• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于EIGEN-6C2重力场模型反演青藏高原地壳结构

    郭东美 鲍李峰 许厚泽

    郭东美, 鲍李峰, 许厚泽, 2015. 基于EIGEN-6C2重力场模型反演青藏高原地壳结构. 地球科学, 40(10): 1643-1652. doi: 10.3799/dqkx.2015.148
    引用本文: 郭东美, 鲍李峰, 许厚泽, 2015. 基于EIGEN-6C2重力场模型反演青藏高原地壳结构. 地球科学, 40(10): 1643-1652. doi: 10.3799/dqkx.2015.148
    Guo Dongmei, Bao Lifeng, Xu Houze, 2015. Tectonic Characteristics of the Tibetan Plateau Based on EIGEN-6C2 Gravity Field Model. Earth Science, 40(10): 1643-1652. doi: 10.3799/dqkx.2015.148
    Citation: Guo Dongmei, Bao Lifeng, Xu Houze, 2015. Tectonic Characteristics of the Tibetan Plateau Based on EIGEN-6C2 Gravity Field Model. Earth Science, 40(10): 1643-1652. doi: 10.3799/dqkx.2015.148

    基于EIGEN-6C2重力场模型反演青藏高原地壳结构

    doi: 10.3799/dqkx.2015.148
    基金项目: 

    湖北省自然科学基金 2014CFB171

    青年人才启动经费 Y306784079

    国家自然科学基金 41504012

    详细信息
      作者简介:

      郭东美(1983-), 女, 博士, 主要从事重力资料处理及重力反演的相关研究.E-mail: guodongmei@whigg.ac.cn

    • 中图分类号: P312.1

    Tectonic Characteristics of the Tibetan Plateau Based on EIGEN-6C2 Gravity Field Model

    • 摘要: 重力数据是地下场源产生的重力场的叠加, 包含了地下从浅部到深部的丰富信息.高阶卫星资料的丰富为青藏高原深部构造研究提供了重要资料.基于EIGEN-6C2模型作为原始数据, 首先对青藏高原布格重力异常和均衡重力异常分别作1~5阶尺度分解, 得到不同尺度重力异常的分布特性, 探讨不同空间尺度反映的地壳构造意义.其次, 基于径向对数功率谱估计平均深度方法理论, 进一步研究1~5阶细节反映的场源深度.再次, 利用Canny算子的多尺度边缘检测识别和分析重力异常中表现不明显的断裂, 定位断裂在地表的位置, 识别青藏高原内部断块边界, 完成活动块体和次级块体的划分.最后, 对布格重力异常进行沉积层及岩石圈改正, 采用Parker-Oldenbarg三维位场反演法反演青藏高原莫霍界面起伏.

       

    • 图  1  青藏高原EIGEN-6C2自由空间重力异常

      单位:10-5 m/s2;间隔:100×10-5 m/s2

      Fig.  1.  EIGEN-6C2:spatial gravity anomaly of Tibet plateau

      图  2  青藏高原布格重力异常示意

      单位:10-5 m/s2

      Fig.  2.  Bouguer gravity field of Tibet plateau

      图  3  青藏高原EIGEN-6C2均衡重力异常

      单位:10-5 m/s2

      Fig.  3.  Isostatic gravity field of Tibet plateau

      图  4  青藏高原布格重力异常一维多尺度分解的细节图

      a.1阶细节图;b.2阶细节图;c.3阶细节图;d.4阶细节图;e.5阶细节图

      Fig.  4.  Details of Bouguer gravity anomaly using 1D dimensional multi-scale analysis

      图  5  青藏高原均衡重力异常一维多尺度分解的细节图

      a.1阶细节图;b.2阶细节图;c.3阶细节图;d.4阶细节图;e.5阶细节图

      Fig.  5.  Details of isostatic gravity anomaly using 1D dimensional multi-scale analysis

