王鹏来, 2015. 广西凌云-凤山'6·28'震群: 岩溶发育区流体触发断层浅层活动机理. 地球科学, 40(10): 1667-1676. doi: 10.3799/dqkx.2015.150
    引用本文: 李志勇, 李细光, 严小敏, 姚宏, 曾佐勋, 王鹏来, 2015. 广西凌云-凤山"6·28"震群: 岩溶发育区流体触发断层浅层活动机理. 地球科学, 40(10): 1667-1676. doi: 10.3799/dqkx.2015.150
    Li Zhiyong, Li Xiguang, Yan Xiaomin, Yao Hong, Zeng Zuoxun, Wang Penglai, 2015. Earthquake Swarms on June 28th of 2010, near Lingyun and Fengshan County, South China: Shallow Seismic Activity of Fault Induced by Surface Fluid in Karst Geology Area. Earth Science, 40(10): 1667-1676. doi: 10.3799/dqkx.2015.150
    Citation: Li Zhiyong, Li Xiguang, Yan Xiaomin, Yao Hong, Zeng Zuoxun, Wang Penglai, 2015. Earthquake Swarms on June 28th of 2010, near Lingyun and Fengshan County, South China: Shallow Seismic Activity of Fault Induced by Surface Fluid in Karst Geology Area. Earth Science, 40(10): 1667-1676. doi: 10.3799/dqkx.2015.150

    广西凌云-凤山"6·28"震群: 岩溶发育区流体触发断层浅层活动机理

    doi: 10.3799/dqkx.2015.150
    基金项目: 

    广西地震科学基础研究项目 桂科攻12426001-4

    广西科学研究与技术开发计划项目 桂科攻1298005-1

    广西科学研究与技术开发计划项目 桂科攻1355010-6

    详细信息
      作者简介:

      李志勇(1979-), 男, 博士, 主要从事构造地质学教学、构造定量解析与模拟研究.E-mail: zhiyong.li@cug.edu.cn

      通讯作者:

      李细光, E-mail: hnouyang@163.com

    • 中图分类号: P315.1

    Earthquake Swarms on June 28th of 2010, near Lingyun and Fengshan County, South China: Shallow Seismic Activity of Fault Induced by Surface Fluid in Karst Geology Area

    • 摘要: 2010年6月28日, 广西凌云-凤山地区在特大强降雨活动之后发生密集的浅源低震级地震活动, 造成严重经济损失.该震群活动是否与强降雨有关, 强降雨是否可以触发震群活动, 仍存在争议.基于该地区地震构造背景, 对震群的活动特征、震源机制解及其与断裂构造的关系进行了分析, 并建立了断层内流体孔隙压力触发断层滑动的力学模型.该浅层震群活动的发生时间、震中位置和活动频次均与特大强降雨具有密切的相关性.认为岩溶地区长期干旱和地下水缺乏有利于地壳浅层的应力积累.地表流体很难通过下渗扩散触发断层的完全解锁和深部滑动, 但岩溶裂隙和管道有利于地表流体快速汇聚下渗, 引起断层浅层强度的弱化, 导致断层部分解锁滑动.并在断层附近形成局部应力场异常和离散的封闭性超压流体, 触发密集的浅层低震级震群活动.

       

    • 图  1  震群震中位置及降雨量分布

      Fig.  1.  Location of epicenters and distribution of rainfall

      图  2  地质构造和震群位置

      F1.百色-合浦断裂带;F2.巴马-博白断裂带;F3.河池-宜州断裂带;F4.木伦-东兰-逻楼断裂带;F5.更新-凌云-那能断裂带;f1.江州-高家洞断裂;f2.逻楼-江州断裂;f3.寅村断裂;f4.坡楼断裂;f5.那林断裂;f6.岩板断裂;f7.逻楼-平吕断裂;f8.陇仓断裂;f9.沙里-弄所断裂

      Fig.  2.  Geology setting and earthquake swarms

      图  3  2010年6月江洲流动台记录的S-P波速差随时间变化

      Fig.  3.  The time series of S-P velocity difference recorded by mobile Seismic station in Jiangzhou, June 2010

      图  4  震源分布与断层关系剖面

      f1.江州-高家洞断裂;f2.逻楼-高家洞断裂;震群精定位分析结果由广西地震局台网中心提供

      Fig.  4.  Cross section profile of earthquake swarms and faults

      图  5  凌云凤山震群日降雨量与地震日频次统计

      a.江州站降雨量;b.罗楼站降雨量;c.地震日频次;数据由广西区气象局提供

      Fig.  5.  The time series of the daily rain amount

      图  6  断层内流体孔隙压力触发断层滑动的应力模型

      a.岩溶管道和裂隙有利于地表流体快速下渗,从而弱化断层强度,引起断层浅层部位的局部解锁滑动;b.断层内流体孔隙压力触发断层滑动的影响深度,图中假定岩石平均密度为2.5×103 kg/m3,断层面摩擦系数为0.6;c.流体作用下断层滑动准的应力莫尔图解,φ为内摩擦角,σn为断层面上正应力,σn为断层面上剪应力

