Quaternary Activity of Huji-Shayang Fault and Seismogenic Structure Relating to Zhongxiang Earthquake
-
摘要: 为了调查该研究区的断裂活动性和发震构造, 采用现场地质、地貌调查、断层物质及阶地年龄测试等方法进行研究.调查结果显示: 胡集-沙洋断裂以正断层活动为主, 最新活动时期在第四纪早更新世晚期, 约1 136 ka.在此基础上, 进一步分析了区域构造应力场和微小地震活动与断层的关系.同时勾绘出了钟祥4次地震的有感范围, 其规模、形态与胡集-沙洋断裂的走向和活动性质基本吻合.在钟祥一带的第四纪中更新世网纹红土中, 发现疑似地震形成的破裂及喷砂喷砾现象, 表明钟祥地区在第四纪中更新世发生过M≥6.0的中强地震.基于此认识, 讨论了钟祥1407年、1469年、1603年M5.0~5.5地震的发震构造.研究表明: 该发震构造为控制汉水地堑的胡集-沙洋断裂, 也证实了在中国东部非活动断裂具有发生中强地震的构造潜力.Abstract: In order to investigate the fault activity and earthquake structure of research area. Field geology, landform survey, fault gouge and terrace dating indicate Huji-shayang fault is characterized by normal faulting and the latest activity time is in late early Pleistocene of Quaternary, approximately 1 136 ka. Furthermore, we make some analysis on relation between regional tectonic stress field and micro-small earthquake activity and fault. Meanwhile, According to field earthquake destroy survey, we draw four earthquake felt area of which size and shape are consistent with strike of the fault. Moreover, we found abnormal phenomenon like fracture and sand-gravel liquefaction in middle Pleistocene reticulate red clay, which suggested a strong shock of magnitude more than 6.0 strike this area of Zhongxiang. Based on these understanding, we discuss the seismogenic structure of Zhongxiang earthquake happening in the year of 1407, 1469, 1603 of magnitude 5.0~5.5. Some conclusion that Hujia-shayang fault controlling Han river garben is possible seismogenic structure of Zhongxiang earthquake can be drawn, which confirm that non-active fault has an ability to produce moderate earthquake in east China.
-
图 3 胡集-沙洋断裂地质与地貌
a.胡集-沙洋断裂及地貌(金牛山,镜向340°);b.胡集-沙洋断裂地貌(格子山,镜向SE);c.胡集-沙洋断裂金牛山地质剖面图,①为断层带内泥状物质,②为断层破碎带,③为回填土,④为Q2第四系中更新统粘土,⑤为Nd新近系掇刀石组砂砾岩,⑥为Ptmr混合花岗岩,F为主断裂,f为次级断裂;d.胡集-沙洋断裂格子山地质剖面图,①为Q2第四系中更新统粘土,②为Nd新近系砾岩,③为灰黑色硅质灰岩碎裂带,④为Ptmr混合花岗岩,⑤为回填土,F为主断裂;e.金牛山上新统中正断层(金牛山,镜向S);f.金牛山上新统中正断层,①为新近系砾岩,②为新近系泥质砂岩
Fig. 3. Geology and landform feature of Huji-Shayang fault
图 5 钟祥七里街多组破裂面及Q2地层中的喷砂喷砾现象
a.钟祥七里街箢担山多组破裂地质剖面图,①含粉砂砾石层,砾径2~3 cm,夹灰白色泥质条带,有3~4个清楚的沉积韵律,②灰白色、灰褐色等杂色淤泥、粉砂质粘土含砾石。从砾石含量和砾径来看,可分为上下两层,下层砾径大而含砾少,砾径一般5~8 cm,最大者15 cm,厚20~30 cm;上层粘土中砾石增多而砾径减小,一般砾径2~3 cm,最大不超5 cm上下被杂色淤泥透镜体分隔,③含泥、砾粉砂,砾石无分选性.f1~f5为破裂面;b.钟祥七里街Q2地层中的喷砂喷砾孔(镜向NE);c.钟祥七里街Q2地层中的喷砂喷砾剖面,①褐红色粘土,微具白色网纹,②含砾砂质红土,③黄色含砾砂质粘土,④灰黄色含砾、泥细砂,⑤黄色粉砂岩,⑥喷砂喷砾孔
Fig. 5. The multigroup fractures and sand-gravel emitting phenomenon in Qilijie, Zhongxiang
