Application of Projection Pursuit Model to Landslide Risk Classification Assessment
-
摘要: 危险性评价是滑坡灾害预防与减灾工作首要解决的重要内容.在地理信息系统技术支持下, 以山地灾害频发区——小江流域作为研究对象, 选取坡度、土体粘聚力和内摩擦角这3个评价指标构建滑坡危险性分级评价指标体系, 将投影寻踪技术运用到滑坡危险性等级评价中, 对评价样本的各指标因素进行线性投影, 以最优投影方向所对应的投影特征值作为评价依据, 建立了滑坡危险性等级综合评价模型, 绘制了滑坡危险性等级分布图.结果表明: 研究区极高危险区、高危险区、中等危险区、低危险区和极低危险区的面积比例为14.28∶9.41∶69.12∶7.00∶0.19;根据所建立的5级评价指标体系对研究区60个土质滑坡点资料进行了验证, 在占研究区总面积23.69%的高、极高危险区的小范围内, 实际发生土质滑坡数量45个, 占总土质滑坡数量的75.00%;中等危险性级别以上区域拥有的土质滑坡数量占全部土质滑坡的96.67%;不同危险性级别的滑坡体积方量统计结果表明, 滑坡体积方量密度随危险性级别的提高而迅速增加.对比评价结果及实测结果可知, 投影寻踪分级结果符合实际情况, 证实了该方法的正确性, 为滑坡危险性评价提供了一条新思路.Abstract: It's a top priority to estimate risk of landslides for landslide disaster prevention and disaster reduction. In this paper, taking Xiaojiang ravine, a frequent debris flow occurring area as the study area, a classification assessment system of landslide risk is built by selecting 3 evaluation indexes including slope, cohesive force and internal friction angle based on the geographic information system support. Moreover, the projection pursuit technique is applied to evaluate landslide risk classification. According to linear projection of index factors of evaluation samples, the projection pursuit model to classification evaluation of landslide risk is built and the classification map of landslide risk zoning is drawn by the optimal projection direction of the projection characteristic value. The results show that the area ratio of extremely high risk zone, high risk zone, medium risk zone, low risk zone, extremely low risk zone in the study area is 14.28∶9.41∶69.12∶7.00∶0.19. A total of 60 landslides were verified in the study area according to the established evaluation index system of level 5. The high and extremly high risk zones cover 23.69% of the study area, but the actual number of soil landslides is 45, and the number of soil landslides in those risk zones is 75.00% of the total. The number of soil landslides in medium risk level and above risk zones is 96.67% of the total. The statistical results of landslide risk point density in the classification map of landslide risk zoning show that the density of landslides' volume increases rapidly with the increase of risk level. The evaluation results are relatively more consistent with actual situation and more reasonable compared with the measured results. The model proves to be a new perspective for landslide risk prediction.
-
Key words:
- projection pursuit /
- landslide /
- risk /
- evaluation model /
- slope stability
-
表 1 小江流域不同岩性风化产物的力学特征
Table 1. Mechanics characteristics of different lithological weathering products in Xiaojiang ravine
岩性 黏聚力峰值含水量(%) 黏聚力C(kPa) 内摩擦角峰值含水量(%) 内摩擦角φ(°) 泥质灰岩 15.70 152.74 17.9 33.5 泥岩 13.00 34.16 10.0 33.3 白云岩 15.50 48.50 15.2 36.9 玄武岩 16.50 46.75 19.5 26.8 砂岩 11.00 23.08 12.0 35.2 粉砂岩 10.00 53.23 11.2 33.2 第四纪冲洪积 11.00 57.57 12.0 37.0 板岩 10.70 99.10 10.8 40.4 千枚岩 9.20 40.70 10.7 33.3 表 2 斜坡岩石土体稳定性分级
Table 2. Stability classification of slope rock soil mass
坡度(°) 黏聚力C(kPa) 内摩擦角φ(°) 稳定性级别 < 3 >220 >37 Ⅰ 3~8 120~220 29~37 Ⅱ 8~15 80~120 19~29 Ⅲ 15~25 50~80 13~19 Ⅳ >25 < 50 < 13 Ⅴ 表 3 各等级的投影特征值
Table 3. Projection value of each stability grade
坡度(°) 黏聚力C(kPa) 内摩擦角φ(°) 投影特征值 3 220 37 0.000 9 8 120 29 0.211 7 15 80 19 0.515 0 25 50 13 0.951 6 表 4 基于投影特征值的滑坡危险性等级分级
Table 4. Stability classification based on projection value
投影特征值 稳定性等级 滑坡危险性评价等级 < 0.000 9 Ⅰ 极低危险 0.000 9~0.211 7 Ⅱ 低危险 0.211 8~0.515 0 Ⅲ 中等危险 0.515 1~0.951 6 Ⅳ 高危险 >0.915 6 Ⅴ 极高危险 表 5 危险性级别面积比例和检验滑坡点在各级别中的分布比例
Table 5. Distributing area and quantity of landslides at each risk level