      Fig.  6.  Stress model showing fault slip triggered by pore-fluid pressure

      表  1  凌云-凤山震群ML≥2.0地震震源机制(蒙荣国等,2012)

      Table  1.   Focal mechanism of the earthquake swarms with ML≥2.0

      时间 纬度(N) 经度(E) ML 节面Ⅰ 节面Ⅱ P轴 T轴 滑动性质
      走向 倾角 走向 倾角 走向 倾角 走向 倾角
      6月28日12∶41 24.38° 106.90° 3.0 26° 22° 190° 69° 105° 23° 269° 66° 逆倾滑动
      6月28日17∶36 24.38° 106.88° 2.0 142° 23° 321° 67° 50° 68° 231° 22° 正倾滑动
      6月28日18∶02 24.35° 106.95° 2.4 112° 81° 30° 173° 47° 45° 30° 正倾滑动
      6月28日19∶55 24.40° 106.86° 2.6 281° 20° 67° 73° 142° 60° 346° 28° 正倾滑动
      6月28日19∶58 24.38° 106.90° 2.6 292° 76° 180° 34° 347° 49° 225° 24° 正倾滑动
      6月28日20∶08 24.38° 106.88° 2.3 266° 24° 59° 69° 132° 65° 337° 23° 正倾滑动
      6月28日20∶34 24.40° 106.88° 2.4 210° 67° 320° 51° 348° 46° 88° 正倾滑动
      6月28日21∶06 24.38° 106.90° 2.3 271° 27° 88° 299° 37° 70° 41° 走滑
      6月28日21∶34 24.38° 106.88° 2.2 29° 26° 206° 64° 293° 71° 117° 19° 正倾滑动
      6月28日22∶02 24.38° 106.88° 2.5 285° 19° 138° 74° 243° 60° 40° 28° 正倾滑动
      6月28日23∶13 24.38° 106.90° 2.5 31° 23° 190° 69° 265° 65° 106° 23° 正倾滑动
      6月29日02∶03 24.38° 106.88° 2.2 117° 89° 24° 33° 177° 38° 55° 35° 走滑
      6月29日02∶04 24.41° 106.85° 2.2 36° 24° 220° 66° 314° 68° 129° 21° 正倾滑动
      6月29日02∶01 24.38° 106.88° 3.1 120° 87° 26° 31° 182° 40° 56° 35° 走滑
      6月29日03∶11 24.38° 106.88° 2.0 26° 36° 258° 66° 148° 17° 27° 59° 逆倾滑动
      6月29日06∶09 24.40° 106.88° 2.5 18° 37° 262° 72° 148° 20° 30° 52° 逆倾滑动
      6月29日06∶05 24.38° 106.86° 2.3 120° 87° 27° 43° 175° 34° 63° 29° 走滑
      6月29日10∶38 24.38° 106.91° 2.5 24° 22° 195° 68° 279° 66° 107° 23° 正倾滑动
      6月29日11∶22 24.38° 106.88° 2.3 30° 32° 152° 72° 208° 82° 22° 正倾滑动
      6月29日13∶06 24.38° 106.88° 2.3 275° 28° 185° 90° 300° 39° 70° 39° 走滑
      6月30日10∶17 24.38° 106.91° 2.3 29° 76° 274° 31° 88° 51° 320° 26° 正倾滑动
      6月30日13∶51 24.38° 106.90° 2.8 204° 48° 308° 74° 355° 41° 250° 16° 正倾滑动
      7月01日10∶27 24.38° 106.86° 3.2 26° 23° 210° 67° 117° 22° 300° 68° 逆倾滑动
      7月04日19∶45 24.45° 106.88° 2.6 197° 89° 290° 26° 311° 41° 83° 38° 走滑
      7月05日03∶24 24.38° 106.88° 2.5 262° 27° 154° 81° 271° 48° 43° 31° 走滑
      下载: 导出CSV
    • [1] Bollinger, L., Nicolas, M., Marin, S., 2010. Hydrological Triggering of the Seismicity around a Salt Diapir in Castellane, France. Earth and Planetary Science Letters, 290(1-2): 20-29. doi: 10.1016/j.epsl.2009.11.051
      [2] Du, Y.L., Wang, H. T, Yuan, L.W., 2008. Analysis and Research of China's Reservoir Induced Seismicity. Earthquake, 28(4): 39-51 (in Chinese with English abstract).
      [3] Ellsworth, W.L., 2013. Injection-Induced Earthquakes. Science, 341(6142): 142-143.
      [4] Farrell, N.J.C., Healy, D., Taylor, C., 2014. Anisotropy of Permeability in Faulted Porous Sandstones. Journal of Structural Geology, 63(2): 50-67. doi: 10.1016/j.jsg.2014.02.008
      [5] Grünthal, G., 2013. Induced Seismicity Related to Geothermal Projects Versus Natural Tectonic Earthquakes and Other Types of Induced Seismic Events in Central Europe. Geothermics, 52(9): 22-35. doi: 10.1016/j.geothermics.2013.09.009
      [6] Hainzl, S., Kraft, T., Wassermann, J., et al., 2006. Evidence for Rainfall-Triggered Earthquake Activity. Geophysical Research Letters, 33(19). doi: 10.1029/2006GL027642
      [7] Hunt, J.M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 74(1): 1-12.
      [8] Husen, S., Bachmann, C., Giardini, D., 2007. Locally Triggered Seismicity in the Central Swiss Alps Following the Large Rainfall Event of August 2005. Geophys. J. Int. , 171(3): 1126-1134. doi: 10.1111/j.1365-246X.2007.03561.x