      图  6  布格重力异常多尺度分解细节经对数功率谱估计的场源深度(P为功率)

      a.1阶细节估计结果;b.2阶细节估计结果;c.3阶细节估计结果;d.4阶细节估计结果;e.5阶细节估计结果

      Fig.  6.  Sources depths calculated by power spectral analysis using multi-scale analysis details of Bouguer gravity anomaly

      图  7  均衡重力异常多尺度分解细节经对数功率谱估计的场源深度(P为功率)

      a.1阶细节估计结果;b.2阶细节估计结果;c.3阶细节估计结果;d.4阶细节估计结果;e.5阶细节估计结果

      Fig.  7.  Sources depths calculated by power spectral analysis using multi-scale analysis details of isostatic gravity anomaly

      图  8  基于Canny算子的边缘检测法识别断裂及块体边界

      a.10′×10′;b.20′×20′;c.50′×50′;d.大地构造线

      Fig.  8.  Determine the fracture and block boundary based on edge detection based on canny operator

      图  9  EIGEN-6C2重力场反演的莫霍面深度(单位:km)

      Fig.  9.  The Moho depths inversed by EIGEN-6C2 gravity field

    • [1] Chamoli, A., Pandey, A.K., Dimri, V.P., 2011. Crustal Configuration of the Northwest Himalaya Based on Modeling of Gravity Data. Pure and Appl. Geophys. , 168(5): 827-844. doi: 10.1007/s00024-010-0149-2
      [2] Cheng, J.Y., 2010. New Progress in Geogravimetry. Geospatial Information, 8(6): 1-4 (in Chinese with English abstract).
      [3] Guo, D.M., Xu, H.Z., 2011. Research on the Singular Integral of Local Terrain Correction Computation. Chinese J. Geophs. , 54(4): 977-983 (in Chinese with English abstract).
      [4] Guo, L.H., Meng, X.H., Shi, L., et al., 2012. Preferential Filtering Method and Its Application to Bouguer Gravity Anomaly of Chinese Continent. Chinese Journal of Geophysics (in Chinese), 55(12): 4078-4088(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201212021.htm
      [5] Hou, Z.Z., Yang, W.C., 1997. Wavelet Transform and Multi-Scale Analysis on Gravity Anomalies of China. Chinese J. Geophys. , 40(1): 85-95 (in Chinese with English abstract).
      [6] Jiang, B., 2011. Multi-Scale Edge Detection Algorithms and Their Information-Theoretic Analysis in the Context of Visual Communication. Proquest, Umi Dissertation Publishing, Michigan.
      [7] Jordan, T.A., Watts, A.B., 2005. Gravity Anomalies, Flexure and the Elastic Thickness Structure of the India-Eurasia Collisional System. Earth and Planetary Science Letters, 236(3-4): 732-750. doi: 10.1016/j.epsl.2005.05.036
      [8] Ke, X.P., Wang, Y., Xu, H.Z., 2006. Interface Depths Inversion of Potential Field Data with Variable Density Model. Progress in Geophysics, 21(3): 825-829(in Chinese with English abstract).
      [9] Koneshov, V.N., Nepoklonov, V.B., Sermyagin, R.A., 2013. Modern Global Earth's Gravity Field Models and Their Errors. Gyroscopy and Navigation, 4(3): 147-155. doi: 10.1134/S207510871303005X
      [10] Li, Y.H., 2009. A New Model to Study Slab Tectonics in the Qinghai-Tibet Plateau and Its Adjacent Areas. Progress in Geophys. , 24(5): 1566-1581 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200905006.htm