滑坡危险性评价等级 总面积(km2) 面积比例(%) 滑坡个数(个) 滑坡相对概率(%) 滑坡方量(104 m3) 滑坡方量密度(104 m3/km2) 极低危险 5.78 0.19 0 0.00 0 0.00 低危险 213.10 7.00 2 3.33 1 220 5.73 中等危险 2104.22 69.12 13 21.67 11 530 5.48 高危险 286.47 9.41 6 10.00 11 050 38.57 极高危险 434.73 14.28 39 65.00 75 458 173.57 -
[1] Chai, B., Yin, K.L., Wang, Y., et al., 2007. Sensitivity Analysis of Landslide Stability Based on Distribution Models of Influencing Factors. Rock and Soil Mechanics, 28(12): 2624-2628 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200712027 [2] Chen, G., Meng, X.M., Guo, P., et al., 2011. Landslide Susceptibility Mapping Based on GIS and Information Value Model in Bailong River Basin. Journal of Lanzhou University (Natural Sciences), 47(6): 1-6 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/lzdxxb201106001 [3] Chen, G.J., Li, C.A., Chen, S., et al., 2013. Landsilide Development and Geological Process of Watercourse of Evolution in the Three Gorges Reservoir Area. Earth Science—Journal of China University of Geosciences, 38(2): 411-416 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.040 [4] Dai, Z.H., Lu, C.J., 2006. Mechanical Explanations on Mechanism of Slope Stability. Chinese Journal of Geotechnical Engineering, 28(10): 1191-1197 (in Chinese with English abstract). http://www.researchgate.net/publication/295794542_Mechanical_explanations_on_mechanism_of_slope_stability [5] Du, R.H., Kang, Z.C., Chen, X.Q., et al., 1987. Comprehensive Investigation and Study of Control Plan on Xiaojiang Debris Flow in Yunnan Province. Science and Technical Documentation Press Bureau of Chongqing, Chongqing (in Chinese). [6] Fu, Q., Zhao, X.Y., 2007. Principle and Its Application of Projection Pursuit Model. Science Press, Beijing (in Chinese). [7] Huang, B.L., Chen, X.T., 2007. Deformation Failure Mechanism of Baijiabao Landslide in Xiangxi River Valley. Chinese Journal of Geotechnical Engineering, 29(6): 938-942 (in Chinese with English abstract). http://www.researchgate.net/publication/294297514_Deformation_failure_mechanism_of_Baijiabao_landslide_in_Xiangxi_River_Valley [8] Lan, H.X., Wu, F.Q., Zhou, C.G., et al., 2002. Analysis on Susceptibility of GIS Based Landslide Triggering Factors in Yunnan Xiaojiang Watershed. Chinese Journal of Rock Mechanics and Engineering, 21(10): 1500-1506 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSLX200210015.htm [9] Lee, S., Pradhan, B., 2007. Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models. Landslide, 4(1): 33-41. doi: 10.1007/s10346-006-0047-y [10] Li, J.X., 2011. Hazards in Formation Mechanism and Non-linear Prediction of Landslide Longzi County, Tibet (Dissertation). Jilin University, Changchun, 97-99 (in Chinese with English abstract). [11] Lee, S.T., Li, X., Liu, Y.H., 2006. Study on Generation and Evolution of Maoping Landslide on Qingjiang River. Chinese Journal of Rock Mechanics and Engineering, 25(2): 377-384 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_yslxygcxb200602026.aspx [12] Liu, H.S., Yang, J.B., Bo, J.S., et al., 2008. Influences of Physical and Mechanical Parameters of Geo-material on Stability of Rock Landslide. Coal Geology & Exploration, 36(1): 37-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT200801011.htm [13] Lu, W.D., 2003. SPSS for Windows Statistical Analysis. Electronic Science and Technology Press, Beijing (in Chinese). [14] Ma, Z.Z., He, Y.P., Xie, H., et al., 2003. GIS-Based Mapping and Zonation of Landslide Hazards in Xiaojiang Valley of Southwestern China. Wuhan University of Natural Sciences, 8(3): 1 021-1 028. http://www.cnki.com.cn/Article/CJFDTotal-WHDZ2003S2018.htm [15] Quan, Q., Wang, L.Z., Huang, C.M., 2006. The Assessment and Management of Seismic Risk Based on Information Diffusion Method in Yunnan Province, China. Northwestern