图 6 钟祥地区中上地壳深部构造剖面
a.钟祥地区中上地壳结构M1剖面(雷美尧和全浩理,1995);b.钟祥-朱家场地球物理勘探M2综合剖面;M1、M2剖面位置见图 1
Fig. 6. The tectonic section of middle-upper crust in Zhongxiang region
表 1 断裂带内断层物质电子自旋共振测年结果
Table 1. ESR dating results of cataclasite in fault belt
野外编号 采样地点 采样物质 古剂量(Gy) 年剂量(Gy/ka) 样品年龄(ka) N014-ESR 金牛山 断裂碎裂岩 4 392±430 3.49 1 259±123 N015-ESR 磷矿镇西南4 km 断裂碎裂岩 2 866±285 2.04 1 405±140 N016-ESR 磷矿镇西南5 km 断裂碎裂岩 4 102±410 3.52 1 262±126 注:断层带内构造岩ESR测年由中国地震局地质研究所地震动力学国家重点实验室于2008年完成. 表 2 河流阶地物质热释光测年结果
Table 2. TL dating results of river terrace Zhongxiang area
野外编号 采样位置 采样物质 放射性元素含量 年剂量率(Gy/a×10-3) 等效剂量ED(Gy) 样品年龄(ka) U(μg/g) Th(μg/g) K2O(%) No.2 N31°18.57′E112°16.48′ 铁锰质粘土(T3) 2.95 16.1 2.27 2.55 310 121.64±10.34 No.4 N31°20.29′E112°17.58′ 棕褐色粘土(T3) 2.02 15.8 1.86 2.18 450 205.95±17.51 No.7 N31°27.14′E112°17.33′ 深棕红色粘土(T2) 2.54 16.5 3.19 2.65 155 58.36±4.96 No.11 N31°31.76′E122°27.49′ 棕红色粘土(T2) 3.72 16.6 1.63 2.67 75 28.11±2.38 No.12 N31°31.65′E122°27.44′ 浅黑褐色粘土(T1) 3.41 18.8 1.95 2.82 25 8.85±0.75 No.13 N31°24.95′E122°29.22′ 棕红色粘土(T2) 4.15 20.2 3.38 3.43 185 53.94±4.58 No.14 N31°24.79′E122°29.16′ 浅黑褐色粘土(T1) 3.20 15.8 2.75 2.69 35 13.00±1.11 注:第四系阶地样品TL测年由中国地震局地壳应力研究所热释光实验室王焕贞高级工程师于2008年完成. -
[1] Fukuchi, T., 1989. ESR Studies for Absolute Dating of Fault Movement. J. Geol. Soc. , (149): 265-272. doi: 10.1144/gsjgs.149.2.0265 [2] Gao, X.M., Wang, S.J., Yin, Z.S., et al., 1994. Study on Tectonic Stress Field and Source Faulting Types in the Yangtze Gorges and its Vicinity. Crustal Deformation and Earthquake, (2): 1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB402.000.htm [3] Geology and Resource Bureau of Hubei Province. 1990. Regional Geology Record of Hubei Province. Geology Press, Beijing (in Chinese). [4] Grun, R., 1989. Present Status of ESR Dating. Apll. Radiat. Isot. , (40): 1045-1056. http://www.sciencedirect.com/science/article/pii/0883288989900397 [5] Lei, D.N., Cai, Y.J., Zheng, S.M., et al., 2012. Study of Quaternary Activity and Tectonic Deformation Mechnism of Macheng-Tuanfeng Fault Belt. Journal of Geodesy and Geodynamics, 32(1): 21-25(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201201005.htm [6] Lei, M.Y., Quan, H.L., 1995. The Geological Interpretation of the Aeromagnetic Profile of Yichang-Suizhou-Daluzuang. Hubei Geology, (1): 58-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK501.006.htm [7] Li, C. Y, Zeng, X.F., Zhang, J. X, 2008. The Tectonic Settings and Seismogenic Tectonics of the M5.7 Jiujiang Earthquake