      [11] Lin, M., Zhu, J.J., Tian, Y.M., 2012. On the Use of the Geoid Anomalies for Geophysical Interpretation over the Area of Hunan. Chinese J. Geophys. , 55(2): 472-483(in Chinese with English abstract). http://www.researchgate.net/publication/279296993_On_the_use_of_the_geoid_anomalies_for_geophysical_interpretation_over_the_area_of_Hunan
      [12] Meng, L.S., Cui, J.W., 2000. Study on the Gravity Field and Deerp-Seated Crustal Structure at the Altun MTS—The Qilian TS Area. Journal of Changchun University of Science and Technology, 30(2): 180-185(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200002017.htm
      [13] Meng, X.H., Shi, L., Guo, L.H., 2012. Multi-Scale Analyses of Transverse Structures Based on Gravity Anomalies in the Northeastern Margin of the Tibetan Plateau. Chinese Journal Geophysics, 55(12): 3933-3941 (in Chinese with English abstract). http://www.researchgate.net/publication/278179726_Multi-scale_analyses_of_transverse_structures_based_on_gravity_anomalies_in_the_northeastern_margin_of_the_Tibetan_Plateau
      [14] Ning, J.S., Luo, J., Wang, Z.T., 2008. Satellite Gravity Technique and Earth Gravity Field. Geospatial Information, 6(1): 1-6 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geospatial-information_thesis/0201252814487.html
      [15] Spector, A., Grant, F.S., 1970. Statistical Models for Interpreting Aero-Magnetic Data. Geophysics, 35(2): 293-302. doi: 10.1190/1.1440092
      [16] Tiwari, V.M., Rajasekhar, R.P., Mishra, D.C., 2009. Gravity Anomaly, Lithospheric Structure and Seismicity of Western Himalayan Syntaxis. J. Seismol. , 13(3): 363-370. doi: 10.1007/s10950-008-9102-6
      [17] Vecsey, L., Majumder, C.A.H., Yuen, D.A., 2003. Multiresolution Tectonic Features over the Earth Inferred from a Wavelet Transformed Geoid. Visual Geosciences, 8(1): 1-42. doi: 10.1007/s10069-003-0008-8
      [18] Wang, Q.S., An, Y.L., 2001. Gravity field and Deep Structure of Madoi-Shama Region in Eastern Qinghai-Xizang (Tibet) Plateau. Progress in Geophys. , 16 (4): 4-10 (in Chinese with English abstract).
      [19] Xu, H.Z., 2001. Statellite Gravity Missions-New Hotpoint in Geodesy. Science of Surveying and Mapping, 26(3): 1-3 (in Chinese). http://www.researchgate.net/publication/288232448_Satellite_gravity_missions-new_Hotpoint_in_geodesy
      [20] Yang, W.C., Shi, Z.Q., 2001. Discrete Wavelet Transform for Multiple Decomposition of Gravity Anomalies. Chinese Journal Geophysics, 44(4): 534-541 (in Chinese with English abstract). doi: 10.1142/9789812796769_0024
      [21] Yin, X.H., Li, Y.S., Feng, H., 1998. Characteristics of Gravity Field and Structure of the Earths Crust in the Qinghai-Tibet Plateau. Geophysical and Geochemical Exploration, 22(6): 440-445(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH199806007.htm
      [22] Zhang, Q., He, J.F., Ma, L., et al., 2013. The Study of Image Segmentation Based on the Combination of the Wavelet Multiscale Edge Detection and the Entropy Iterative Threshold Selection. Chinese J. Biomed. Eng. , 22(4): 884-887. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZSYG201304003