Seismological Journal, 28(2): 180-183 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ200602016.htm [16] Shen, Q., Chen, C.X., Wang, R., 2006. Analysis of Mechanical Parameters of Slip Surface for Basalt Landslide in Yunnan. Rock and Soil Mechanics, 27(12): 2309-2313 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200612042.htm [17] Tang, H., Wan, W., Liu, J.H., 2011. Evaluation of Underground Cavern Rock Quality Based on Uncertainty Measure Theory. Rock and Soil Mechanics, 32(4): 1181-1185 (in Chinese with English abstract). http://www.researchgate.net/publication/289802768_Evaluation_of_underground_cavern_rock_quality_based_on_uncertainty_measure_theory [18] Tang, Q.Y., 2010. DPS Data Processing System. Science Press, Beijing (in Chinese). [19] The Drawing Group of the People's Republic of China National Standard, 1995. GB50218-94 Engineering Rock Mass Classification Standard. China Planning Press, Beijing (in Chinese). [20] Wang, Z.W., Li, D.Y., Wang, X.G., 2007. Zonation of Landslide Hazards Based on Weights of Evidence Model. Chinese Journal of Geotechnical Engineering, 29(8): 1268-1273 (in Chinese with English abstract). http://www.cqvip.com/QK/95758X/20078/25247733.html [21] Wu, Y.P., Zhang, Q.X., Tang, H.M., et al., 2014. Landslide Hazard Warning Based on Effective Rainfall Intensity. Earth Science—Journal of China University of Geosciences, 39(7): 889-895 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.083 [22] Xie, L.L., 2005. A Method for Evaluating Cities' Ability of Reducing Earthquake Disasters. Northwestern Seismological Journal, 27(4): 296-304 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGGC200603001.htm [23] 柴波, 殷坤龙, 汪洋, 等, 2007. 基于影响因素分布模型的滑坡稳定性敏感分析. 岩土力学, 28(12): 2624-2628. doi: 10.3969/j.issn.1000-7598.2007.12.027 [24] 陈冠, 孟兴民, 郭鹏, 等, 2011. 白龙江流域基于GIS与信息量模型的滑坡危险性等级区划. 兰州大学学报(自然科学版), 47(6): 1-6. doi: 10.3969/j.issn.1000-2804.2011.06.001 [25] 陈国金, 李长安, 陈松, 等, 2013. 长江三峡库区滑坡发育与河道演变的地质过程分析. 地球科学——中国地质大学学报, 38(2): 411-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302024.htm [26] 戴自航, 卢才金, 2006. 边坡失稳机理的力学解释. 岩土工程学报, 28(10): 1191-1197. doi: 10.3321/j.issn:1000-4548.2006.10.003 [27] 杜榕恒, 康志成, 陈循谦, 等, 1987. 云南小江泥石流综合考察与防治规划研究. 重庆: 科学技术文献出版重庆分社. [28] 付强, 赵小勇, 2007. 投影寻踪模型原理及其应用. 北京: 科学出版社. [29] 黄波林, 陈小婷, 2007. 香溪河流域白家堡滑坡变形失稳机制分析. 岩土工程学报, 29(6): 938-942. doi: 10.3321/j.issn:1000-4548.2007.06.026 [30] 兰恒星, 伍法权, 周成虎, 等, 2002. 基于GIS的云南小江流域滑坡因子敏感性分析. 岩石力学与工程学报, 21(10): 1500-1506. doi: 10.3321/j.issn:1000-6915.2002.10.014 [31] 李军霞, 2011. 西藏隆子县滑坡灾害形成机理及非线性预测研究(博士学位论文). 长春: 吉林大学, 97-99. [32] 李守定, 李晓, 刘艳辉, 2006. 清江茅坪滑坡形成演化研究. 岩石力学与工程学报, 25(2): 377-384. doi: 10.3321/j.issn:1000-6915.2006.02.026 [33] 刘红帅, 杨俊波, 薄景山, 等, 2008. 岩土体物理力学参数对岩质滑坡稳定性的影响. 煤田地质与勘探, 36(1): 37-40. doi: 10.3969/j.issn.1001-1986.2008.01.010 [34] 卢纹岱, 2003. SPSS for Windows统计分析. 北京: 电子科技出版社. [35] 全佺, 王玲珍, 黄成敏, 2006. 基于信息扩散理论的云南省地震风险评估及管理研究. 西北地震学报, 28(2): 180-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200602016.htm [36] 沈强, 陈从新, 汪稔, 2006. 云南玄武岩滑坡滑动面力学参数分析. 岩土力学, 27(12): 2309-2313. doi: 10.3969/j.issn.1000-7598.2006.12.043 [37] 唐海, 万文, 刘金海, 2011. 基于未确知测度理论的地下洞室岩体质量评价. 岩土力学, 32(4): 1181-1185. doi: 10.3969/j.issn.1000-7598.2011.04.038 [38] 唐启义, 2010. DPS数据处理系统. 北京: 科学出版社. [39] 中华人民共和国国家标准编写组, 1995. GB50218-94工程岩体分级标准. 北京: 中国计划出版社. [40] 王志旺, 李端有, 王湘桂, 2007. 证据权法在滑坡危险度区划研究中的应用. 岩土工程学报, 29(8): 1268-1273. doi: 10.3321/j.issn:1000-4548.2007.08.026 [41] 吴益平, 张秋霞, 唐辉明, 等, 2014. 基于有效降雨强度的滑坡灾害危险性预警. 地球科学——中国地质大学学报, 39(7): 889-895. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407011.htm [42] 谢礼立, 2005. 城市防震减灾能力的定义及评估方法. 西北地震学报, 27(4): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200504002.htm