      [9] Jiang, H.K., Yang, M.L., Sun, X.J., et al., 2011. A Typical Example of Locally Triggered Seismicity in the Boundary Area of Lingyun and Fengshan Following the Large Rainfall Event of June 2010. Chinese J. Geophys. , 54(10): 2606-2619 (in Chinese with English abstract).
      [10] Kodaira, S., Idaka, T., Kato, A., et al., 2004. High Pore Fluid Pressure may Cause Silent Slip in the Nankai Trough. Science, 304(5675): 1295- 1298. doi: 10.1126/science.1096535
      [11] Kraft, T., Wassermann, J., Igel, H., 2006. High-Precision Relocation and Focal Mechanism of the 2002 Rain-Triggered Earthquake Swarms at Mt Hochstaufen, SE Germany. Geophys. J. Int. , 167(3): 1513-1528. doi: 10.1111/j.1365-246X.2006.03171.x
      [12] Li, T., Cai, M.F., Zhang, S. Q, et al., 2005. Mining-Induced Seismicity in China. Seismological Research of Northeast China, 21(3): 1-26 (in Chinese with English abstract).
      [13] Liu, M.L., 2001. Overpressured Fluids in Fault Zones and Their Roles in Earthquake and Hydrothermal Metallogeny. Advance in Earth Sciences, 16(2): 238-243 (in Chinese with English abstract).
      [14] Meng, R.G., Li, X.G., Yao, H., et al., 2012. Investigation Report on Relationship of Environmental Hydrogeology Conditions and Earthquake Swarms on June 28th of 2010, in Area of Lingyun and Fengshan County, South China, 72-102.
      [15] Miller, S.A., 2008. Note on Rain-Triggered Earthquakes and Their Dependence on Karst Geology. Geophys. J. Int., 173(1): 334-338. [doi: 101111/j.1365-246X.2008.03735.x]
      [16] Miller, S.A., Collettini, C., Chiaraluce, L., et al., 2004. Aftershocks Driven by a High-Pressure CO2 Source at Depth. Nature, 427(6976): 724-727. doi: 10.1038/nature02251
      [17] Muco, B., 1999. Statistical Investigation on Possible Seasonality of Seismic Activity and Rainfall-Induced Earthquakes in Balkan Area. Phys. Earth Planet. Inter. , 114(3-4): 119-127. doi: 10.1016/S0031-9201(99)00051-5
      [18] Nicol, A., Gerstenberger, M., Bromley, C., et al., 2013. Induced Seismicity; Observations, Risks and Mitigation Measures at CO2 Storage Sites Original Research Article. Energy Procedia, 37(6): 4749-4756. doi: 10.1016/j.egypro.2013.06.384
      [19] Orlecka-Sikora, B., Lasocki, S., Lizurek, G., et al., 2012. Response of Seismic Activity in Mines to the Stress Changes due to Mining Induced Strong Seismic Events. International Journal of Rock Mechanics and Mining Sciences, 53(5): 151-158. doi: 10.1016/j.ijrmms.2012.05.010
      [20] Saar, O., Manga, M., 2003. Seismicity Induced by Seasonal Groundwater Recharge at Mt. Hood, Oregon. Earth Planet. Sci. Lett. , 214(3-4): 605-618. doi: 10.1016/S0012-821X(03)00418-7
      [21] 杜运连, 王洪涛, 袁丽文, 2008. 我国水库诱发地震研究. 地震, 28(4): 39-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200804005.htm
      [22] 蒋海昆, 杨马陵, 孙学军, 等, 2011. 暴雨触发局部地震活动的一个典型例子: 2010年6月广西凌云—凤山交界3级震群活动. 地球物理学报, 54(10): 2606-2619. doi: 10.3969/j.issn.0001-5733.2011.10.018
      [23] 李铁, 蔡美峰, 张少泉, 等, 2005. 我国的采矿诱发地震. 东北地震研究, 21(3): 1-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ200503000.htm
      [24] 刘亮明, 2001. 断层带中超压流体及其在地震和成矿中的作用. 地球科学进展, 16(2): 238-243. doi: 10.3321/j.issn:1001-8166.2001.02.016
      [25] 蒙荣国, 李细光, 姚宏, 等, 2012. 凤山县至凌云县一带岩溶区环境水文地质条件与"6·28"震群活动关系调查研究报告. 广西: 广西水文地质工程地质队, 72-102.
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  2821
    • HTML全文浏览量:  120
    • PDF下载量:  410
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-11-17
    • 刊出日期:  2015-10-15

    目录

      /

      返回文章
      返回