in 2005, Jiangxi Province, China. Science in China Earth Sciences, 38(3): 343-354(in Chinese with English abstract). doi: 10.1007/s11430-008-0042-3 [8] Li, Y.C., Xue, J., 1989. Seismic Fracture Mechanics Types and Their Stress Environment in the Middle Reaches of the Yangtze River. Journal of Disaster Prevention and Mitigation Engineering, (1): 8-12(in Chinese with English abstract). [9] Lu, S.D., 2005. Seismic Safety Assessment of Engineering Site(GB17741-2005). China Standard Press, Beijing(in Chinese). [10] Rink, W.J., 1997. Electron Spin Resonance(ESR) Dating and ESR Applications in Quaternary Science and Archaeometry. Rad. Measur. , 27(5-6): 975-1025. doi: 10.1016/S1350-4487(97)00219-9 [11] The Department of Seismic Hazard Prevention, CEA. 1995. China Historical Strong Earthquake Catalogue. Seismological Publishing House, Beijing(in Chinese). [12] Wang, S. Y, Xu, Z.H. 1985. Seismo-Tectonic Stress Field in East China. Acta Seismologica Sinica, 7(1): 30-31(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXB198501001.htm [13] Xiang, H.F., Han, Z.J., Zhang, W.X., et al., 2008. A Preliminary Study on Seismogeologic Evidence for Moderate Earthquakes in East China. Seismology and Geology, 30(1): 202-208 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200801014.htm [14] Xiong, J.P. 1986. Hubei Historical Earthquake Materials Exploration. Seismological publishing house, Beijing(in Chinese). [15] 高锡铭, 王少江, 殷志山, 等, 1994. 长江三峡及邻区构造应力场和震源错动类型的研究. 地壳形变与地震, (2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB402.000.htm [16] 国家地震局震害防御司, 1995. 中国历史强震目录(公元前23世纪-公元1911年). 北京: 地震出版社. [17] 湖北省地质矿产局, 1990. 湖北省区域地质志. 北京: 地质出版社. [18] 雷东宁, 蔡永建, 郑水明, 等, 2012. 麻城-团风断裂带中段新活动特征及构造变形机制研究. 大地测量与地球动力学, 32(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201201005.htm [19] 雷美尧, 全浩理, 1995. 宜昌-随州-大路庄航磁剖面的地质解释. 湖北地质, (1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK501.006.htm [20] 李传友, 曾新福, 张剑玺, 2008.2005年江西九江5.7级地震构造背景与发震构造. 中国科学D辑: 地球科学, 38(3): 343-354. doi: 10.3321/j.issn:1006-9267.2008.03.008 [21] 李蓉川, 薛军蓉, 1989. 长江中游地区地震断裂力学类型及其应力环境. 地震学刊, (1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198901001.htm [22] 卢寿德, 2005. 工程场地地震安全性评价(GB 17741-2005). 北京: 中国标准出版社. [23] 汪素云, 许忠淮, 1985. 中国东部大陆的地震构造应力场. 地震学报, 7(1): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198501001.htm [24] 向宏发, 韩竹军, 张晚霞, 等, 2008. 中国东部中强地震发生的地震地质标志初探. 地震地质, 30(1): 202-208. doi: 10.3969/j.issn.0253-4967.2008.01.014 [25] 熊继平, 1986. 湖北地震史料汇考. 北京: 地震出版社.