      [23] Zhang, Y., Cheng, S.Y., Zhao, B.K., 2013. The Feature of Tectonics in the Tibet Plateau from New RegionaI Gravity Signals. Chinese J. Geophys. (in Chinese), 56(4): 1369-1380 (in Chinese with English abstract).
      [24] Zheng, H.W., Meng, L.S., He, R.Z., 2010. The Matched-Filter Analysis of Bouguer Gravity Anomaly in Qinghai-Tibet Plateau and Its Tectonic Implications. Geology in China, 37(4): 995-1001(in Chinese with English abstract).
      [25] Zhou, G.F., Chen, J.G., Zhang, J., 1996. Charaters of Crust-Mantle Construction and Deep Structure in Qinghai-Xizang (Tibet) Plateau. Earth Science—Journal of China University of Geosciences, 21(2): 191-197(in Chinese with English abstract).
      [26] 陈俊勇, 2010. 大地重力学的新进展. 地理空间信息, 8(6): 1-4. doi: 10.3969/j.issn.1672-4623.2010.06.001
      [27] 郭东美, 许厚泽, 2011. 局部地形改正的奇异积分研究. 地球物理学报, 54(4): 977-983. doi: 10.3969/j.issn.0001-5733.2011.04.012
      [28] 郭良辉, 孟小红, 石磊, 2012. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用. 地球物理学报, 55(12): 4078-4088. doi: 10.6038/j.issn.0001-5733.2012.12.020
      [29] 侯遵泽, 杨文采, 1997. 中国重力异常的小波变换与多尺度分析. 地球物理学报, 40(1): 85-95. doi: 10.3321/j.issn:0001-5733.1997.01.010
      [30] 柯小平, 王勇, 许厚泽, 2006. 基于变密度模型的位场界面反演. 地球物理学进展, 21(3): 825-829. doi: 10.3969/j.issn.1004-2903.2006.03.021
      [31] 李荫槐, 2009. 论青藏高原及邻区板片构造的一个新模式. 地球物理学进展, 24(5): 1566-1581. doi: 10.3969/j.issn.1004-2903.2009.05.005
      [32] 林淼, 朱建军, 田玉淼, 2012. 大地水准面异常在湖南地区的地球物理解释. 地球物理学报, 55(2): 472-488. doi: 10.3969/j.issn.0001-5733.2012.02.011
      [33] 孟令顺, 崔军文, 2000. 青藏高原北缘重力场特征与深部地壳构造. 长春科技大学学报, 30(2): 0180-0185. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200002017.htm
      [34] 孟小红, 石磊, 郭良辉, 2012. 青藏高原东北缘重力异常多尺度横向构造分析. 地球物理学报, 55 (12): 3933-3941. doi: 10.6038/j.issn.0001-5733.2012.12.006
      [35] 宁津生, 罗佳, 王正涛, 2008. 卫星重力与地球重力场地理空间信息, 6(1): 1-6.
      [36] 王谦身, 安玉林, 2001. 青藏高原东部玛多-沙马地区的重力场与深部构造. 地球物理学进展, 16 (4): 4-10. doi: 10.3969/j.issn.1004-2903.2001.04.002
      [37] 许厚泽, 2001. 卫星重力研究: 21世纪大地测量研究的新热点. 测绘科学, 26(3): 1-3. doi: 10.3771/j.issn.1009-2307.2001.03.001
      [38] 杨文采, 施志群, 2001. 离散小波变换与重力异常多重分解. 地球物理学报, 44(4): 534-541. doi: 10.3321/j.issn:0001-5733.2001.04.012
      [39] 殷秀华, 黎益仕, 冯华, 1998. 青藏高原重力场特征和地壳构造. 物探与化探, 22(6): 440-445. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199806007.htm
      [40] 张燕, 程顺有, 赵炳坤, 2013. 青藏高原构造结构特点: 新重力异常成果的启示. 地球物理学报, 56(4): 1369-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304033.htm
      [41] 郑洪伟, 孟令顺, 贺日政, 2010. 青藏高原布格重力异常匹配滤波分析及其构造意义. 中国地质, 37(4): 995-1001. doi: 10.3969/j.issn.1000-3657.2010.04.014
      [42] 周国藩, 陈建国, 张健, 1996. 青藏高原卫星重力场及所反映的壳幔结构和深部构造特征. 地球科学——中国地质大学学报, 21(2): 191-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199602017.htm
    • 加载中
    图(9)
    计量
    • 文章访问数:  3065
    • HTML全文浏览量:  115
    • PDF下载量:  471
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-12-31
    • 刊出日期:  2015-10-15

    目录

      /

      返回文章
      返回